

NIH Public Access

Author Manuscript

Eur J Pharmacol. Author manuscript; available in PMC 2015 September 15.

Published in final edited form as:

Eur J Pharmacol. 2014 September 15; 0: 1–3. doi:10.1016/j.ejphar.2013.11.013.

Calcium signalling and calcium channels: Evolution and general principles

Alexei Verkhratsky^{1,2} and Vladimir Parpura^{3,4}

¹Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK

²Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain; and Department of Neurosciences, University of the Basque Country UPV/EHU, 48940, Leioa, Spain

³Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL 35294

⁴Department of Biotechnology, University or Rijeka, 51000 Rijeka, Croatia

Abstract

Calcium as a divalent ion was selected early in evolution as a signaling molecule to be used by both prokaryotes and eukaryotes. Its low cytosolic concentration likely reflects the initial concentration of this ion in the primordial soup/ocean as unicellular organisms were formed. As the concentration of calcium in the ocean subsequently increased, so did the diversity of homeostatic molecules. This includes the plasma membrane channels that allowed the calcium entry, as well as extrusion mechanisms, i.e., exchangers and pumps. Further diversification occurred with the evolution of intracellular organelles, in particular the endoplasmic reticulum and mitochondria, which also contain channels, exchanger(s) and pumps to handle the homeostasis of calcium ions. Calcium signalling system, based around coordinated interactions of the above molecular entities, can be activated by the opening of voltage-gated channels, by neurotransmitters, by second messengers and/or mechanical stimulation, and as such is all-pervading pathway in physiology and pathophysiology of organisms.

Keywords

calcium; evolution; prokaryotes; eukaryotes; channels; transporters

Competing financial interests: The authors declare that they have no competing financial interests.

^{© 2013} Elsevier B.V. All rights reserved.

[#]Send all correspondence to: Prof. Alexei Verkhratsky, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK. Telephone +44 (0)161-2757324, Alexej.Verkhratsky@manchester.ac.uk or Prof. Vladimir Parpura, Department of Neurobiology, 1719 6th Avenue South, CIRC 429, University of Alabama, Birmingham, AL 35294, USA, Telephone: (205) 996-7369, vlad@uab.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1. Introduction

Calcium ion represents an important cytosolic signalling molecule as it can affect almost all cellular processes. The calcium signalling evolved around variations in the concentration of calcium within the cytosol, with calcium being sourced from the extracellular space and/or the intracellular calcium-storing organelles. The flux of calcium across the plasma membrane and endomembranes, i.e. membranes demarcating internal organelles, critically relies on the operation of various calcium channels within the membranes. Here, we briefly outlined the evolution and general principles of calcium signalling as an introduction to the papers that follow discussing calcium channels, in the namesake special issue of *European Journal of Pharmacology*.

2. Early evolution of Ca²⁺ signalling

Controlled environment is the essence of life. The very first cells appeared only after they were able to fence their entrails against the world by the means of a cellular membrane. This membrane in the animal kingdom is made of lipids, so that it is poorly, if at all, permeable to the majority of biologically relevant hydrophilic molecules and ions; the exceptions are hydrophobic compounds, which can be dissolved in lipids. This cellular separation from the surround was the first step in the long lasting story of biological evolution, which pretty much builds around a simple and effective principle of *divide et impera*, i.e., divide the world into external environment and internal space and govern everything which goes into or out of the living cell/organism.

Some of the first cells appeared in the primordial ocean in which the main elements were ions derived from the salts enriching the Earth's crust, the most abundant ions being Na⁺, K^+ , Cl⁻, Ca²⁺ and Mg²⁺. Out of the two divalent cations which can bind to the same sites in the cell, Ca^{2+} emerged with binding reactions that are ~ 100 times faster than Mg²⁺ (Williams, 2007). The concentrations of these ions in the primeval ocean are not precisely known. However, some paleontologists suggest that Ca²⁺ concentration was very low, somewhere in the range of 100 nM (Kazmierczak et al., 2013). Hence, the very first cells had acquired a very low Ca²⁺ content in their cytoplasms and lived in a low Ca²⁺ environment. Indeed, even today, some organisms like the cyanobacteria (which are probably the most ancient organisms that still live today) have a low Ca²⁺ requirement and are alkalophilic (Brock, 1973; Gerloff and Fishbeck, 1969; Kazmierczak et al., 2013). Low Ca²⁺ in the cytosol of primeval cells is also compatible with energetics based around ATP and the usage of DNA/RNA for genetic encoding, because both cannot tolerate high Ca²⁺ concentrations; at the levels above 10 μ M of Ca²⁺, this ion induces the precipitation of phosphates, causes aggregation of proteins and nucleic acids and disrupts lipid membranes (Case et al., 2007; Jaiswal, 2001; Williams, 2007).

Washout of Ca^{2+} ions from the Earth's crust, in combination with a decreased alkalinisation of the ancient ocean, led to a continuous increase in Ca^{2+} concentration in the sea water, which in turn initiated the evolution of a Ca^{2+} homeostatic system that kept cytosolic Ca^{2+} at a low level. The molecules governing such homeostasis seem to evolve rather early in the genealogical tree as the most primitive bacteria were already in possession of Ca^{2+} pumps

and Ca^{2+} exchangers. An increase in environmental Ca^{2+} concentration in combination with an evolving Ca^{2+} homeostatic system assured the build-up of a transmembrane Ca^{2+} gradient, which lies at the very base of Ca^{2+} signalling. This gradient soon was utilised by prokaryotes to develop Ca^{2+} permeable channels, which formed a pathway for a transmembrane Ca^{2+} influx and, thus, made Ca^{2+} signalling possible. In this respect, an increase in the ocean Ca^{2+} concentration could be regarded as a trigger of evolution of complex homeostatic and signalling systems.

3. Ca²⁺ homeostasis and signalling in prokaryotes

All prokaryotic organisms living today have a low (80 – 100 nM) cytosolic free Ca^{2+} concentration ($[Ca^{2+}]_i$) - (Gandola and Rosen, 1987; Watkins et al., 1995) and several systems for Ca^{2+} extrusion that include plasmalemmal Ca^{2+} pumps (which are structurally similar to eukaryotic P-type Ca^{2+} pumps), as well as Ca^{2+}/H^+ and Na^+/Ca^{2+} exchangers (Berkelman et al., 1994; Case et al., 2007; Ivey et al., 1993; Kanamaru et al., 1993; Shemarova and Nesterov, 2005). The prokaryotic cells also have intracellular Ca^{2+} signals, reflecting the activation of transmembrane Ca^{2+} fluxes through Ca^{2+} selective channels. These channels are, indeed, widespread in prokaryotic organisms, being arguably the most ancient ion channels (Shemarova and Nesterov, 2005).

There is evidence about a non-proteinaceous nature of ancient proto- Ca^{2+} channels. These Ca^{2+} channels could have been constructed from large (molecular weight of 60 to 1000 kDa) polymers of poly-3-hydroxybutyrate and smaller (12 kDa) polymers of Ca^{2+} polyphosphate (Reusch, 1999; Reusch et al., 1995). These two polymers were reported to form a transmembrane complex that behaves very much like a Ca^{2+} channel, displaying characteristic selectivity for divalent cations and being inhibited by transition metal cations like La^{3+} , Co^{2+} and Cd^{2+} . Furthermore, these channels show elementary voltage-dependent openings when studied under patch-clamp (Reusch, 1999; Reusch et al., 1995).

Prokaryotic organisms are also in possession of Ca^{2+} channels constructed from protein helices (Durell and Guy, 2001; Matsushita et al., 1989; Tisa et al., 2000). Bacterial voltagedependent Ca^{2+} channels contain a single domain assembled from six transmembrane α helix segments S1-S6 (Durell and Guy, 2001), being therefore different from eukaryotes where Ca^{2+} channels have a four-domain structure. Bacterial Ca^{2+} channels are, however, morphologically and functionally similar to eukaryotic analogues, having respectively six transmembrane α -helices, and similar voltage-dependence and pharmacological properties, i.e. sensitivity to phenylalkylamines, dihydropyridines and La^{3+} (Matsushita et al., 1989). For instance, the voltage-dependence of Ca^{2+} channels in *Escherichia coli* resembles that of low-voltage-activated (T) Ca^{2+} channels in eukaryotes (Tisa et al., 2000).

4. Diversification of Ca²⁺ channels in prokaryotes

In eukaryotes, Ca^{2+} signalling systems became more complex; this is primarily associated with the development of intracellular organelles with their specific Ca^{2+} signalling mechanisms. Complexity of Ca^{2+} signalling in eukaryotes is also linked to the appearance of several types of Ca^{2+} permeable channels with distinct gating characteristics and differential Ca^{2+} permeability. In eukaryotes, Ca^{2+} fluxes through the plasma membrane are controlled

Verkhratsky and Parpura

by two highly Ca^{2+} selective channels, the voltage-gated Ca^{2+} channels and the storeoperated Orai channels. In addition, the plasma membrane contains numerous cationic channels that include ligand-gated channels, numerous channels of the transient receptor potential (TRP) family, cyclic-nucleotide-sensitive cationic channels, mechanically-sensitive cationic channels and sperm-associated cation channels. All this remarkable diversity of Ca^{2+} permeable channels occurred very early in the evolution of unicellular organisms (Cai and Clapham, 2012), although some of their precursors have appeared even earlier in bacteria and fungi.

The ligand-gated cationic channels have very early evolutionary roots. The pentameric receptors (which in vertebrates mediate acetylcholinergic, GABAergic, glycinergic and serotoninergic transmissions) are present in cyanobacteria and proteobacteria as orthologous proton-activated channels (Corringer et al., 2012). Similarly, an early analogue of ionotropic glutamate receptors, the glutamatergic receptor GluR0, is also present in bacteria (Traynelis et al., 2010). Functional ancestral ionotropic purinoceptors of P2X class are found in protozoa, such as social amoeba *Dictyostelium discoideum* and in algae *Ostreococcus tauri*, whereas P2X protein homologues were identified in three basal fungi *Allomyces macrogynus*, *Spizellomyces punctatus*, and *Batrachochytrium dendrobatidis* (Burnstock and Verkhratsky, 2009; Cai, 2012).

The first true homologue of voltage-gated Ca^{2+} channels appeared in fungi, represented by Cch1. This fungal protein is similar to the vertebrate channels in its overall structure, being constructed from four repeats of six-transmembrane domains with P-loop selectivity filters (Cai and Clapham, 2012; Zelter et al., 2004). Similarly, proteins homologous to sperm-associated cation channels, generally believed to be associated with animal reproduction, were identified in the basal fungus *Allomyces macrogynus* (Cai and Clapham, 2012).

The Ca²⁺ permeable channels of the TRP family appeared in yeasts, which are in possession of the specific TRPY1 channel that is localised in the vacuolar membrane and arguably is involved in Ca²⁺ release from this organelle (Palmer et al., 2001). More closer relatives to animals, the choanoflagellates, already have several TRP proteins homologous to mammalian TRPC, TRPV, TRPM, TRPML and TRPA channels (Cai and Clapham, 2012). Similarly, choanoflagellates *Monosiga brevicollis*, *Salpingoeca rosetta* and amoeboid animal *Capsaspora owczarzaki* already have proteins for Orai-stromal interaction molecule (STIM) store-operated Ca²⁺ influx complex; these proteins, however, are absent in fungi, indicating that they appeared in ancestral animals (Cai, 2008; Cai and Clapham, 2012).

The origin and development of intracellular Ca^{2+} channels is also associated with early animals and is rather complex. The intracellular Ca^{2+} channels are represented by two types of endoplasmic reticulum channels, the ryanodine and inositol 1,4,5 trisphosphate receptors, as well as by the mitochondrial Ca^{2+} channels, also known as mitochondrial Ca^{2+} uniporters (Baughman et al., 2011; De Stefani et al., 2011; Kirichok et al., 2004; Verkhratsky, 2005). The evolution of endoplasmic reticulum channels begun in protists, which develop quite an extended family of these molecules represented by 36 members of 6 families that share certain properties with mammalian ryanodine and inositol 1,4,5 trisphosphate receptors

(Plattner and Verkhratsky, 2013). Subsequent animal evolution led to a tuning down of this extended number of ancestral forms.

5. Conclusion

Calcium signalling system is based around coordinated interactions of Ca^{2+} channels (that provide for the diffusional Ca^{2+} transport along electro-chemical gradients) and Ca^{2+} transporters (that move Ca^{2+} across membranes against electro-chemical gradients consuming energy). Evolution of Ca^{2+} channels resulted in the appearance of remarkably diversified classes of Ca^{2+} permeable channels, regulated by various physiological stimuli. These Ca^{2+} channels include highly selective voltage-gated and store-operated (Orai) channels and much less selective cationic channels that can be activated by neurotransmitters, second messengers or mechanical stimulation. Properties of these channels and their roles in physiology and pathophysiology form the subject of the special collection of papers that appear in this issue of *European Journal of Pharmacology*.

Acknowledgments

We would like to thank Manoj K. Gottipati for comments on a previous version of the manuscript. Authors' research was supported by Alzheimer's Research Trust (UK) Programme Grant (ART/PG2004A/1) to A.V. and by the National Institutes of Health (The Eunice Kennedy Shriver National Institute of Child Health and Human Development award HS078678).

References

- Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 2011; 476:341–345. [PubMed: 21685886]
- Berkelman T, Garret-Engele P, Hoffman NE. The pacL Gene of *Synechococcus sp.* Strain PCC 7942 Encodes a Ca²⁺-Transporting ATPase. J Bacteriol. 1994; 176:4430–4436. [PubMed: 8021228]
- Brock TD. Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science. 1973; 179:480–483. [PubMed: 4196167]
- Burnstock G, Verkhratsky A. Evolutionary origins of the purinergic signalling system. Acta physiologica. 2009; 195:415–447. [PubMed: 19222398]
- Cai X. Unicellular Ca2+ signaling 'toolkit' at the origin of metazoa. Molecular biology and evolution. 2008; 25:1357–1361. [PubMed: 18385221]
- Cai X. P2X receptor homologs in basal fungi. Purinergic signalling. 2012; 8:11–13. [PubMed: 21887491]
- Cai X, Clapham DE. Ancestral Ca2+ signaling machinery in early animal and fungal evolution. Molecular biology and evolution. 2012; 29:91–100. [PubMed: 21680871]
- Case RM, Eisner D, Gurney A, Jones O, Muallem S, Verkhratsky A. Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell calcium. 2007; 42:345–350. [PubMed: 17574670]
- Corringer PJ, Poitevin F, Prevost MS, Sauguet L, Delarue M, Changeux JP. Structure and pharmacology of pentameric receptor channels: from bacteria to brain. Structure. 2012; 20:941–956. [PubMed: 22681900]
- De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature. 2011; 476:336–340. [PubMed: 21685888]
- Durell SR, Guy HR. A putative prokaryote voltage-gated Ca²⁺ channel with only one 6TM motif per subunit. Biochem Biophys Res Commun. 2001; 281:741–746. [PubMed: 11237720]

- Gandola P, Rosen BP. Maintenance of intracellular calcium in Escherichia coli. J Biol Chem. 1987; 262:12570–12574. [PubMed: 2442165]
- Gerloff GC, Fishbeck KA. Quantitative cation requirements of several green and blue-green algae. J Phycol. 1969; 5:109–114.
- Ivey DM, Guffanti AA, Zemsky J, Pinner E, Karpel R, Padan E, Schuldiner S, Krulwich TA. Cloning and characterization of a putative Ca²⁺/H⁺ antiporter gene from *Escherichia coli* upon functional complementation of Na⁺/H⁺ antiporter-deficient strains by the overexpressed gene. J Biol Chem. 1993; 268:11296–11303. [PubMed: 8496184]
- Jaiswal JK. Calcium how and why? J Biosci. 2001; 26:357-363. [PubMed: 11568481]
- Kanamaru K, Kashiwagi S, Mizuno T. The cyanobacterium *Synechococcus sp.* PCC 7942 possesses 2 distinct genes encoding cation-transporting P-Type ATPases. FEBS Lett. 1993; 330:99–104. [PubMed: 8370468]
- Kazmierczak J, Kempe S, Kremer B. Calcium in the Early Evolution of Living Systems: A Biohistorical Approach. Current Organic Chemistry. 2013; 17:1738–1750.
- Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 2004; 427:360–364. [PubMed: 14737170]
- Matsushita T, Hirata H, Kusaka I. Calcium channels in bacteria. Purification and characterization. Ann N Y Acad Sci. 1989; 560:426–429.
- Palmer CP, Zhou XL, Lin J, Loukin SH, Kung C, Saimi Y. A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca(2+)-permeable channel in the yeast vacuolar membrane. Proceedings of the National Academy of Sciences of the United States of America. 2001; 98:7801–7805. [PubMed: 11427713]
- Plattner H, Verkhratsky A. Ca2+ signalling early in evolution--all but primitive. Journal of cell science. 2013; 126:2141–2150. [PubMed: 23729741]
- Reusch RN. Polyphosphate/poly-(R)-3-hydroxybutyrate) ion channels in cell membranes. Prog Mol Subcell Biol. 1999; 23:151–182. [PubMed: 10448676]
- Reusch RN, Huang R, Bramble LL. Poly-3-hydroxybutyrate/polyphosphate complexes form voltageactivated Ca²⁺ channels in the plasma membranes of *Escherichia coli*. Biophys J. 1995; 69:754– 766. [PubMed: 8519976]
- Shemarova IV, Nesterov VP. Evolution of mechanisms of calcium signaling: the role of calcium ions in signal transduction in prokaryotes. Zh Evol Biokhim Fiziol. 2005; 41:12–17. [PubMed: 15810657]
- Tisa LS, Sekelsky JJ, Adler J. Effects of organic antagonists of Ca²⁺, Na⁺, and K⁺ on chemotaxis and motility of *Escherichia coli*. J Bacteriol. 2000; 182:4856–4861. [PubMed: 10940028]
- Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacological reviews. 2010; 62:405–496. [PubMed: 20716669]
- Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiological reviews. 2005; 85:201–279. [PubMed: 15618481]
- Watkins NJ, Knight MR, Trewalas AJ, Campbell AK. Free calcium transients in chemotactic and nonchemotactic strains of Escherichia coli determined by using recombinant aequorin. Biochem J. 1995; 306:865–869. [PubMed: 7702585]
- Williams, RJP. The evolution of the biochemistry of calcium. In: Krebs, J.; Michalak, M., editors. Calcium: A Matter of Life and Death. Elsevier; Amsterdam: 2007. p. 23-48.
- Zelter A, Bencina M, Bowman BJ, Yarden O, Read ND. A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal genetics and biology : FG & B. 2004; 41:827–841. [PubMed: 15288019]