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Description of the molecular phenotypes of pathobiological processes in vivo is a pressing need in genomic
biology. We have implemented a high-throughput real-time PCR strategy to establish quantitative expression
profiles of a customized set of target genes. It enables rapid, reproducible data acquisition from limited
quantities of RNA, permitting serial sampling of mouse blood during disease progression. We developed an easy
to use statistical algorithm—Global Pattern Recognition—to readily identify genes whose expression has
changed significantly from healthy baseline profiles. This approach provides unique molecular signatures for
rheumatoid arthritis, systemic lupus erythematosus, and graft versus host disease, and can also be applied to
defining the molecular phenotype of a variety of other normal and pathological processes.

[Supplemental material—The primer sequences for genes included in the ImmunoQuant Array (and listed in
Table 1) are available online at www.genome.org. The GPR algorithm, documentation, and sample data sets are
available at http://www.jax.org/staff/roopenian/labsite/index.html. The following individuals kindly provided
reagents, samples, or unpublished information as indicated in the paper: D. Mathis and C. Benoist.]

Expression profiling promises to provide insight into normal
biological and pathological processes (Alizadeh et al. 2000;
Shaffer et al. 2001; van’t Veer et al. 2002). The hope is that
knowledge obtained from gene expression patterns will pre-
dict disease outcome or indicate individualized courses of
therapy. The two technologies that have emerged as the most
promising gene expression tools are hybridization-based mi-
croarrays and quantitative real-time RT-PCR (QPCR) analysis
(Duggan et al. 1999; Lockhart and Winzeler 2000; Giulietti et
al. 2001; Green et al. 2001). Microarrays permit the simulta-
neous analysis of a large number of genes, but extensive rep-
licate sampling can be labor-intensive. Additionally, samples
with limiting RNA (such as mouse peripheral blood or laser-
capture microdissection samples) can only be used following
cDNA amplification (Wang et al. 2000), which adds another
processing step that could introduce bias. This makes longi-
tudinal microarray analysis of peripheral blood samples from
an experimental cohort technically challenging.

QPCR platforms using gene-specific primers provide
highly sensitive and reproducible expression quantification
from small amounts of starting material (Gibson et al. 1996;
Heid et al. 1996; Schmittgen et al. 2000), but have been lim-
ited in the number of genes analyzed practically. Therefore,

we combined the multiple gene approach of microarrays with
the sensitivity of QPCR to produce a high-throughput cus-
tomized “ImmunoQuantArray” (IQA), the first generation of
which consists of 96 gene-specific QPCRs designed to monitor
genes associated with immune processes.

QPCR instruments monitor gene-specific amplicons with
fluorescent dye chemistry. The amplification curves typically
have a sigmoidal shape in which the exponential amplifica-
tion phase reveals the number of PCR cycles required to
achieve a certain fluorescence intensity. A cycle threshold or
Ct value for each reaction is the number of cycles at which the
reaction crosses the fluorescence threshold. The fewer cycles
required to reach a certain fluorescence intensity, the lower
the Ct value and the greater the initial amount of input target
cDNA. Genes that do not amplify during the 40-cycle PCR are
considered “off” and are given a Ct value of 40 (Heid et al.
1996).

QPCR data are usually interpreted as fold changes in
gene expression. Changes in gene expression are derived by
normalizing the expression of a gene to that of an appropriate
“housekeeping” gene (assumed to be invariant; Livak and
Schmittgen 2001). This relative normalization procedure is
presently regarded to be the only practical option available for
interpreting QPCR data. An alternative, accurate quantifica-
tion of input RNA/cDNA is challenging when input RNA is of
limiting quantities and impractical for scale-up (Morrison et
al. 1998).

To more reliably evaluate expression changes in QPCR
data, we developed a novel statistical algorithm—Global Pat-
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tern Recognition (GPR)—to reveal significant changes in gene
expression patterns. Inspired by triangulation techniques to
determine positional information in cartography and as-
tronomy, GPR goes through several iterations to compare the
change of expression of a gene normalized to every other gene
in the IQA. By comparing the expression of each gene to every
other gene in the array, a global pattern is established, and
significant changes are identified and ranked. Importantly,
GPR takes advantage of biological replicates to extract signifi-
cant changes in gene expression, thus providing a novel al-
ternative to the use of relative normalization in QPCR experi-
ments.

We show here that the IQA/GPR approach is a reliable
analytical tool that can be used to establish immunological
gene expression profiles of normal mice and in mice devel-
oping rheumatoid arthritis (RA), systemic lupus erythemato-
sus (SLE), and graft versus host disease (GVHD). Moreover, we
show that one can obtain temporal expression profiles from
unamplified blood cDNA samples from individual mice, thus
making it possible to establish the relationship between gene
expression pattern and individual disease severity.

RESULTS AND DISCUSSION

Design and Validation of the ImmunoQuantArray
We generated a first-generation QPCR-based IQA consisting
of 96 PCR amplicons that survey, at the transcriptional level,
genes associated with a broad spectrum of immunological
processes. We therefore selected sentinel genes, whose altered
expression correlates with innate or adaptive immune re-
sponses, T-cell-mediated (T helper 1 and T helper 2) re-
sponses, humorally mediated responses, and/or general in-
flammatory responses (Table 1; primer sequences are available
online at www.genome.org). The SYBR Green detection sys-
tem was used because it obviates the need for expensive gene-
specific TaqMan probes.

Reproducibility and Sensitivity of the IQA
We tested the ability of this system to generate reproducible
data. cDNAs derived from the samples being compared were
analyzed using the IQA, and the raw cycle threshold (Ct) val-
ues of each amplicon represented as a scatterplot. The farther
a gene deviates from the linear regression best-fit line, the
greater the difference in its level of expression between the
two samples being compared. Figure 1A is a representative
experiment comparing “biological replicate” cDNAs from two
8-week-old C57BL/6J males from splenocytes (first panel) and
whole blood (second panel). This strong correlation was
maintained whenever two similar samples (e.g., age-, sex-,
and strain-matched spleen cDNAs from two animals) were
compared (data not shown), indicating that variability be-
tween genetically identical biological replicates is low. How-
ever, the correlation breaks down when comparing spleno-
cyte with blood Ct values, emphasizing the contribution of
tissue source to the gene expression pattern (Fig. 1A, third
panel). RNA degradation and inconsistency of the reverse
transcription reaction were not significant issues when
samples were collected and processed quickly and uniformly
(see Methods). These results demonstrated that the IQA sys-

tem is capable of generating reproducible data between bio-
logical replicates not only from mouse spleen but also from
microsamples (75 µL) of blood.

The influence of background genetics on the molecular
phenotypes was also tested. Using splenocyte cDNA from
8-week-old male animals, the average expression level (aver-
age Ct values) of cDNAs prepared from five C57BL/6J animals
was compared with the average from five BALB/cJ, three
129X1/SvJ, and five BXSB/MpJ animals (Fig. 1B). The depar-
ture of the correlation coefficient from unity indicated that
genetic background altered the gene expression patterns.

Rationale for Implementing the GPR Algorithm
Although scatterplot analysis (Fig. 1) provided some insight
into gene expression patterns, it was restricted to one-by-one
gene comparisons, and would only be expected to provide
reliable data after accurate quantification of input RNA/
cDNA. Biological replicate comparison of two cohorts of ani-
mals could be performed by plotting the average Ct values for
each gene (as shown in Fig. 1B), but it was a suboptimal
method for identifying significant changes in gene expression
between two experimental groups.

The common mode of comparative analysis for QPCR
data is the use of a single normalizer gene with which the
expression of all genes is compared. This mode of analysis is
greatly complicated by the fact that housekeeping genes com-
monly used as normalizers (e.g., GAPDH, �-actin, and HPRT)
themselves can change in expression when comparing tissues
or cells in different states of activation (Bustin 2000; Schmitt-
gen et al. 2000; Goidin et al. 2001; Hamalainen et al. 2001).
18S rRNA is another normalizer that intuitively and experi-
mentally seems more stable, but for unknown reasons, even
18S can vary in comparison to other genes when analyzed by
sensitive QPCR techniques (e.g., Fig. 1B, left panel; Bustin
2000). Any small variation in the normalizer amplification
would therefore compromise the analysis of the complete
QPCR data set.

Ideally, we wanted to compare the expression profiles of
experimental groups of animals with those of the control
groups such that the comparison was not contingent on the
expression stability of a single normalizer gene. Using the
expression data from the 96 genes in the IQA as a foundation,
we developed the GPR algorithm to discern statistically sig-
nificant changes in gene expression. After filtering the data
(see Methods), GPR normalizes each eligible gene against ev-
ery other gene that is eligible as a normalizer, thus eliminat-
ing the reliance on single-gene normalization. Conceptually,
GPR resembles standard ANOVA techniques but differs in its
implementation (Kerr and Churchill 2001). We initially ap-
plied ANOVA techniques to our QPCR data sets (data not
shown). In ANOVA, to normalize sample-to-sample variabil-
ity, the average Ct value of the 96 genes for each sample is
subtracted from each gene’s Ct value. However, PCR dropouts
or genes that are “off” (with a Ct of 40) are necessarily in-
cluded in this average, adversely skewing the entire data set.
Because GPR considers each gene individually and filters out
such null data, it is not adversely affected by PCR dropouts as
is ANOVA. In a typical experiment, a 96-well IQA QPCR is run
for each of up to 10 samples—five control and five experi-
mental biological replicates. GPR then uses a T-test to evalu-
ate gene expression between control and experimental group
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Table 1. Genes Included in the ImmunoQuantArray

Gene GenBank accession # Name

Aopoptosis/antiapoptosis
Bad NM_007522 Bcl-associated death promoter
Bax NM_007527 Bcl2-associated X protein
Bcl2 NM_009741 B-cell leukemia/lymphoma 2
Bcl21 NM_009743 Bcl2-like [Bcl-x]
Bid U75506 BH3-interacting domain death agonist
Fadd NM_010175 Fas-associated via death domain
Cflar U97076 CASP8 AND FADD-like apoptosis regulator [FLIP(L)] domain death agonist
Tnfrsf6 NM_007987 Tumor necrosis factor receptor superfamily, member 6 [Fas]
Tnfsf6 NM_010177 Tumor necrosis factor (ligand) superfamily, member 6 [FasL]
Pfp M23182 Pore-forming protein [perforin]

Costimulatory/activation cell curface ligands
Cd28 NM_007642 CD28 antigen
Cd44 M27130 CD44 antigen
Cd80 AF065894 CD80 antigen
Cd86 NM_019388 CD86 antigen
Icosl AF216747 ICOS-ligand
Mox2 AF231126 Antigen identified by monoclonal antibody MRC OX-2

Leukocyte cell surface differentiation markers
Cd4 NM_013488 CD4 antigen
Cd5 NM_007650 CD5 antigen
Cd34 S69293 CD34 antigen
Cd3e M23376 CD3 antigen, epsilon polypeptide
Cd8a AJ131778 CD8 antigen, �-chain
Cd8b NM_009858 CD8 antigen, �-chain
Ptprc NM_011210 Protein tyrosine phosphatase, receptor type, C
Art2b AF016465 ADP-ribosyltransferase 2b

Fc receptors
Fcer1a NM_010184 Fc receptor, IgE, high affinity I, � polypeptide
Fcer1g NM_010185 Fc receptor, IgE, high affinity I, � polypeptide
Fcgrt NM_010189 Fc receptor, IgG, � chain transporter

Cytokines
Il1b NM_008361 Interleukin 1 �
Il2 NM_008366 Interleukin 2
Il4 NM_021283 Interleukin 4
Il5 NM_010558 Interleukin 5
Il6 M20572 Interleukin 6
Il7 NM_008371 Interleukin 7
Il10 NM_010548 Interleukin 10
Il12a NM_008351 Interleukin-12 [p35 subunit]
Il12b NM_008352 Interleukin-12 [p40 subunit]
Il15 NM_008357 Interleukin 15
Il18 NM_008360 Interleukin 18
Csf1 NM_007778 Colony-stimulating factor 1 (macrophage)
Csf3 NM_009971 Colony-stimulating factor 3 (granulocyte)
Tgfb1 AJ009862 Transforming growth factor, � 1
Lta NM_010735 Lymphotoxin A
Ltb NM_008518 Lymphotoxin B
Ifna1 NM_010502 Interferon � family, gene 1
Ifnb NM_010510 Interferon �, fibroblast
Ifng K00083 Interferon �
Tnf X02611 Tumor necrosis factor
Tnfsf11 AF013170 Tumor necrosis factor (ligand) superfamily, member 11
Tnfrsf1a NM_011609 Tumor necrosis factor receptor superfamily, member 1a
Tnfrsf1b NM_011610 Tumor necrosis factor receptor superfamily, member 1b
Tnfrsf11b NM_008764 Tumor necrosis factor receptor superfamily, member 11b [osteoprotegerin]

Cytokine receptors
Il1r1 NM_008362 Interleukin 1 receptor, type I
Il2ra NM_008367 Interleukin 2 receptor, � chain
Il2rg NM_013563 Interleukin 2 receptor, � chain
Il4ra NM_010557 Interleukin 4 receptor, �
Il7r NM_008372 Interleukin 7 receptor
Il10ra NM_008348 Interleukin 10 receptor, �
Il12rb2 NM_008354 Interleukin 12 receptor, � 2
Ltbr NM_010736 Lymphotoxin B receptor
Ifngr2 NM_008338 Interferon � receptor 2
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biological replicates on a gene-by-gene basis. Because GPR
ranks genes based on biological replicate consistency, those
genes whose expression differs significantly when comparing
control and experimental cohorts will be identified regardless
of whether the changes are large or small.

Validation of the GPR Algorithm
by Bootstrap Analysis
We used bootstrap analysis (Efron and Tibshirani 1998) to
evaluate the reliability of GPR to detect nonrandom changes
in gene expression. After using GPR to analyze a set of IQA
results, we shuffled the data on a gene-by-gene basis for 250
iterations and analyzed the randomized data set with GPR
after each shuffling. This random resampling generated a

bootstrap probability distribution of GPR scores. The GPR
scores obtained by analyzing the experimental data (observed
scores) were tested to see if they could have arisen simply by
chance in a randomized data set. If the observed GPR score
did not appear once in 250 shufflings of the data set, the
probability of that particular gene having significantly
changed by chance alone is less than 1/250, or p < 0.004.

The KRN T-cell receptor transgenic strain, when bred to
NOD/Lt, produces transgene-bearing F1 mice that develop a
severe autoimmune disorder with distinct similarities to RA
(Kouskoff et al. 1996; Korganow et al. 1999). Table 2A lists the
12 top-ranked genes identified by GPR and associated boot-
strap analysis when comparing blood cDNAs from transgenic
(KRNxNOD) F1 and nontransgenic control littermate cohorts.

Table 1. Continued

Gene GenBank accession # Name

Leukocyte adhesion
Sell NM_011346 Selectin, lymphocyte
Itgal AF065901 Integrin � L
Itgam NM_008401 Integrin � M
Itgax NM_021334 Integrin � X

Innate immune cell surface receptor/ligands
Tlr2 AF165189 Toll-like receptor 2
Tlr4 AF185285 Toll-like receptor 4
Klrb1d AF338322 Killer cell lectin-like receptor subfamily B member 1D
Cd1d1 M63695 CD1d1 antigen

Immune activation/signal transduction
Zap70 NM_009539 �-chain (TCR) associated protein kinase (70 kD)
Cd3z U17267 T cell receptor-� chain
Il1rak NM_008363 Interleukin 1 receptor-associated kinase
C2ta NM_007575 Class II transactivator
Btk NM_013482 Bruton agammaglobulinemia tyrosine kinase
Jun NM_010591 Jun oncogene
Fyn NM_008054 Fyn proto-oncogene
Lck M12056 Lymphocyte protein tyrosine kinase
Map2k1 NM_008927 Mitogen-activated protein kinase 1 [MEK1]
Map2k2 NM_023138 Mitogen-activated protein kinase 2 [MEK2]
Nfkb1 NM_008689 Nuclear factor of � light chain enhancer in B-cells 1, p105
Hcph NM_013545 Hemopoietic cell phosphatase
Myd88 NM_010851 Myeloid differentiation primary response gene 88
Csk NM_007783 C-src tyrosine kinase

Chemokines and chemokine receptors
Scyc1 U15607 Small inducible cytokine subfamily C, member [lymphotactin]
Lcp2 NM_010696 Lymphocyte cytosolic protein 2
Scya19 Af307988 Small inducible cytokine A19
Scya20 NM 016960 Small inducible cytokine subfamily A20
Scyd1 NM_009142 Small inducible cytokine subfamily D, 1
Ccxcr1 NM_011798 Chemokine (C motif) XC receptor 1

Stress response
Tra1 NM_011631 Tumor rejection antigen gp96
Hsp70-2 NM_008301 Heat shock protein, 70 kDa 2
Hsp70-1 M35021 Heat shock protein, 70 kDa 1

Other
Rn18s X00686 18S RNA [ribosomal]
Hprt NM_013556 Hypoxanthine guanine phosphoribosyl transferase
Gapd NM_008084 Glyceraldehyde-3-phosphate dehydrogenase
Tbp NM_013684 TATA-box-binding protein
Zfp106 AF060246 Zinc finger protein 106
Rag1 NM_009019 Recombination activating gene 1
Terc AF047387 Telomerase RNA component
Tert NM_009354 Telomerase reverse transcriptase
Nos2 NM_010927 Nitric oxide synthase 2, inducible, macrophage

Primer sequences available in Supplemental Material; available online at http://www.genome.org.
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The highest GPR scores were also highly significant
(p � 0.004) when compared with the bootstrap scores gener-
ated by randomly resampling the data set.

As a negative control, we then subjected an IQA data set
with minimal expected expression differences to similar boot-
strap analysis. Table 2B compares GPR results derived from
three consecutive bleeds of one C57BL/6J mouse compared
with consecutive bleeds of another C57BL/6J mouse. In con-
trast to the (KRNxNOD) F1 blood data, 96-gene GPR analysis
of the C57BL/6J blood cDNAs yielded only a single difference
(Tnf, GPR score 0.489, indicating that this gene was signifi-
cantly different from 49% of the eligible normalizer genes). In
analyzing more than 50 IQA data sets, we observed that genes
with GPR scores falling below 0.4 lose reliability regarding
their change in expression because the values are based on too
few normalizers. Because the bootstrap distribution was gen-
erated by randomizing of the GPR scores, genes falling well
below 0.4, such as Tnfrsf1a and Tnfrsf1b in Table 2B, occa-
sionally appear as significant. Typically, these genes have a
very low level of expression (i.e., Ct values close to 40) and/or
are statistical noise. However, as shown in Table 2B, genes
with GPR scores �0.4 are always highly significant by boot-
strap analysis. Taken together, the results indicate that the
GPR can reliably identify genes with expression changes be-
tween biological replicates in control and experimental co-
horts.

Molecular Phenotype of the (KRNxNOD) F1 Model
for RA
Blood samples from (KRNxNOD) F1 transgenic animals
showed reduced levels of the T-cell-specific genes Cd4, Cd3e,
Cd5, and Zap70 expression compared with nontransgenic lit-
termates (Table 2A). This result is consistent with the fact that
adult transgenic animals have lower numbers of CD4 T-cells
compared with nontransgenic littermates (Kouskoff et al.
1996). Up-regulation of the antibody Fc receptor common
�-chain (Fcer1g) used by the inflammatory Fc receptors Fc�RI
and Fc�RIII also correlates with the presence of the transgene

and disease. Notably, these proinflammatory Fc receptors are
required to precipitate disease in the (KRNxNOD) F1 serum
transfer model (Ji et al. 2002). Other genes reported as signifi-
cantly changed in Table 2A are interesting candidates for fur-
ther study. Analysis of other lymphoid tissues and longitudi-
nal peripheral blood analysis of these mice may identify other
genes transcriptionally activated/repressed at specific stages
of disease progression. The results show that IQA/GPR analy-
sis from blood samples can reveal expression alterations in
genes consistent with the progression of autoimmune arthri-
tis in the (KRNxNOD) F1 model.

Figure 1 Reproducibility and sensitivity of the ImmunoQuantArray. Raw Ct values for each of the 96 genes in the IQA are plotted. The linear
regression best-fit line is shown and its correlation coefficient indicated. (A) Spleen cDNAs (left panel) or blood cDNAs (middle panel) from two
C57BL/6J males. The average of the two spleen cDNA Cts is compared with the average two blood cDNA Cts (right panel). (B) The average spleen
cDNA Cts of five BALB/cJ (left), three 129X1/SvJ (middle), or five BXSB/MpJ-Yaa+ (right) males was compared with the average spleen cDNA Cts
of five C57BL/6J males. The point lying closest to the ordinate is 18S rRNA.

Figure 2 Serial molecular phenotyping of BXSB-Yaa SLE. Spleen
cDNAs from cohorts of three to five BXSB/MpJ-Yaa males and age-
matched BXSB.B6-Yaa+ controls were subjected to IMQ/GPR analysis
at weeks 4, 6, 8, and 14. The fold changes (normalized to 18S rRNA)
of genes that received a GPR score �0.4 and were significant after
normalization to 18S rRNA are plotted.
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Serial Molecular Phenotyping of BXSB-Yaa SLE
SLE is a heterogeneous disease syndrome with common fea-
tures of B- and T-cell activation leading to the elaboration of
pathogenic autoantibodies. The BXSB/MpJ strain develops a
chronic form of SLE that is severely aggravated in males car-
rying the SB allele at the Y-linked autoimmune accelerator (Yaa)
locus (Murphy and Roths 1979). Using BXSB male mice car-
rying a wild-type Y-chromosome as controls, we examined
splenocyte cDNA samples from cohorts of BXSB-Yaa males
over a 14-wk time course (Fig. 2). Most notably, Il10 expres-
sion increases substantially at week 14, a time at which the
disease first becomes evident. Increased IL10 production is
strongly associated with SLE in both humans and mouse SLE

models (Grondal et al. 2000; Moore et al. 2001). Expression of
Il4, Ifnb, Ifng, and Tnfrsf6 (Fas), all of which have been asso-
ciated with SLE (Nousari et al. 1998; Wong et al. 2000; Bijl et
al. 2001; Theofilopoulos et al. 2001), are up-regulated prior to
14 wk, but with some oscillation. Because the animals in the
two groups were genetically matched except for the Yaa locus,
these data indicate a molecular phenotype of the Yaa-driven
acceleration of the BXSB SLE disease model.

Molecular Phenotype of Mice Undergoing GVHD
GVHD is a prototypic T-cell-mediated disease in which donor
CD4 and CD8 T-cells respond to host alloantigens, proliferate,
attack, and destroy multiple host organs, and undergo apo-
ptotic cell death. C57BL/6J-derived bone marrow and spleen
cells cause acute GVHD when transferred into lethally irradi-
ated allogenic male 129P3/J recipients (Korngold and Sprent
1983). To understand the transcriptional changes associated
with GVHD, we sampled and analyzed peripheral blood leu-
kocytes from mice undergoing acute GVHD and compared
them with the same source of leukocytes transferred into ir-
radiated syngeneic C57BL/6J mice. Figure 3 depicts the fold
changes of genes identified as significant by GPR analysis. Of
the 96 genes analyzed, markers of T-cell activation Lck, Zap70,
Cd4, Cd8, and Cd3 were strongly up-regulated, as was the key
acute GVHD cytokine Ifng (Ferrara 2000) and the receptor
IL-12Rb1, which regulates IFN-� production (Losana et al.
2002). The cell cycle control gene Map2k2 and the apoptotic/
antiapoptotic gene Bcl2l were down-regulated as a conse-
quence of allogenic cell transfer (Fig. 3). These results high-
light the amount of coherent information that can be ob-
tained from serial blood analysis.

Although the approach outlined here is a logical method
for confirmation and accurate quantification of genes whose
expression appears to have changed based on microarray
analyses, a more general application is as a routine analytical
tool to perform high-throughput quantitative expression
analysis of a customized gene set. Major strengths of this ap-
proach include the sensitivity of QPCR techniques to accu-
rately assess the expression of a customized gene set from
limited RNA sources (e.g., mouse peripheral blood), the ex-
ploitation of multiple biological replicates to extract signifi-
cant expression changes, and the obviation of the need for
single-gene-based normalization. Significant expression
changes were evident even though the blood and spleen
samples analyzed were comprised of heterogeneous cell types.
Despite the fact that the expression changes observed could
thus be a consequence of variation of cell types and/or
changes in expression level on a per cell basis, the varied gene
expression patterns observed were consistent with the patho-
logical processes analyzed. Longitudinal analysis from limit-
ing biological samples is not yet practical with microarrays
without amplification of the cDNA (Wang et al. 2000). How-
ever, the limited sample needed for QPCR allows serial sam-
pling of individual mice to arrive at molecular profiles that
predict disease onset and severity. Importantly, the IQA re-
quires no sophisticated equipment other than quantitative
PCR equipment and a Microsoft Excel-capable computer. The
platform is flexible such that genes can be added or subtracted
from the set according to the needs of the investigator, and
can readily be expanded to a 384-well format. Finally, al-
though we have applied the system to probing the molecular
signatures of immunological diseases, the same approach can

Table 2. GPR Analysis and Validation by the
Bootstrap Method

A. (KRNxNOD)F1 transgenic animals compared with healthy
nontransgenic littermatesa

Gene
GPR
score 99.5th %tile p-value

Fold
change

Cd4 0.841 0.827 0.004 0.12
Il7r 0.773 0.447 <0.004 0.29
Zap70 0.750 0.408 <0.004 0.25
Fcer1g 0.636 0.371 <0.004 2.90
Art2b 0.636 0.363 <0.004 0.36
Cd3e 0.614 0.442 <0.004 0.25
Cd5 0.614 0.409 <0.004 0.25
Bid 0.523 0.385 <0.004 2.46
Ltb 0.523 0.251 <0.004 0.57
Tnfsf6 0.432 0.244 <0.004 0.48
Myd88 0.409 0.341 <0.004 1.98
CD8a 0.386 0.203 <0.004 0.62

B. C57BL/6J malesb

Tnf 0.489 0.135 <0.004 0.33
Csk 0.149 0.246 0.064 1.96
Fcgrt 0.149 0.403 0.100 3.11
Fcer1g 0.128 0.185 0.044 0.82
Tnfrsf1a 0.128 0.093 <0.004 0.63
Tnfrsf1b 0.128 0.101 <0.004 0.86
Ly55d 0.128 0.236 0.084 2.13
Il4ra 0.106 0.136 0.028 0.78
Itgam 0.106 0.110 0.012 0.99
Ltb 0.106 0.226 0.096 1.89
Il10ra 0.085 0.290 0.084 2.06
Ptprc 0.085 0.203 0.096 2.98

The top 12 genes from the GPR output are shown. GPR param-
eters were Cycle cutoff = 37.5 and threshold p-value = 0.05. The
99.5th percentile score from the bootstrap distribution (250 ran-
dom resamplings) is shown in the third column. The p-value
(fourth column) was compared by dividing the number of scores
in the bootstrap probability distribution that were higher than the
observed GPR score by the number of random resamplings in the
bootstrap analysis (250). The expression fold change (fifth
change) was derived after normalization to 18S rRNA. Although
GPR ranks genes according to the statistical significance of their
change in expression, it does not provide a fold change in gene
expression. Thus, following GPR analysis, we computed the fold
change normalized to 18S rRNA to gain a sense for the direction
and magnitude of change of the highest ranking genes.
aBlood cDNAs from five 8-week-old (KRNxNOD)F1 transgenic ani-
mals were compared with five healthy nontransgenic littermates.
The IQA gene set was identical to that shown in Table 1, except
Fcer1a, Il1r1, Btk, and Scyd1 were replaced by Tbp, Art2b, Hprt,
and Gapd, respectively.
bTriplicate blood cDNAs from two 8-week-old C57BL/6J males
were compared on the IQA (genes tested as in Table 1).
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be used to establish accurate molecular phenotypes of a wide
variety of nonimmunological normal and disease processes.

METHODS

Mice
Age- and sex-matched C57BL/6J, BALB/cJ, 129X1/SvJ, 129P3/
J, BXSB/MpJ-Yaa+, and BXSB/MpJ-Yaa mice were obtained
from our research colony or from the Jackson Research Sys-
tem’s production facility at the Jackson Laboratory, Bar Har-
bor, Maine. KRN T-cell receptor transgenic mice were a kind
gift from D. Mathis and C. Benoist. Hemizygous KRN trans-
genic males (on a C57BL/6J background) were bred to NOD/
LtJ females, and progeny were typed by PCR. Nontransgenic
(arthritis-free) animals were compared with transgenic (ar-
thritic) littermates for IQA experiments. All animal experi-
ments were approved by the Jackson Laboratory’s Animal
Care and Use Committee (ACUC).

Induction of GVHD
Eight-week-old recipient male 129P3/J (experimental group)
and female C57BL/6J mice (control group) were irradiated
with split doses of 450 cGy from a 137Cs source within a 4-h
interval, and injected with a mixture of bone marrow and
spleen cells from female C57BL/6J mice as described (Choi et
al. 2002).

cDNA Synthesis
To minimize sample preparation variation, all samples for a
given experiment (from both control and experimental
groups) were processed in parallel. Solid tissues were collected
into RNALater (Ambion), used immediately, or stored at
�20°C for not more than 3 d. Total RNA was purified from
solid tissue using the RNAqueous 4-PCR kit (Ambion) and
DNase-treated following the manufacturer’s recommenda-
tions. Total RNA was purified from 75 µL of blood, collected
by a retro-orbital bleed into heparinized 100-µL capillary
tubes, using the 6100 RNA Prep Station (ABI), and DNase-
treated following the manufacturer’s recommendations. Syn-
thesis of cDNA from 5–10 µL of total RNA was carried out
using the Retroscript kit (Ambion) following the manufactur-

er’s recommendations. To minimize varia-
tion in sample preparation, the cDNA was
stored at �20°C and was used for QPCR
within 3 d of preparation.

PCR Amplicon Development
Primer sets (MWG Biotech) were designed
using Primer Express v1.5 (Applied Biosys-
tems, ABI) following recommendations
appropriate for use in the ABI Prism 7700
Sequence Detection System. Selected
primers were searched against GenBank
via the NCBI BLAST algorithm to ensure
specificity to the desired gene target. Each
PCR product was subjected to bidirec-
tional sequencing using each end-specific
primer on the ABI Prism 3700 Sequencer.
SYBR Green dissociation curves were gen-
erated via the 7700 to further ensure the
generation of a single PCR product under
experimental reaction conditions. Primer
sequences are available online at www.
genome.org.

Real-Time Quantitative PCR
ImmunoQuantArray 96-well plates were
prepared by the addition of 0.7 µL of 1 µM
Primers per well. To each well was then

added 9.3 µL of PCR master mix, which contained 525 µL of
2� SYBR Green Master Mix (ABI), 384 µL of dH2O, and 70.4
µL of cDNA (typically a 1:10 for blood or 1:20 for spleen
dilution of stock cDNA). The plate was sealed using an Optical
Adhesive Cover (ABI), and the fluid was spun down in a
swinging bucket centrifuge. Real-time PCR data were collected
on the ABI Prism 7700 Sequence Detection System v1.7 using
the default reaction conditions (1 cycle at 50°C for 2 min, 1
cycle at 95°C for 10 min, 40 cycles at 95°C for 15 sec and at
60°C for 1 min). The baseline and threshold were set to ex-
perimentally determined values and the Experimental Report
data (a table of Ct values for each of the 96 reactions) were
exported for GPR analysis.

Global Pattern
Recognition Algorithm
The GPR algorithm is implemented as a Microsoft Excel
macro to identify significant changes in gene expression pro-
files within a 96-well real-time PCR data set using the Cycle
Threshold (Ct) values generated by the ABI Prism 7700. GPR
compares the Ct of each candidate gene individually with the
Ct of every other gene in the 96-gene IQA data set that is
eligible as a normalizer. Doing so allows stratification of genes
both as a function of the magnitude of the change and the
reproducibility of the Ct values within each of the two experi-
mental groups.

GPR first filters data into overlapping gene and normal-
izer bins. This filtering process is controlled by a user-defined
Cycle Cutoff (CC) value (set at 37.5 for all experiments
shown). The CC is the PCR cycle number above which data
are disregarded. A number of 37 cycles approaches single-copy
detection, and thus leads to variable data. Consequently, us-
ing the CC eliminates these noisy data. Using the CC, GPR
culls the data with the Normalizer Filter and the Gene Filter.
A gene passes through the Normalizer Filter if all observations
in both control and experimental groups fall below the cycle
cutoff value (e.g., an eligible normalizer—Group 1 Ct values:
33.4, 31.1, 31.5; Group 2 Ct values: 33.9, 34.2, 33.6). A gene
passes through the Gene Filter if all observations in either
control or experimental groups fall below the cycle cutoff
value (e.g., an eligible gene, but not an eligible normalizer—

Figure 3 Molecular phenotype of GVHD progression. Bone marrow and splenocytes from
C57BL/6J females were used to induce GVHD in five allogenic 129P3/J males (C57BL6/
J → 129P3/J). Five syngeneic transplant recipients (C57BL6/J → C57BL6/J) were used as con-
trols. cDNAs were prepared from samples collected on days 7 and 9 after the transplant and
were subjected to IMQ/GPR analysis. The fold changes of genes that received a GPR score �0.4
and were significant after normalization to 18S rRNA are shown.
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Group 1 Ct values: 32.4, 33.1, 31.8; Group 2 Ct values: 37.9,
39.1, 40). Each eligible gene is then normalized in turn to
each eligible normalizer by computing a �Ct value
(�Ctgene = Ctgene � Ctnormalizer). For each gene-normalizer
combination, the individual �Ct values generated for the con-
trol and experimental groups are compared by a two-tailed
heteroscedastic (unpaired) Student’s t-test, and a “hit” is re-
corded if the p-value from the t-test falls below a user-defined
p-value (e.g., 0.05). Thus data from biological replicates are
compared directly at the �Ct level at each round of normal-
ization. Each candidate gene, when processed through GPR, is
significantly different when compared with certain normaliz-
ers and insignificant when compared with others. The total
number of normalizer “hits” for each gene is tallied and used
to sort the genes in the 96-well array with the genes changed
in comparison to the largest number of normalizer genes
ranking highest. The GPR score indicates the fraction of nor-
malizer genes against which the candidate gene was found to
be significantly different. Analysis of more than 50 data sets
indicates that a GPR score of 0.4 or higher (statistically differ-
ent when compared with 40% or more of the eligible normal-
izers) reliably identifies the genes having undergone signifi-
cant change (see Results and Discussion). After ranking genes
by GPR score, the direction and magnitude of change of a
particular gene with respect to the control group can then be
approximated by comparing the average �Ct values of the
two groups after normalization to 18S rRNA by the 2���Ct

method (Livak and Schmittgen 2001). The GPR algorithm
implemented in Excel (and documentation) is available
for download at http://www.jax.org/research/roop/
gene_expression.html.

Bootstrap Probability Distribution
Ct values from IQA data sets for the two comparison groups
were randomly resampled on a gene-by-gene basis and then
processed by the GPR algorithm. The resultant GPR scores for
each gene were recorded for each of the 250 random resam-
plings to generate a bootstrap probability distribution (Efron
and Tibshirani 1998). An observed GPR score above the
99.5th percentile of the gene-specific bootstrap probability
distribution was considered significant (bootstrap p < 0.005,
corresponding to �1 value in the bootstrap distribution being
higher than the observed GPR score). The p-value for each
gene was computed as the number of scores in the bootstrap
distribution higher than the observed GPR score divided by
the number of random resamplings.
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