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Identification of transcription factor binding sites within regulatory segments of genomic DNA is an important step
toward understanding of the regulatory circuits that control expression of genes. Here, we describe a novel
bioinformatics method that bases classification of potential binding sites explicitly on the estimate of
sequence-specific binding energy of a given transcription factor. The method also estimates the chemical potential of
the factor that defines the threshold of binding. In contrast with the widely used information-theoretic weight matrix
method, the new approach correctly describes saturation in the transcription factor/DNA binding probability. This
results in a significant improvement in the number of expected false positives, particularly in the ubiquitous case of
low-specificity factors. In the strong binding limit, the algorithm is related to the “support vector machine” approach
to pattern recognition. The new method is used to identify likely genomic binding sites for the E. coli transcription
factors collected in the DPInteract database. In addition, for CRP (a global regulatory factor), the likely regulatory
modality (i.e., repressor or activator) of predicted binding sites is determined.

[Supplemental material is available online at www.genome.org. The complete list of predicted sites may be found at
http://www.biomaps.rutgers.edu/bioinformatics/QPMEME.htm.]

Molecular biology has been revolutionized by the availability of
complete DNA sequences as well as of genome-wide expression
data for many different organisms. Methods for prediction of
genes from sequence data are now quite well developed. How-
ever, the equally important problem of identifying the regulatory
elements of DNA remains a challenge (Fickett and Wasserman
2000). The regulatory elements are short (6–20 bp) segments of
DNA that, through binding of particular transcription factor (TF)
proteins, control the expression of nearby genes (Lewin 2000).
Extracting biological function from sequence information poses
a nontrivial pattern-recognition problem. In this paper, we trans-
late the biophysical view of specific TF–DNA interaction into a
novel algorithm for identifying the binding sites for known tran-
scription factors. We compare the new algorithm (Quadratic Pro-
gramming Method of Energy Matrix Estimation, or QPMEME)
with the widely used information-theory-based weight matrix
method (Stormo et al. 1982, 1986; Staden 1984; Berg and von
Hippel 1987; Stormo and Hartzell III 1989; Stormo and Fields
1998). We argue that the new algorithm is more appropriate for
the analysis of TFs with highly variable known binding sites, that
is, TFs that bind with low specificity under physiological condi-
tions. We also apply the QPMEME algorithm to the identification
of the potential regulatory binding sites in Escherichia coli
(Blattner et al. 1997) for the set of transcription factors collected
in the DPInteract database (http://arep.med.harvard.edu/
dpinteract/). The QPMEME algorithm allows identification of the
likely RNA polymerase (RNAP) binding sites (promoters) includ-
ing the RNAP-�70 sites. Identification of these sites is highly non-
trivial because of their strong variability in E. coli (Robison et al.
1998; Wagner 2000). This, in turn, makes it possible—by exam-
ining the location of TF-binding sites relative to promoters and to
other TF-binding sites (Gralla and Collado-Vides 1996)—to pre-
dict the functional modality (repressor vs. activator) for at least

some of the candidate regulatory sites. In particular, we provide
predictions for the location and modality of numerous cAMP-
receptor protein (CRP) binding sites (Wagner 2000). The predic-
tions are calibrated on the binding site data collected in the Regu-
lonDB database (http://www.cifn.unam.mx/Computational_
Genomics/regulonDB/) and can be tested in the next generation
of experiments. We also use the algorithm to examine the distri-
bution of likely binding sites and the possible function of two
poorly understood global regulatory proteins: the histone-like
nucleoid-associated protein (H-NS) and the leucine-responsive
regulatory protein (LRP; Wagner 2000). Finally, we suggest
experiments that could test the biophysical foundations of the
QPMEME algorithm. The results of our TF-binding site search
have been used to examine the relation of TF specificity and
degree of pleiotropy (the number of regulatory targets) as re-
ported in Sengupta et al. (2002).

We introduce the new algorithm in the Methods section
and present its application to E. coli genome analysis in the Re-
sults section. Comparison with the information-theoretic weight
matrix and other issues are addressed in the Discussion section.

METHODS

Biophysical View of Transcription Factor–DNA Binding
Consider a reversible reaction of binding of the transcription
factor (TF) to a short piece of DNA schematically represented by

TF + DNA ⇀↽
Kdiss

Kbind

TF − DNA. ( 1 )

The rates depend on the DNA sequence S. Let Kbind(S), Kdiss(S) be
the sequence-dependent rate constants for transcription factor
binding and for transcription factor dissociation. If the binding
(free) energy4 of a transcription factor (TF) to a short stretch of
DNA with sequence S is E(S), then
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4For brevity, from now on we refer to the free energy of binding simply as
“binding energy.” In biophysical literature, the commonly used notation for
this quantity would be �G(S) rather than E(S).
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Kbind�S�

Kdiss�S�
= K exp� − �E�S��

with � = 1/kBT. When such a sequence is in a solution containing
a transcription factor with the concentration ntf, the equilibrium
probability of it being bound to a TF molecule is

p�S� =
Kbind�S�ntf

Kbind�S�ntf + Kdiss�S�
=

K exp� − �E�S��ntf
K exp� − �E�S��ntf + 1

. ( 2 )

which can be rewritten in the form:

p�S� = f �E�S� − �� =
1

e�E�S� − ���kBT + 1
( 3 )

recognized as the Fermi–Dirac distribution (Ma 1985), where µ is
the chemical potential set by the factor concentration:
µ = kBT ln(Kntf).

The Fermi–Dirac form of binding probability tells us that a
sequence with binding energy well below the chemical potential
(which depends on the factor concentration) is almost always
bound to a factor. On the other hand, if the binding energy is
well above the chemical potential, the sequence is rarely bound,
with the binding probability approximated by exp(�(E(S) � µ)/
kBT). Note that the “information score” defined by the informa-
tion-based weight matrix procedure (Stormo and Fields 1998) is
often interpreted as (the negative) of the binding energy. This
interpretation (Stormo and Fields 1998) assumes Boltzmann dis-
tribution of binding probability and therefore corresponds to the
rare binding limit (see Appendix I). Our present goal will be to
devise an algorithm for binding motif analysis that is appropriate
for the case in which sites with saturated occupancy are present.

To proceed any further, we need an expression for E(S).
Quite generally, the sequence-specific interaction can be param-
eterized by

E�S� = �
i = 1

L

�
�= 1

4

�i
�S i

� + �
i,j = 1

L

�
�,�= 1

4

J ij
��S i

�Sj
� + … ( 4 )

where Si
� characterizes the sequence Si

� = 1 if the i-th base is � and
Si

� = 0 otherwise. �i
� is the interaction energy with the nucleotide

� at position i = 1, … , L of the DNA string (Stormo and Fields
1998) and Jij

�� is the pair-dependent (� at position i and � at j)
correction. The simplest model of protein–DNA binding assumes
that the interaction of a given base with the factor does not

depend on the neighboring bases and hence corresponds to just
the first term of the expression in equation 4:

E�S� ≈ S · � ≡ �
i = 1

L

�
�= 1

4

�i
�Si

�. ( 5 )

This simple parameterization provides a reasonable approxi-
mation in many cases (Stormo and Fields 1998), although there
are examples where binding shows clear dependence on nucleo-
tide pairs (e.g., Bulyk et al. 2002). The latter effect can be para-
metrized by inclusion of Jij

�� � 0 (Stormo et al. 1986; Zhang and
Marr 1993). For the rest of this paper, we shall work with the
independent nucleotide approximation to E(S) and show how
the interaction parameters � and the chemical potential µ can be
estimated from the data. The method presented below can be
readily extended to the more general form of E(S).

Maximum Likelihood Inference of Binding Energies
Let us consider an ideal experiment in which a large number of
randomly generated sequences of length L are mixed into a so-
lution with a known concentration of a given transcription fac-
tor. Let the probability of generating sequence S be PS. Upon
equilibration, some of the DNA sequences bound to a factor are
extracted out of the solution and sequenced. This gives us a set O
containing nS sequences of length L.

The probability of observing the sequences comprising set
O, but no other sequences, is given by

e� = �
S�O

�	PSf �E�S� − ��� �
S�∉ O

�1 − 	PS� f �E�S�� − ���

≈ �
S ∈ O

�	PSf �E�S� − ��� exp� − 	 �
S�

PS�f �E�S�� − ���

(6)

where 	 is the (yet unknown) probability of a factor-bound se-
quence to be extracted. The likelihood function � depends on �
through E(S) = � · S. The sum over the unobserved sequences S�

can be approximated in terms of the binding energy distribution

�(E) (see Fig. 1 and Supplemental Appendix A), whose subscript
reminds us of its dependence on �. Thus

�
s�
PS�f �E�S�� − �� ≈ � dE
��E�f�E − ��.

Figure 1 Distribution of binding energies (red curve) in the ensemble
of random sequences is approximately Gaussian (although limited to the
Emin, Emax interval set by the best and the worst binding sequences,
respectively). The blue line represents the binding probability of TF pre-
sent at a concentration corresponding to the chemical potential µ. The
red crosses illustrate possible binding energies of example sequences.

Figure 2 Schematic representation of the quadratic programming
problem. Sequences are represented as points in multidimensional space.
The red circles represent example binding sites, and blue crosses repre-
sent random sequences. The hyperplane H is specified by the energy
matrix � (here considered as a vector) and µ. All example points must be
on or to the “left” of the hyperplane. Optimization moves the plane left
until it gets “hung up” on the example points (S(1), S(2), S(3) on the figure)
so as to minimize the number of random sequences below the binding
threshold (i.e., lying to the left of H).
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We want to choose all the parameters in such a way as to maxi-
mize �. Variation of � with respect to �, µ, and 	 gives equations
that together determine these parameters (see Supplemental Ap-
pendix B). In Appendix I, we show how the above analysis, when
applied to the case in which the chemical potential µ is so low
that the probability of any sequence being bound is small, re-
duces to the familiar information-theoretic weight matrix con-
struction (Stormo and Fields 1998). In the next section, we dis-
cuss another limit, � → �, where the analysis simplifies.

Deterministic Limit and the Quadratic Programming
Method of Energy Matrix Estimation
It is useful to consider the limit when all of the “observed” se-
quences (i.e., S ∈ O) are bound with probability close to 1, which
occurs if µ � E(S) � kBT (for all S ∈ O). Maximizing likelihood
then reduces to minimizing

�
s�
SPS�f�E�S�� − �� = � dE
��E�
�� − E� = 4L����,

where �(µ) is defined as the probability that a randomly chosen
sequence has energy below µ, while satisfying at the same time
the constraint E(S) � µ, for all S ∈ O. This is a problem of mini-
mization subject to linear inequality constraints (see Fig. 2 for
schematic illustration).

The problem simplifies even further if we assume that the
chemical potential is in an energy range where the distribution of
binding energies of random strings could be approximated by a
Gaussian distribution. Then, minimizing �(µ) is equivalent to
minimizing the variance of energies from the distribution, with µ
held fixed. We will shift energies so that the average binding
energy over all sequences is zero. Then, we minimize

�2 ≡ �
i = 1

L

�
�

����i
��2 ( 7 )

subject to

E�S� = S · � ≡ �
i = 1

L

�
�= 1

4

�i
�S i

� � � = − 1 ( 8 )

for every S ∈ O. The overall energy scale is arbitrary, and we are
free to set the fixed value of | µ| to 1: hence we are determining �
in units of µ. (More precisely, µ here is the difference between the
chemical potential and the average energy.)

Minimizing a nonnegative definite quadratic form subject
to linear inequalities is a well-developed technique known as
quadratic programming (Fletcher 1987). Because it involves find-
ing the minimum of a convex function over a convex domain,
finding a solution satisfying the Kuhn–Tucker condition
(Fletcher 1987), namely, the condition for being a local mini-
mum, is enough to find a global solution.

In practice, we solve the dual version (Fletcher 1987) of this
quadratic programming problem. That problem is constructed as
follows. Let O = {S(1), S(2), … , S(nS)}. Construct the matrix M with

Mab = Ŝ�a� · � − 1 · Ŝ �b� ≡ �
i = 1

L

�
�= 1

4

Ŝ�i
�a�

1
p�

Ŝ�i
�b� ( 9 )

where Ŝ�i
(a) = S�i

(a) � p� and ��� = p����. Minimize

1
2�ab 	aMab	b − �

a
	a ( 10 )

subject to

	a � 0 ( 11 )

for each a = 1, 2, … , nS.
The relation between the primal and the dual solution is

given by

�i
� = �

a= 1

ns

	a�
− 1Ŝ�i

�a� ( 12 )

For any 	a > 0, one could show that at the optimal point
� · S(a) = 1. If we think of sequences S as vectors in a vector space
V and H = {x ∈ V | � · x = 1} being a hyperplane separating
the binding sequences from the nonbinding ones, then H is
“supported” by those observed sequences S(a) that had non-
trivial 	a (see Fig. 2). At this point we see that this method is very
similar to Support Vector Machines (Cristianini and Shawe-
Taylor 2001). The main difference is that in the case of Sup-
port Vector Machines, one is trying to separate between posi-
tive examples and negative examples with a separator surface
of largest margin. In our case, we do not have particular non-
binding sequences. Instead, we are trying to minimize the
probability that any random sequence is identified as a bind-
ing sequence, while still correctly classifying all of the exam-
ples.

Table 1. Statistical Summary of E. coli Search Results

Namea Lengthb
Number of
examplesc

Information
score
“hits”d

QPMEME
“hits”e Significancef

ArcA 15 14 391 52 6.3
ArgR 18 17 320 79 8.9
CRP 22 49 3093 796 27.2
CytR 18 5 745 42 4.3
DnaA 15 8 98,748 461 0.5
FadR 17 7 28 10 9.0
FarR 10 4 1893 241 3.7
FIS 35 19 7687 255 4.1
Fnr 22 14 174 36 13.9
FruR 16 12 31 23 14.8
GalR 16 7 10 9 8 � 103

GevA 20 4 15 5 5 � 103

GlpR 20 13 9132 192 1.6
H-NS 11 15 14,619 2340 2.7
IHF 48 26 82,494 359 13.6
LexA 20 19 39 39 104

LRP 25 12 90,676 4087 32.9
MalR 10 10 96 61 8.7
MetJ 16 15 404 42 1.6
MetR 15 8 344 26 3.2
NagC 23 6 72 8 7.0
NarL 16 11 2090 19 7.5
OmpR 20 9 4890 93 2.6
PhoB 22 15 258 23 14.8
PurR 26 22 47 28 27.0
�70 (15) 27 27 11,517 635 2.2
�70 (16) 28 48 15,867 912 2.6
�70 (17) 29 116 41,488 3923 0.6
�70 (18) 30 34 10,133 381 0.6
�70 (19) 31 25 15,086 301 0.4
�54 16 6 16 7 6.0
�S 29 15 10,669 245 2.0
SoxS 35 14 3963 49 2.2
TyrR 22 17 3843 73 6.2

See Web site http://www.biomaps.rutgers.edu/bioinformatics/
QPMEME.htm. for details.
aTF name. Note �70 (15), etc., refers to �70 sites with 15 bp spacer
between �10 and �35 boxes. blength of the binding site in bp.
cnumber of known binding sites used to determine �, µ parameters.
dnumber of candidate sites found using information theoretic weight
matrix with threshold set to include most of the example sites (the 2�
cut-off; Robison et al. 1998). enumber of candidate sites found using
QPMEME approach. f“Significance” defined here as a difference be-
tween actual and expected number of sites normalized to the square
root of the expected number.
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RESULTS

Application of QPMEME to Binding Site Identification in
E. coli
We have used the Quadratic Programming Method of Energy
Matrix Estimation (QPMEME) to construct � matrices for the
DNA-binding proteins (�(tf)) from the known binding sites (Ro-
bison et al. 1998) collected in the DPInteract database. We then
searched both strands of the 3121 non-ORF regions (with length
>10 bp) of the E. coli genome (Blattner et al. 1997) to identify the
candidate transcription factor binding sites, as defined by the
E(tf)(S) = �(tf) · S � µ = �1 condition. The overall results are sum-
marized in Table 1, which lists the number of candidate binding
sites for each factor along with the number of examples (from
DPIinteract) used by the QPMEME algorithm. The complete lists
of binding sites found are available at http:// www.biomaps.
rutgers.edu/Public/QPMEME.htm.

To evaluate the statistical significance of the search results,
we compare the “empirical distribution” of interaction energies,
�(tf) · S, found over all non-ORF sequences in E. coli with the
background distribution defined by a random � matrix (with the
same variance �2 = �2

(tf)) in the model genomic background
(MGB). The statistics of MGB must be defined so that the empiri-
cal genomic distribution and the MGB distributions agree for any
random �. We find that random sequences biased to reproduce
the nucleotide and dinucleotide statistics of non-ORF E. coli DNA
provide an adequate MGB. This is illustrated in Figure 3, which
compares the empirical energy distribution for a random � with
that in MGB consisting of random sequence with (a) a correct
single nucleotide and (b) correct dinucleotide statistics. The MGB
distributions are computed by the method described in Supple-
mental Appendix A.

If for �(tf), found for a particular transcription factor, the
empirical distribution departs significantly from the background
distribution, it is very likely to be indicative of biological rel-

evance. For many factors like CRP or FNR
shown in Figure 4, there is a pronounced
deviation of the empirical distribution from
MGB in the region of strong binding that
clearly indicates statistical significance.
Note that, in the case of FNR, the binding
threshold µ, which we have estimated on
the basis of examples (from DPInteract), lies
below the point where the empirical distri-
bution deviates from MGB. It is likely, that,
in this case, the estimated threshold is too
low, and additional statistically significant
sites can be found. Statistical significance in
the number of candidate binding sites
found in the present search—defined by the
number of candidate sites minus the ex-
pected number of bound sites for the back-
ground distribution over the standard de-
viation in the number of background
bound sites—is listed in Table 1 for some of
the transcription factors tested. The com-
plete list for all of the tested transcription
f a c t o r s m a y b e f o u n d a t h t t p : / /
www.biomaps.rutgers.edu/bioinformatics/
QPMEME.htm.

Note, however, that lack of difference
between the empirical and the background
distributions does not mean that �(tf) esti-
mated on the basis of the examples is spu-
rious, only that one needs other means to
verify its validity. For example, in the case

of RNAP-�70, we find no significant difference between empirical
and background distributions. However, plotting a histogram of
distance between putative RNAP-�70 promoters and the start of
the nearest gene reveals a significant difference between the case
in which the promoter is on the same strand as the downstream
gene (i.e., is correctly oriented to transcribe it) and the case in
which the promoter and the gene are on opposite strands. Fur-
thermore, we observe a peak in the histogram corresponding to
promoters positioned 33 bases upstream of the closest gene (see
Fig. 5). This indicates that even if we do not see much in the
absolute count of hits, we may be retrieving some biologically
significant sites. Reliable identification of the RNAP-�70 sites in E.
coli solely by the means of bioinformatics is a notoriously diffi-
cult task. Hence, the present findings are rather encouraging.

To further assess the quality of the search algorithm and its
predictions, we focus on the binding site search results for the
two “low-specificity” factors5: CRP and RNAP-�70. To estimate
the false-negative rate, we compare our predicted sites for CRP
and RNAP-�70 with the known sites collected in Regulon DB
(http://www.cifn.unam.mx/Computational_Genomics/
regulonDB). CRP and RNAP-�70 represent, respectively, the best
and the worst cases, judged on the basis of the candidate site
number excess over background. We find a 24% false-negative
rate for CRP (in classifying 54 RegulonDB sites not included
among the 48 “example” sites from DPInteract that we used for
parameter estimation). The false-negative rate for our RNAP-�70

site prediction is about 50%, as deduced from classifying Regu-
lonDB sites. Note that in the E. coli search, we found the total of
1609 RNAP-�70 candidate sites correctly oriented and within 100

5Although it is convenient to refer to TFs with variable binding sites as “low-
specificity” factors, it must be remembered that the variability of binding sites
is likely to be the result of these TFs being present at higher concentration than
“high-specificity” factors—as opposed to having intrinsically weaker sequence
dependence of TF/DNA interaction.

Figure 3 This figure illustrates the importance of the correlation effects in genomic background
statistics. The histograms of binding energies are obtained for a randomly chosen � vector (blue)
and its scrambled, that is, position-permuted, version �̃ (red). The magenta curve is the theoretical
estimate of the binding energy distribution based on a random nucleotide model without corre-
lations, but with the correct one-point statistics of bases. That estimate is the same for � and �̃. The
theoretical energy distribution for model background statistics, which includes correct one- and
two- (nearest-neighbor) base statistics, is different for � and �̃ (green curves) is in a much better
agreement with the empirical histograms.
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bp upstream of an ORF. This number should be compared with
the 2593 estimated number of operons (Blattner et al. 1997). It is
likely that many of the functional �70 promoters are missed by
the present search because they are intrinsically weak binding
sites and require the presence nearby of activating transcription
factors. A particularly well-known example is provided by Class II
CRP binding sites (Kolb et al. 1993; Busby and Ebright 1999;
Wagner 2000), where CRP positioned at �42 (relative to the
transcription start) occludes the �35 binding element (Lewin
2000; Wagner 2000) of �70. Searching for a �70 �10 element
appropriately positioned relative to the candidate CRP binding
sites, we find 133 Class II sites, of which only 17 are in Regu-
lonDB, which reduces the RNAP-�70 false-negative rate to 40%.

To corroborate the likely functional significance of the can-
didate binding sites, we consider the abundance of CRP binding
sites upstream of genes involved in carbon metabolism (as clas-
sified in the EcoCyc database; http://www.ecocyc.org). Of the
total of 559 candidate CRP binding sites, 118 are upstream of
carbon metabolic genes, so that the fraction of the latter genes
with a CRP site is 21% compared with 6% genome-wide. Hence,
as expected, we observe clear evidence of CRP involvement in
carbon utilization (Saier et al. 1996).

One of the main benefits of the proposed search algorithm
is that it makes plausible predictions for RNAP-�70-binding sites.
This information can be used to infer the regulatory modality of
the nearby TF-binding sites. In most cases, TF-binding sites that
overlap or sit directly downstream of the promoter act as repres-
sors (Gralla and Collado-Vides 1996; with the exception of
known activators, such as CRP Class II, AraC, etc.; Wagner 2000).
As an example, we again consider CRP, which is known to act as
an activator or repressor on different promoters (Wagner 2000).
Figure 6A shows the histogram of known (RegulonDB) CRP bind-
ing site positions (relative to the transcription start) correspond-
ing to activation (blue) and repression (red). The activator sites
clump at �42 (Class II site) and �62, �72, �93 series of Class I
sites (Busby and Ebright 1999; Wagner 2000), which are consis-
tent with the period of the DNA helix. Figure 6B presents the

histogram of positions of candidate CRP binding sites relative to
transcription starts identified on the basis of the nearest candi-
date RNAP-�70 site. (Only the candidate RpoD sites within 100 bp
upstream of the ORF are included.) Note the identifiable Class I
peaks and the conspicuous absence of Class II sites in the histo-
gram based on the results of the �70 search. Class II sites reappear
in Figure 6C, which includes candidate promoters identified by
the joint CRP/�70

�10 search. In addition to the identifiable Class I
and Class II sites, we observe significant peaks at positions �47
and �29 in the histogram. The former position lies one half-
helix turn upstream of the Class II site so that the TF at that
position would interfere with the �-CTD domain of the RNAP
(Wagner 2000), and hence we expect these sites to act as repres-
sors. The peak at �29 may be explained statistically by the simi-
larity of the CRP and �70 energy matrices (with appropriate po-
sitional offset); however, this does not preclude functional sig-
nificance of these sites, which we expect to function in repressor
modality. In addition, we shall tentatively classify as repressors
all sites downstream of position �37. The result of this analysis
is a hypothetical classification of the candidate CRP sites as ac-
tivators or repressors. Of the total of 399 candidate CRP sites
(which have a candidate promoter nearby), we classify 202 as
activators and 118 as repressors. The complete list of classified
sites is available at http://www.biomaps.rutgers.edu/
bioinformatics/QPMEME. In Table 2, we list the strongest (of the
newly predicted) binding sites and their predicted functional mo-
dality.

Finally, we use the position of the predicted TF-binding sites
relative to predicted promoters to gain insight into the action of
two poorly understood highly pleiotropic regulatory factors: the
histone-like nucleoid structuring protein H-NS (Wagner 2000)
and the leucine-responsive regulatory protein LRP (Wagner
2000). Figures 7A and 8 present positional histograms for candi-
date H-NS and LRP sites, respectively. Positions are measured
relative to the closest candidate promoter, and we restrict to cases
in which the sites are within 100 bp of a downstream ORF. For
both H-NS and LRP, we find significant peaks overlapping (and
just downstream in case of H-NS) of the �70-binding site. This
observation is consistent with the known examples of regulatory
H-NS sites: in Figure 7A, we show regions found in several foot-

Figure 5 Histograms of positions of candidate �70 binding sites relative
to the nearest downstream ORF. Distance is measured from the 3� end of
the binding site. (A) Histogram corresponding to putative promoter and
gene located on the same strand; (B) on opposite strands. The positional
distribution of candidate �70 promoters peaks at ∼ 33 bp upstream of the
ORF only in the functionally relevant, same strand, configuration.

Figure 4 Comparison of the empirical and the model genomic back-
ground (MGB) binding energy distributions. The empirical distributions
obtained by computing E = � · S for all S in the non-ORF segments of the
E. coli K12 genome with � estimated for CRP and FNR. The MGB includes
nearest-neighbor correlations, and the corresponding theoretical distri-
bution is computed as described in Supplemental Appendix A. Both cases
exhibit clear overrepresentation of the strongly bound sites. Vertical blue
lines indicate the binding threshold estimated on the basis of the known
binding sites.
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printing studies of H-NS/DNA interaction (Lucht et al. 1994; Fal-
coni et al. 1998; Soutourina et al. 1999). In addition, we observe
that if we condition the distribution by restricting to only strong
�70 promoters, the peak near zero offset disappears, as shown in
Figure 7B. This strongly implies that H-NS binding sites overlap-
ping with the promoter act as activators. The regulatory role of
the predicted H-NS and LRP sites needs to be further explored
experimentally.

It is expected that the regulatory activity of LRP and H-NS is
not limited to direct interactions with RNAP-�70 but also involves
indirect action mediated by the DNA bending that these TFs are
known to induce (Wagner 2000). Our analysis can be extended to
identifying likely instances of such interactions.

DISCUSSION

Comparison Between the QPMEME and the
Information-Theoretic Weight Matrix Method
As we explicitly demonstrate in Appendix I, our maximum like-
lihood approach reduces to the information-theoretic weight
matrix method in the limit when TF concentration is so low that
binding occurs with low probability. In that case, “occupancy” of
site S given by the Fermi function f(E(S) � µ) is approximated by
the Boltzmann factor, ∼ e��E(S), and the maximal likelihood esti-

mation expresses the weight matrix in terms of a logarithm of
base frequencies at different positions (Stormo and Fields 1998).
It is expected that under physiological conditions corresponding
to TF binding to its regulatory site(s), the site is occupied with
probability close to 1. Hence, the low concentration limit is not
appropriate. Yet in applying QPMEME to the analysis of regula-
tory binding sites, one may be concerned that concentration of
active TFs in the cell may not just take two—low and high—
values. The assumption implicit in our analysis is that known
regulatory binding sites in the physiological state when they are
occupied by corresponding TFs are occupied with probability
close to 1. Thus, the chemical potential (or binding threshold)
that we estimate for each TF corresponds to the highest concen-
tration of this TF observed in the cell.6 This “all-or-none” occu-
pancy assumption may not be appropriate in specific cases where
continuous variation of binding probability may be playing a
physiological role. The latter is likely to be the case for RNAP-�70,
which is not switched “on” or “off” by changing concentration.
The reduced probability of �70 occupancy, programmed by the

6This provides a possible explanation for the case of FNR (see Fig. 4), where we
remarked that the chemical potential we deduced from the search may be too
low. This could happen if the experiments that generated the collection of FNR
binding sites did not include the physiological condition of maximal FNR
activation.

Figure 6 Positional distribution of CRP site centers relative to the (pre-
dicted) transcription start. (A) Known CRP sites (from RegulonDB): (blue)
activator sites, (red) repressor sites, (black) unknown. (B) Candidate CRP
sites found in the present search with position relative to transcription
start inferred from the closest �70 candidate binding site. Note the sig-
nificant peaks of the distribution at �62, �72, �82, �93, and �103,
that is, Class I positions. Note also the significant peaks at �48 and �29
positions, which we interpret as repressor sites. The proposed functional
classification is (blue) activator sites, (red) repressor sites, (black) un-
known. (C) Same as B with the addition of putative Class II CRP sites
found in the composite CRP–�70 site search. The green line represents the
estimated background distribution.
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binding site sequence, is likely to be of physiological use as a
weak promoter. We therefore expect that �70 example sites found
in databases may contain many sequences with binding energy
lying above the chemical potential. Thus the analysis may be
improved by returning to the finite temperature model discussed
above (and in Supplemental Appendix B), rather than the zero
temperature limit (QPMEME), the results of which we are pres-
ently reporting. However, the latter still has a practical advantage
over the use of the information-theoretic weight matrix, which
we discuss next.

In the practical, bioinformatics context, the principal differ-
ence between the QPMEME and the standard information-based
weight matrix method is that the latter does not produce a natu-
ral threshold for the “information score” used to classify se-
quence segments (Robison et al. 1998). Hence, search results are
often quoted for the high and the low settings of threshold de-
termined, respectively, by the average information score in the
example set and the average minus two standard deviations (Ro-
bison et al. 1998). The latter setting of the threshold correctly
classifies most of the examples, but in the case of low-specificity

Figure 7 Positional distribution of candidate H-NS sites (centers) relative to putative RNAP-�70 sites (centers). (A) All candidate H-NS sites within the
represented range of distances. Note the significant peaks at relative positions near �4 and 8, which correspond to direct overlap, and at positions 25,
35, and 52, where H-NS is downstream of the promoter. Horizontal bars correspond to footprinted H-NS sites from Falconi et al. (1998), Lucht et al.
(1994), and Soutourina et al. (1999). (B) Same as A but excluding weak candidate RNAP-�70 promoters (i.e., sites with high | E/µ | “score”). The
disappearance of the �4, 8 peaks indicates that they may function as activators. (*) Estimated background distribution.

Table 2. Predicted Functional Modality of Some Candidate CRP Sites

Target gene and its function 5�-end position |E/�| Center position Function

caiT (probable carnitine transporter) 42,068 1.2885 �81 Activator
gcd (glucose dehydrogenase) 141,284 1.2981 �33 Repressor
ybiS (ORF, hypothetical protein) 855,062 1.2974 �49 Repressor
b0822 (hypothetical protein) 859,296 1.2939 �42 Activator
infA (protein chain initiation factor IF-1) 925,739 1.2538 �49 Repressor
ycfR (ORF, hypothetical protein) 1,168,209 1.4563 12 Repressor
ychH (ORF, hypothetical protein) 1,257,909 1.2855 �22 Repressor
ydaK (putative transcriptional regulator LYSR-type) 1,402,612 1.3117 �42 Activator
b1729 (ORF a kinase) 1,808,868 1.3186 �70 Activator
yeaA (ORF, hypothetical protein) 1,860,569 1.3720 �90 Activator
sbmC (sbmC protein) 2,079,356 1.2815 �19 Repressor
cdd (cytidine/deoxycytidine deaminase) 2,229,786 1.3090 �42 Activator
dsdC (D-serine dehydratase transcriptional activator) 2,475,713 1.3129 �61 Activator
glk (glucokinase) 2,507,541 1.2551 �93 Activator
b2448 (hypothetical protein) 2,561,441 1.2958 �42 Activator
b2736 (dehydrogenase) 2,859,363 1.3783 �42 Activator
ygcW (putative oxidoreductase) 2,898,417 1.3203 �42 Activator
agaR (putative transcriptional regulator of aga operon) 3,276,436 1.3410 �82 Activator
yhcR (ORF, hypothetical protein) 3,387,118 1.3304 �19 Repressor
yhhZ (ORF, hypothetical protein) 3,579,344 1.2537 �42 Activator
dctA (uptake of C4-dicarboxylic acids) 3,681,199 1.2778 �46 Repressor
xylA (D-xylose isomerase) 3,728,507 1.2835 �28 Repressor
tnaL (tryptophanase leader peptide) 3,885,970 1.3238 �6 Repressor
kdgT (2-keto-3-deoxy-D-gluconate transport system) 4,099,091 1.3754 �42 Activator
yjcB (ORF, hypothetical protein) 4,272,748 1.5685 �13 Repressor
yjfA (ORF, hypothetical protein) 4,445,847 1.2498 7 Repressor
idnK (gluconate kinase, thermosensitive glucokinase) 4,492,034 1.3262 �42 Activator
yjhI (putative regulator) 4,523,465 1.2595 �22 Repressor

Transcription Factor Binding Site Discovery

Genome Research 2387
www.genome.org



factors leads to an unreasonably large number of predicted bind-
ing sites (Robison et al. 1998; see Table 1). The QPMEME method,
on the other hand, instantly produces a natural threshold. For
the most complete comparison between the two methods, let us
for a moment forget about the QPMEME estimate of binding
threshold (µ) and examine the classifications of sites produced by
� · S < µ inequality for two different estimates of �—one ob-
tained by the standard weight matrix method, another by
QPMEME—as a function of variable µ. The performance of pat-
tern recognition algorithms is often quantified by comparing
their so-called Detection Error Trade-off (DET) curves (Egan 1975;
Martin et al. 1997). The DET curve plots the probability of reject-
ing a genuine candidate (false negative) against the probability of
accepting an incorrect example (false positive). In our case, the
estimate of the false-negative probability can be obtained by us-
ing the two algorithms to classify the binding sites assembled in
the RegulonDB database, which includes more sites than the
DPInteract database used as a “training set” to determine �s. The
probability of false positives may only be determined by direct
experimental tests of predicted sites, which are not yet available.
Hence, instead of the probability of false positives, we shall use
the total number of predicted binding sites, on the assumption
that the former increases monotonically with the latter. Figure 9
shows, for the case of CRP, the fraction of false negatives (in the
classification of the test data, i.e., RegulonDB) versus the total
number of predicted binding sites as a function of the variable
threshold µ. We observe that for the same false-negative prob-
ability, the information-score-based search gets a much longer
list of candidate sites. Figure 9 also indicates points correspond-
ing to the QPMEME estimate (diamond) of the binding threshold
µ as well as the common low (+) and high (*) settings of the
information score threshold used in the information theoretic
weight matrix approach. It must be emphasized that the rational
setting of the threshold without recourse to the proposed
QPMEME approach would require constructing the DET curve as
presented here. This, however, is labor intensive and is seldom
performed in practice. Hence, the estimate of µ provided by
QPMEME is of great utility.

Physical Versus Bioinformatics Parameters
When formulating the method of binding energy estimation
above, we described an ideal experiment addressing sequence-

specific protein–DNA interactions. The maximum likelihood
method would then determine µ corresponding to the protein
concentration used in the experiment and � (and J) providing an
approximation to physical E(S). In practice, we proceed to apply
the maximum likelihood method to examples of binding sites
collected under diverse and not well-characterized conditions.
Resulting � and µ should be regarded as the “bioinformatics pa-
rameters,” which are useful for bioinformatics purposes as dis-
cussed above, but are not guaranteed to be close to the physical
parameters. It would be very interesting to carry out a controlled
(biophysical) study of sequence-specific interactions for selected
TFs (especially the high pleiotropy factors like CRP, H-NS, LRP,
etc.) and to compare the physical parameters with those inferred
from bioinformatics data. This would allow us to establish the
physical model underlying our analysis and to address the issue
of E(S) parameterization in terms of single nucleotide interac-
tions (�) and the role of higher-order terms. This would also allow
us to relax the “all-or-nothing” approximation and to estimate
the absolute magnitude of the physical binding energy (by car-
rying out the full finite temperature maximum likelihood param-
eter estimation described in Supplemental Appendix B).

Conclusion
In this paper, we have proposed a novel algorithm for identifi-
cation of candidate transcription factor binding sites and applied
it to the analysis of the E. coli genome. In contrast with the
widely used weight matrix method that originated with informa-
tion-theoretic considerations, the present algorithm was moti-
vated by the energetics and thermodynamics of protein/DNA
interaction. The key difference between the two approaches is in
the correct description of sites with saturated occupancy. This
leads to the explicit appearance—and determination—of a bind-
ing threshold, physically governed by transcription factor con-
centration. We have also demonstrated that the standard weight
matrix algorithm corresponds to the physical limit of low tran-
scription factor concentration and low probability of binding. In
the limit of strong binding, our algorithm reduces to a quadratic
programming problem and is related to the support vector ma-
chine approach to pattern recognition. For relatively nonspecific

Figure 9 Comparison of the false-negative fraction versus the number
of candidate sites found within the non-ORF fraction of the E. coli K12
genome for the information-based weight matrix (blue) and QPMEME
(red) methods. Both CRP site searches are based on the same set of
example sites (Robison et al. 1998) and tested against entries in Regu-
lonDB. (�) The point corresponding to the QPMEME-derived threshold.
The (+) low and (*) high thresholds used in Robison et al. (1998).

Figure 8 Positional distribution of candidate LRP sites (centers) relative
to putative RNAP-�70 sites (centers). (*) Estimated background distribu-
tion.
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proteins with binding sites of different strength, our method gen-
erates much shorter and more plausible lists of candidate binding
sites, than the standard, information-based, weight matrix
method. In particular, we have obtained a plausible list of �70

binding sites that we expect to constitute close to 50% of all
transcription initiation sites. We hypothesize that the remaining
sites are intrinsically weak, so as to enable the function of addi-
tional transcriptional activators. Identification of such sites re-
quires joint search for the �70 and the activating factor motifs.
The effectiveness of this method is exemplified by the search for
the Class II CRP-activated promoters. The newly obtained knowl-
edge of the likely RNAP-�70 promoter locations opens the possi-
bility of addressing the question of regulatory modality of tran-
scription factors (e.g., dual—activator or repressor—modality fac-
tors like CRP) on the basis of the position of their binding sites
relative to the promoter. We have demonstrated this for the case
of CRP, H-NS, and LRP factors. In the present paper, we make
numerous predictions for TF-binding sites. These predictions will
be tested by the future in vivo experiments.

APPENDIX I: The Low Concentration Limit and
the Information-Based Weight Matrix
Let us consider a limit when the concentration of the factor is so
low that all sites have very low probability of being bound. In
other words, (E(S) � µ)/kBT � 1 for all sequences S. Thus, the
Fermi function f(E) could be replaced by the Maxwell-Boltzmann
expression f(E) = 1/{e(E�µ)/kBT + 1} ≈ z exp(��E), where � = 1/kBT
and the fugacity z = exp(�µ). The likelihood function then be-
comes

� ≈ ns ln�	z� + �
S ∈ O

�ln PS − �E�S�� − 	z �
S�

PS� exp� − �E�S���

( 13 )

Using the likelihood function from equation 13, after variation
with respect to � and 	z, one gets:

1
ns �S∈ O

S�,i =
�
s�

P�S��exp� − �E�S���S�,i
�

�
s�

P�S��exp� − �E�S���
( 14 )

Note that

f�,i = �
S ∈ O

S�,i

counts the frequency of base � appearing at position i. Using the
expression of E(S) from equation 5 in the right-hand side, one
gets

�
S�

P�S��exp� − �E�S��� = �
j
�
��

p��e
− ����,j

= �
��

p��e
− ����,i �

j�i
�
��

p��e
− ����,j ( 15 )

�
S�

P�S�� exp� − �E�S���S�,i
� = ���1 �

���,i
�
S�

P�S��exp� − �E�S���

= p�e
− ���,i�

j�i
�
��

p��e
− ����,j (16)

From equations 14, 15, and 16, one gets:

1
ns

f�,i =
p�exp� − ���,i�

�
��

p��exp� − ����,i�
( 17 )

Hence,

���,i = − ln� f�,i

nsp�
� − ln�i

with

�i = �
��

p�� exp� − ����,i�,

which provides an estimate of ���,i up to a base-independent
shift for each position.

The weight matrix

w�,i = ln � f�,i

nsp�
�

is used to define the “information score” (Stormo and Fields
1998)

Z = �
i = 1

L

�
�= 1

4

wi
�S i

�

of any sequence S. A higher score corresponds to lower binding
energy. To use the information-theoretic weight matrix method
for finding putative binding sites in a genome, one calculates the
score of each plausible sequence in the genome and sets a thresh-
old score, so that sequences with higher scores than the thresh-
old are associated with candidate regulatory sites. One weakness
of the method is that there is no natural threshold, leaving that
choice somewhat arbitrary. This is because the information-
theoretic weight matrix approach is appropriate in the limit
where there are no strong binding sites and the division between
binding sites and nonbinding sites is artificial.
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