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B-cell epitope prediction can enable novel pharmaceutical product development. However, a mechanistically framed consensus
has yet to emerge on benchmarking such prediction, thus presenting an opportunity to establish standards of practice that
circumvent epistemic inconsistencies of casting the epitope prediction task as a binary-classification problem. As an alternative
to conventional dichotomous qualitative benchmark data, quantitative dose-response data on antibody-mediated biological effects
are more meaningful from an information-theoretic perspective in the sense that such effects may be expressed as probabilities
(e.g., of functional inhibition by antibody) for which the Shannon information entropy (SIE) can be evaluated as a measure of
informativeness. Accordingly, half-maximal biological effects (e.g., at median inhibitory concentrations of antibody) correspond
to maximally informative data while undetectable and maximal biological effects correspond to minimally informative data. This
applies to benchmarking B-cell epitope prediction for the design of peptide-based immunogens that elicit antipeptide antibodies
with functionally relevant cross-reactivity. Presently, the Immune Epitope Database (IEDB) contains relatively few quantitative
dose-response data on such cross-reactivity. Only a small fraction of these IEDB data is maximally informative, and many more of
them are minimally informative (i.e., with zero SIE). Nevertheless, the numerous qualitative data in IEDB suggest how to overcome
the paucity of informative benchmark data.

1. Introduction

Antibody-mediated immunity provides the basis for devel-
oping novel pharmaceutical agents according to a paradigm
whereby such agents are developed in tandem with their
prospective antidotes, thus addressing concerns over human
safety in a proactive manner that is more acceptable from a
regulatory standpoint [1]. In particular, antibodies may be
produced against virtually any pharmaceutical agent (e.g.,
a small-molecule drug or a biological such as a cytokine
or even another antibody), such that the antibodies may be
useful as antidotes to the agent by virtue of their capacity to
neutralize its pharmacologic activity. Furthermore, antidotes
may also be developed as catalytic antibodies (i.e., abzymes)
produced against transition-state analogs for degradative

(e.g., hydrolytic) reactions of specific molecular targets, such
that the relevant transition states are stabilized upon binding
by the catalytic antibodies, thereby thermodynamically favor-
ing accelerated target degradation [2].

More generally, antibody-mediated immunity comprises
an exquisitely rich variety of immune effectormechanisms [3]
that can potentially contribute to the control and prevention
of infectious and noninfectious clinical conditions (e.g., with
exogenously supplied antibodies for passive immunization
or endogenous antibodies whose production is induced via
active immunization using vaccines). Yet, at least some of
the said effector mechanisms can function maladaptively
to produce deleterious effects (e.g., antibody-dependent
enhancement of infection [4] and hypersensitivity reactions
of allergic or autoimmune nature). Such deleterious effects
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are extremely challenging to predict due to the inherent
complexity of immune function in vivo. Hence, any antibody
produced for prophylactic or therapeutic purposes (e.g.,
even only as an antidote to another pharmaceutical agent)
must itself be regarded as a potentially hazardous agent to
which corresponding antidotes may be developed (e.g., in the
form of either anti-idiotypic antibodies or paratope-blocking
haptens such as peptide fragments of protein targets).

Among the various pharmaceutical agents, peptidic (i.e.,
peptide and protein) species are especially advantageous. As
regards their manufacture, they are amenable to production
via biotechnological as well as synthetic chemicalmeans, with
the latter becoming more practically feasible for increasingly
longer polypeptide chains [5]. In terms of biotransformation,
they are typicallymetabolized in vivo viamain-chain peptide-
bond hydrolysis [6], which is less problematic than the
metabolism of more exotic xenobiotics that yields toxic
metabolites [7]. Moreover, they are potential targets for
binding by antipeptide antibodies obtained via immunization
with peptide-based immunogens (e.g., vaccines), in which
case the antibodies may serve as antidotes to their targets if
they neutralize the pharmacologic activity of the said targets
upon binding or consequent to downstream immune effector
mechanisms.

Where proteins are intended targets of cross-reactive
binding by antipeptide antibodies (e.g., to produce anti-
dotes to protein pharmaceutical agents or to elicit protec-
tive immune responses against protein virulence factors of
pathogens), the immunizing peptides may be designed to
contain sequences mimicking B-cell epitopes (i.e., structural
features that potentially can be bound by immunoglobulin)
on the proteins. Typically, the said sequences are subse-
quences of the proteins, and they must be both physically
accessible for binding by antibodies (e.g., on surface-exposed
loops rather than buried within protein interiors) and in
conformational states amenable to recognition by corre-
sponding antipeptide paratopes. In principle, such sequences
may be identified via B-cell epitope prediction, which entails
computational analysis of protein sequences or structures.
However, currently available tools for B-cell epitope predic-
tion are of limited utility, especially where the goal is to
produce antipeptide antibodies that cross-react with proteins
and thereby impact biological function (e.g., by neutralizing
protein biological activity).This problem is largely due to key
unresolved issues relating to the benchmarking of methods
for B-cell epitope prediction [8–10].

To advance B-cell epitope prediction, consensus on
benchmark datasets and benchmarking procedures is funda-
mental [11]. Reaching such consensus remains an open prob-
lem, although epistemic inconsistencies clearly can arise from
casting epitope prediction as binary classification of sub-
molecular structures (e.g., peptide sequences) into dichoto-
mous (i.e., epitope and nonepitope) categories, notably in the
context of peptide-based vaccine design [9, 10].The potential
for these inconsistencies exists where experimental epitope
data are curated as either positive or negative, as is the case
for all such data in the Immune Epitope Database (IEDB)
[12]. On the basis of data thus curated, benchmark datasets
are typically created by dichotomously classifying peptide

sequences as either epitopes or nonepitopes, such that each
identified epitope is associated with at least some experi-
mental data curated as positive (i.e., deemed consistent with
binding by antibody). Inconsistency can therefore arise when
new experimental data associated with a peptide sequence
previously classified as a nonepitope are curated as positive,
prompting its reclassification as an epitope; consequently, a
benchmark dataset comprising the peptide sequence would
be altered by the reclassification, such that benchmarking of
epitope-prediction tools before and after the change could
yield divergent results.

Still, binary classification continues to dominate as the
conceptual basis for B-cell epitope prediction in literature
[13, 14]. Apart from the historical dominance of binary
classification since the initial published attempts at B-cell epi-
tope prediction [15], at least two other possible explanations
may account for the status quo. First, the preponderance of
qualitative rather than quantitative benchmark data justifies
binary classification on practical grounds, especially consid-
ering that quantitative data can be reduced to qualitative data
by dichotomization with cutoff values (although this entails
loss of information and related problems [16]). Second, an
appropriate theoretical framework has yet to be articulated
for benchmarking B-cell epitope prediction against quan-
titative data. The present work thus aims to outline such
a theoretical framework and, in light thereof, subsequently
examine currently available experimental data from which
benchmark datasets might be assembled.

2. Theory and Methods

2.1. Interpretation of Quantitative Data. In the context of B-
cell epitope prediction, the interpretation of empirical data
has been complicated by disagreement among investigators
as to what constitutes meaningful antibody-antigen binding
interaction [18–20]. Immunogenicity of an antigen in the
sense of capacity to elicit production of specific antibodies
(i.e., which preferentially bind to the antigen and possibly
other structurally related targets) implies the existence of at
least one B-cell epitope on the antigen. Yet, published work
on B-cell epitope prediction has focused mainly on immuno-
genicity that leads to production of antibodies cross-reactive
with (i.e., also capable of preferentially binding) a target other
than the immunogen (i.e., antigen used for immunization).
Moreover, the bulk of the work has been confined to cross-
reactions either of antipeptide antibodies with proteins or
of antiprotein antibodies with peptides [9, 21, 22]. The work
on antipeptide antibodies is relevant to the development
of peptide-based immunogens both for active antibody-
mediated immunization (e.g., as peptide-based vaccines) and
to produce antibodies either for passive immunization (e.g.,
for antibody-mediated immunoprophylaxis or immunother-
apy) or for immunodiagnostics based on antigen detection.
The work on antiprotein antibodies is relevant to the devel-
opment of peptide-based antigens for immunodiagnostics
based on antibody detection. As cross-reactions involving
either antipeptide or antiprotein antibodies potentially entail
binding of denatured protein [18–20], empirical data on
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such cross-reactions are difficult to interpret with regard
to biological meaning unless these data reflect functional
correlates of antibody-antigen binding. However, this prob-
lem is overcome for antipeptide antibodies shown to cross-
react with a biologically active target in a functional assay
(e.g., for enzyme inhibition or pathogen neutralization) [9,
10]. Hence, the present work has been developed primarily
with reference to such functionally relevant cross-reactivity,
which is nonetheless of great interest from the standpoint of
antibody-mediated immunity. Emphasis herein is placed on
the aspect of cross-reactivity rather than immunogenicity per
se, considering that the latter often can be realized in practice
(e.g., through conjugation of peptides with immunogenic
carriers and coadministration of the resulting peptide-carrier
conjugates with suitable adjuvants).

Benchmarking of published B-cell epitope prediction
methods [10, 44] typically employs performance measures
that are only indirectly applicable to quantitative benchmark
data by way of applying cutoff values (either explicitly set
by investigators or implicitly determined by detection limits
of laboratory assays) to dichotomize such data and thereby
yield corresponding qualitative benchmark data. However,
such use of cutoff values incurs the cost of potentially severe
information loss and its consequences (e.g., loss of statistical
power) [16]. The prediction methods themselves typically
generate continuous numerical output that is dichotomized
for direct comparison with the qualitative benchmark data,
which is commonly accomplished by evaluating the area
under the receiver operator characteristic curve (AUROCC
or𝐴ROC) [11]. As an alternative to dichotomizing benchmark
data and predictions, these can be used directly as continuous
variables to evaluate a performance measure such as the
Pearson correlation coefficient (PCC) [9, 10].

For two continuous variables 𝑋 and 𝑌 of which paired
values (𝑋

𝑖
, 𝑌
𝑖
) define 𝑛 data points, the PCC (denoted by 𝑟)

can be generalized as a weighted PCC (wPCC), such that
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where 𝑤 is a nonnegative weight while𝑋 and 𝑌 are weighted
arithmetic means both of the form
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where 𝑍 is a generic continuous variable. If the values of 𝑋
are empirically obtained while those of 𝑌 are corresponding
computational predictions, each data point (𝑋

𝑖
, 𝑌
𝑖
) may be

assigned a weight 𝑤
𝑖
representing the appraised worth of

𝑋
𝑖
relative to other values of 𝑋, such that zero weight is

assigned to data points deemed completely worthless while
progressivelymore positive weights are assigned to other data
points of increasing appraised worth. The weight thus could
be defined as a function of both measurement quality (e.g.,
as regards accuracy and precision) and informativeness (i.e.,
the potential usefulness of a particular empirically obtained
numeric value in the benchmarking of predictions). For sim-
plicity, the present work focuses mainly on informativeness

to define an upper limit on the weight assuming maximum
measurement quality (e.g., perfect accuracy and precision).

To facilitate the utilization of benchmark datasets
comprising continuous dose-response data on antibody-
mediated modulation of biological activity, such data typi-
cally can be normalized to yield quotients in the range of
zero to unity that represent the magnitude of an observed
antibody-mediated biological effect relative to its theoretical
or empirically determinedmaximummagnitude [9, 10]. Each
quotient may thus be obtained as

𝑞 =
𝐵

𝐵
0

, (3)

where 𝐵 and 𝐵
0
are the observed and maximum magni-

tudes of the antibody-mediated biological effect, respectively.
For antibody-mediated inhibition of biological activity (e.g.,
enzyme catalytic activity or pathogen infectivity), 𝐵 may be
equated with the observed fractional activity loss due to
binding by antibody, such that 𝐵

0
is unity (corresponding to

complete loss of activity). Likewise, for antibody-mediated
host protection against lethal challenge (e.g., with a toxin or
pathogen), 𝐵 may be equated with the observed fractional
host survival (i.e., proportion of surviving hosts) due to
binding by antibody (e.g., antitoxin or pathogen-neutralizing
antibody), such that 𝐵

0
is again unity (corresponding to

complete protection against lethality).
More generally, 𝐵 and 𝐵

0
are readily defined where 𝑞 can

be interpreted as the probability of a particular functional
state (e.g., catalytically active versus inactive, or viable versus
nonviable). In the mechanistically simplest cases, this func-
tional state directly corresponds to the binding state (i.e.,
either free or antibody-bound) of the antigen of interest (e.g.,
an enzyme with a single catalytic site that is active in the
free state but completely inactivated in the antibody-bound
state). In such cases, the probability of the functional state
is equivalent to the fraction of antigen that is either free or
antibody-bound, with the equilibrium value of the antibody-
bound fraction approximated under conditions of antibody
excess relative to the antigen by

𝑓 =
1

1 + (𝐾
𝐷
/ [Ab])
, (4)

where 𝐾
𝐷

is the dissociation constant and [Ab] is the
antibody concentration, such that 𝐾

𝐷
is the value of [Ab] at

which half of the binding sites for antibody are occupied. For
extension of applicability to more complex cases where coop-
erative binding interactions occur, (4) may be generalized to
a form of the Hill equation [45, 46]:

𝑓 =
1

1 + (𝐾
𝐷
/[Ab])𝑛
, (5)

where 𝑛 is an interaction coefficient whose value is a lower
bound on the number of binding sites for antibody on the
antigen. Equation (5) is similar in form to a phenomeno-
logical one [47] that relates the probability 𝑝 of a particular
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biological outcome (e.g., lethality or infection) to the corre-
sponding dose of causative agent (e.g., toxin or pathogen), as

𝑝 =
1

1 + (𝐶
𝑚
/𝐶)
𝑏
, (6)

where 𝑏 is an empirical coefficient, 𝐶 is the dose of causative
agent, and 𝐶

𝑚
is the value of 𝐶 at which 𝑝 is half-maximal,

such that 𝐶
𝑚

is a median effective dose. 𝐶
𝑚

thus tends
to produce the biological effect in half the members of a
given test population (e.g., of whole organisms or of cells
in vitro) and may, for example, represent the median lethal
dose (LD

50
) or the median infectious dose (ID

50
) where the

biological effect is lethality or infection, respectively. In cases
where 𝐶 represents the concentration of causative agent (e.g.,
in the medium of a cell culture), 𝐶

𝑚
is the median effective

concentrationwhich, for instance, would be themedian lethal
concentration (LC

50
) if lethality were the biological effect of

interest.
Taken together, (4) through (6) provide means to predic-

tively estimate the empirical quotient 𝑞 in (3) as applied to
various types of antibody-mediated biological effects on the
basis of antibody concentrations in conjunctionwith antigen-
antibody dissociation constants (which can be estimated
from free energy changes of binding that are approximated
from structural-energetic analysis of antigens [8, 9, 48]). For
instance, where binding equilibrium between causative agent
and antibody is attained by preincubation and any subsequent
shifts in antigen-antibody binding equilibrium (e.g., resulting
from dilution) occur at negligibly slow rates during an assay
for biological activity of the causative agent, the concentration
𝐶 of free (i.e., unbound) causative agent might be estimated
from the total concentration 𝐶

0
of free and antibody-bound

causative agent combined. More specifically, 𝐶 thus might be
estimated as

𝐶 =
𝐶
0

1 + [Ab] / (𝐾𝐷)
, (7)

according to (4), for use with (6) (correcting for any preassay
dilution) to evaluate𝑝 as a predictive estimate of the empirical
quotient 𝑞 in (3).

Granted that (4) through (7) may be applicable only
to relatively simple cases, they nonetheless illustrate the
importance of antibody concentration [Ab] in the rendering
of predictions that are to be benchmarked against continuous
dose-response data normalized as the empirical quotient 𝑞
according to (3). In particular, values of 𝑞 approaching either
zero or unity correspond to extremes of [Ab] (i.e., low or high
values of [Ab] with negligible or near-maximal biological
effects, respectively) and are thus relatively uninformative,
insofar as estimation of 𝑞 (e.g., using (4) through (7))
becomes insensitive to variation in [Ab] in the limit of low or
high [Ab]. Conversely, the most informative value of 𝑞 is half
unity, which corresponds to the point of maximal sensitivity
to variation in [Ab] (e.g., at which the second derivative of 𝑓
in (4) and (5) is zero) in the estimation of 𝑞.

Returning to the problem of assigning the weight 𝑤
per data point for (1) in light of the immediately preceding
considerations, if 𝑋 is equated with the empirical quotient 𝑞

in (3) while 𝑌 is obtained as a predictive estimate of 𝑞 (e.g.,
by means of (4) through (7)), 𝑤 should be maximal where 𝑞
is half unity and zero where 𝑞 is either zero or unity. These
constraints are satisfied by the Shannon information entropy
[49] calculated in bits as

𝐻 = − (𝑞log
2
𝑞 + (1 − 𝑞) log

2
(1 − 𝑞)) , (8)

assuming two possible alternative states of the mathemati-
cally modeled system (e.g., an enzyme that is either active
when free or inactivated when antibody-bound, or a cell that
has either survived or died following challenge with a toxin).
If the values of 𝑞 (i.e., benchmark data) under consideration
are all of maximum measurement quality, 𝑤may be equated
with 𝐻; otherwise, 𝑤 may be assigned a value less than
𝐻 according to limitations of measurement quality (e.g., of
accuracy and precision). In other words,𝐻may be regarded
as an upper bound on 𝑤 in the limit of perfect measurement
quality.

Further clarification is warranted regarding the choice
of 𝐻 as a measure of informativeness in the present work
considering that 𝐻 has long been recognized instead as a
measure of uncertainty, particularly in line with the view
of statistical mechanics as an application of information
theory [50, 51]. This view holds that uncertainty may be
quantitatively expressed as 𝐻 in terms of a probability
distribution for the occupancy of microscopic states available
to a thermodynamic system, following the form of (8) for
a two-state system. Accordingly, the uncertainty is least if
occupancy of exactly one state is completely certain (i.e., with
probability equal to unity, corresponding to zero entropy),
whereas the uncertainty is greatest for a uniform probability
distribution over all the available states (i.e., with all states
being equiprobable, e.g., having a probability of half unity for
each state in a two-state system). The notion of entropy as
uncertainty may be extended to systems for which the states
under consideration are mutually exclusive outcomes (e.g.,
death or survival), such that completely certain outcomes
are associated with zero entropy while maximally uncertain
(i.e., equiprobable) outcomes are associated with maximum
entropy (e.g., one bit for two equiprobable outcomes). From
the standpoint of predictively estimating the empirical quo-
tient 𝑞 in (3), zero and maximum entropy, respectively,
correspond to the most and least trivial predictive tasks
in that tolerance for error (e.g., in the estimation of the
dissociation constant𝐾

𝐷
for use in (4) through (7)) increases

without bound as 𝑞 approaches either zero or unity. At these
extreme values, 𝑞 thus becomes completely uninformative for
benchmarking (consistent with the use of𝐻 as the weight 𝑤
in (1) and (2)).

2.2. Retrieval and Processing of Epitope Data. To explore
the availability of quantitative dose-response data for bench-
marking B-cell epitope prediction in accordance with
the preceding Section 2.1, published data were sought
on biological effects mediated by antipeptide antibodies.
Accessing IEDB via its web interface (with main URL
http://www.immuneepitope.org/) [52, 53], database records
containing relevant curated data were retrieved from IEDB
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Figure 1: IEDB B-cell search interface (URL http://www.immuneepitope.org/advancedQueryBcell.php/) for retrieval of B-cell assay records.
Unless otherwise specified, default options are set. Under “1st Immunogen” (with radio/check button checked for “MUST be present in search
results”), “Epitope relation” and “Type” are set to “Epitope” and “Linear peptide,” respectively. Inset with red border contains screenshot of
Assay Finder pop-up window (activated by clicking the Assay Finder button located behind inset on “Assay” line, just below “Quantitative
measurement” line under “B Cell Assay” heading visible to the left of inset), with “antibody dependent biological activity” selected using the
B cell Assay Tree (shown in right panel of inset).

through a search conducted using its B Cell Search facility
(URL http://www.iedb.org/advancedQueryBcell.php/). Each
record thus retrieved pertains to an individual B-cell assay
and containsmultiple data fields, of which several are defined
in relation to the key concepts of “Type” (i.e., epitope type
with respect to chemical nature) and “1st Immunogen” (i.e.,
immunogen initially administered to elicit the production of
antibodies).

The search was restricted by specifying values for the data
fields named “Type” and “1st Immunogen Epitope Relation”
(hereafter referred to as the epitope-type and immunogen
fields, resp.). The search was performed with the epitope-
type and immunogen fields having values set to “Linear
peptide” and “Epitope,” respectively. Additionally, the search
was further restricted to only those records containing data
on antibody-mediated biological effects, which was accom-
plished by filtering with respect to B-cell assay type (on
the data field named “Method/Technique”). Such filtering
was performed using the Assay Finder feature of the B Cell
Search facility. Within the Assay Finder pop-up window, the
B cell Assay Tree was navigated to view the available assay-
type categories under the heading of “antibody dependent
biological activity,” clicking this heading to select all of the
pertinent B-cell assay types (Figure 1).

The search was thus conducted on 18 February 2014,
and the search results were downloaded as an IEDB full-
format comma-separated value (CSV) file comprising B-
cell assay records, which was accessed using the Gnumeric
version 1.10.8 GNOME spreadsheet application. Subsequent
processing of records focused primarily on the data field
named “Quantitative measurement” whose numeric value
(where actually specified) corresponds to a measurement of
some antibody-mediated biological effect. Records wherein
this data field was empty were excluded from further con-
sideration for quantitative analysis, as were others wherein
the data field named “Measurement Inequality” contained
an inequality symbol (either “<” or “>”, indicating that the
numeric value was a lower or upper bound rather than a
point estimate). For each record that was ultimately retained
for quantitative analysis, the numeric value was compared
with that originally reported in the underlying literature
reference to check for consistency and was subsequently used
to compute the corresponding Shannon information entropy
values by means of (3) and (8).

In addition, the entire set of retrieved records was
analyzed from a broader perspective to obtain positive-
and negative-data record counts for the various B-cell assay
types, with special attention to the data field named “Assay
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Figure 2: Probabilities expressing biological effects of B-cell epitope
binding by antipeptide antibodies. Each data point is plotted
as a pair of superposed symbols for immunogen type (peptide
either from protein or with no natural source) and B-cell assay
type (inhibition or survival). Data points are ranked in order of
decreasing probability as in Table 1.

Type Units” (which indicates the units of measurement for
the result of the B-cell assay, in cases where such units
actually have been specified). This was performed in order
to assess the potential for capturing quantitative data within
the existing IEDB framework, considering that the qualitative
B-cell assay data are based on quantitative or potentially
quantifiable outcomes.

3. Results and Discussion

3.1. Curated Quantitative Data. A total of 3996 records on
biological effects mediated by antipeptide antibodies was
retrieved from IEDB via the performed search, but, of the said
records, a subset of only 43 (Table 1) was found to contain
explicitly specified numeric values of curated quantitative
data representing point estimates of the measured biological
effects.

The above-mentioned subset comprised records pertain-
ing to B-cell assays for which the antibodies were elicited
against peptide epitopes whose sequences either were con-
ceptually derived from cognate protein antigens (38 records)
or had no known natural source (five records, ranked 13, 16,
26, 29, and 31 in Table 1 and Figure 2). For these records,
all the assayed antibodies were polyclonal, and the B-cell
assay type in each case was either neutralization/inhibition
of antigen activity (16 records) or survival after challenge
(27 records), with other assay types unrepresented. As all
the retrieved quantitative data were thus found expressed

Table 1: IEDB data on quantitative biological effects of binding by
antipeptide antibodies.

Rank BCell ID Epitope ID PubMed ID Ref. number
1 4387 59318 15530682 [23]
2 1271872 42596 16713037 [24]
3 1478698 43317 17942539 [25]
4 1787548 135799 18725625 [26]
5 1031769 60116 1700835 [27]
6 1346451 62348 1730474 [28]
7 1464052 6474 16154668 [29]
8 1464085 58344 16154668 [29]
9 1479673 27725 8806185 [30]
10 1036155 48765 1695255 [31]
11 1844776 148424 9764364 [32]
12 1844777 147600 9764364 [32]
13 1784451 134549 2140594 [33]
14 1342494 6402 9234808 [34]
15 1346452 11824 1730474 [28]
16 1270835 22873 16545605 [35]
17 1342371 10069 9234808 [34]
18 1347617 43152 1377851 [36]
19 82 14686 15710332 [37]
20 1651107 108291 19356802 [38]
21 1032259 41770 9453605 [39]
22 1346453 11817 1730474 [28]
23 1246340 52790 2473217 [40]
24 1244600 20463 9795391 [41]
25 1464091 57812 16154668 [29]
26 9202 62340 11376846 [42]
27 1651118 108482 19356802 [38]
28 1844778 147559 9764364 [32]
29 9199 24243 11376846 [42]
30 1844774 148481 9764364 [32]
31 9196 42264 11376846 [42]
32 1844779 148231 9764364 [32]
33 1246395 31454 2473217 [40]
34 1246390 12540 2473217 [40]
35 1844780 147543 9764364 [32]
36 1246339 56951 2473217 [40]
37 1209202 44865 1701079 [43]
38 1209204 70682 1701079 [43]
39 1209209 60544 1701079 [43]
40 1209236 6743 1701079 [43]
41 1244602 2773 9795391 [41]
42 1464078 1531 16154668 [29]
43 1464093 59151 16154668 [29]

as percentages (i.e., of either inhibition or survival), these
were converted into fractional form to obtain values of the
empirical quotient 𝑞 in (3) and were interpreted accordingly
as probabilities (Figure 2), for which corresponding values of
the information entropy 𝐻 were calculated in bits using (8)
(Figure 3). The obtained values of 𝑞 included both zero
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Table 2: IEDB B-cell assay record counts of selection in Figure 1.

Method/technique Total Positive Negative
Ab-dependent Phagocytosis/opsonization 162 120 42
Antibody-dependent cellular cytotoxicity 42 34 8
Complement-dependent cytotoxicity 63 34 29
Enhancement/activation of antigen activity 21 10 11
Exacerbation of disease after treatment 185 93 92
Hypersensitivity 20 14 6
Ig-mediated histamine release 8 7 1
Induction of tolerance 66 51 15
Inhibition of Ab biological activity 17 12 5
Neutralization/inhibition of antigen activity 1995 1337 658
Protection after challenge 858 499 359
Protection from fertility 79 50 29
Reduction of disease after treatment 125 96 29
Survival after challenge 325 211 114
All of the above methods/techniques 3966 2568 1398

(eight records) and unity (four records), for which the
assay type was neutralization/inhibition of antigen activity
in all cases, as well as half unity (three records); hence,
the calculated values of 𝐻 ranged from zero to unity with
the latter representing a much smaller minority than the
former, such that maximally informative data were much
fewer than minimally informative data. However, although
the minimally informative data correspond to 𝐻 values of
zero, they nonetheless point to the possibility of modifying
experimental conditions (e.g., antibody concentration [Ab])
in order to yield new data that are more informative. In
particular, 𝑞 values of zero and unity, respectively, suggest that
more informative datamight be obtained by either increasing
or decreasing [Ab] so as to bring 𝑞 closer to half unity (e.g., in
accordance with (4) through (7)), with the prospect of such
improvement being more generally conceivable where [Ab]
would be decreased.

3.2. Potential Benchmark-Data Sources. Table 2 presents the
breakdown of the 3996 retrieved IEDB records on biological
effects mediated by antipeptide antibodies, in relation to B-
cell assay type (defined by experimental method/technique)
and including the counts of records curated as containing
either positive or negative data (noting again that all IEDB
records, regardless of actual quantitative-data content, are
curated as such). The entire set of records thus found rep-
resents the evolving repertoire of potential benchmark-data
sources for B-cell epitope prediction relevant to antibody-
mediated biological effects.

On inspecting the record counts, the positive data clearly
outnumber the negative data for all assay types other than
enhancement/activation of antigen activity (in which case
the positive and negative data counts are nearly equal).
This observation would be consistent with an underlying
publication bias towards underreporting of negative results,
which seems plausible in view of the widely acknowledged
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Figure 3: Information entropies for quantitative biological effects
of antipeptide antibody binding, calculated from probabilities in
Figure 2 using (8). Data points are labeled by probability rank as in
Figure 2 and Table 1.

difficulty of accurately generating positive B-cell epitope
predictions [20, 54]. Such bias is potentially problematic
where the published data could be misleading as basis for the
development and benchmarking of computational tools for
B-cell epitope prediction. This is especially important where
the data fail to reflect trends towards negative outcomes of
immunization (e.g., failure either to induce the production
of antipeptide antibodies in the first place or of such anti-
bodies to cross-react with antigenic targets in a manner that
produces functionally relevant biological effects).
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As regards assay-outcome units of measurement (in the
IEDB assay-record data field named “Assay Type Units”),
these are explicitly specified only for the IEDB assay types
named “Neutralization/Inhibition of Antigen Activity,” “Pro-
tection After Challenge,” and “Survival After Challenge.”
(“Survival After Challenge” is apparently subsumed under
“Protection After Challenge” in the B Cell Assay Tree as
shown in Figure 1, although the latter assay-type name was
actually specified in records for which protection is against
outcomes other than death, such as nonlethal infection or
toxicity.) Furthermore, actual data values are often missing
even where units of measurement are specified. This clearly
indicates the potential for curation of quantitative data for
the said assay types, although the vast majority of records
for these types currently contain only qualitative data. As
to all the other assay types, each of these conceivably could
be cast as a quantitative assay type by specifying appro-
priate assay-outcome units of measurement. Towards this
end, currently unspecified units of measurement could be
specified by analogy to those assays for which the units of
measurement are already provided; for instance, outcomes
could be expressed as percentages in all cases, such that
conversion of the percentages to corresponding fractions
yields values of the empirical quotient 𝑞 in (3).

Most of the assay types lacking units of measurement
thus could be cast as quantitative by analogy to survival after
challenge, which is expressed as survival [%]. This could
be accomplished by defining each outcome as a proportion
of individuals in a population that manifest a particular
antibody-mediated effect (e.g., maintenance or change in
health or immune status), as is arguably applicable to pro-
tection from fertility, reduction of disease after treatment,
exacerbation of disease after treatment, hypersensitivity, and
induction of tolerance. Likewise, antibody-dependent cel-
lular cytotoxicity and complement-dependent cytotoxicity
could be expressed as the proportion of target cells lysed.
Moreover, Ab-dependent phagocytosis/opsonization might
be quantitatively expressed as the proportion of either viable
phagocytes observed performing phagocytosis or particulate
targets (e.g., microbial cells) internalized by the phagocytes.
This could be defined as being in excess of some antibody-
free basal level (e.g., corresponding to negative controls with
particulate targets devoid of coating antibody) and relative
to an empirically determined maximum level (e.g., corre-
sponding to positive controls for which the particulate targets
are opsonized with saturating levels of coating antibody).
Ig-mediated histamine release also might be expressed as
the proportion of activated histamine-releasing cells (e.g.,
mast cells or basophils for which exocytosis is observed)
or the fraction of histamine released by such cells, again in
excess of some antibody-free basal level and relative to either
a theoretical or an empirically determined maximum level
(e.g., 100% occurrence of exocytosis among viable cells or
maximum amount of histamine thus released).

Certain variations of the above-mentioned assay types
alsomight be cast as quantitative by subsumption under neu-
tralization/inhibition of antigen activity, which is expressed
as inhibition [%]; for example, interference with Ig-mediated
histamine release might be expressed as inhibition [%] by

antibody (e.g., antipeptide IgG that binds antigen to prevent
cross-linking of Fc𝜖RI-associated IgE on effector cells such
as mast cells and basophils). Additionally, inhibition of Ab
biological activity (e.g., inhibition of antibody-mediated bio-
logical effects by peptide antigen) likewise could be expressed
quantitatively as inhibition [%] by peptide antigen (e.g., for
experiments demonstrating the immunologic specificity of
biological effects mediated by antipeptide antibodies). On
another related note, the various assays already subsumed
under neutralization/inhibition of antigen activity are all
conceivably amenable to quantitation as inhibition [%]. As
a case in point, antibody-mediated inhibition of cytopathic
effect (CPE) among virus-infected cells can be expressed as
the proportion of target cells remaining CPE-free despite
inoculation with a quantity of virions producing CPE in
100% of target cells at zero antibody concentration. Fur-
ther extending the concept of effects on target cells, even
antibody-mediated hemagglutination inhibition (HI) could
be expressed as the proportion of erythrocytes that remain
unassociated; in practice, HI assays might be performed in
order to determine the conditions (e.g., on the basis of HI
titers) corresponding to 50% unassociated erythrocytes.

As regardsAb enhancement/activation of antigen activity,
this might be quantified in various system-dependent ways.
For instance, it might be expressed as the fraction of activated
enzyme for a simple two-state model of antibody-mediated
allosteric enzyme activation, or as a relative excess of infected
cells in cases of antibody-mediated enhancement of infection.
The latter situation is exemplified by the nonlinear rela-
tionship typically observed between enhancement/activation
and antibody concentration, with enhancement of infection
tending to occur maximally at some optimum antibody con-
centration (e.g., with infection of CD4-positive monocyte-
like cells by HIV [17], as shown in Figure 4). In such cases,
enhancement (e.g., defined as infection in excess of a baseline
level at zero antibody concentration) could be expressed as
a fraction of its maximal value at the optimum antibody
concentration.

Hence, all IEDB B-cell assay types might be cast as
quantitative to express data in a manner consistent with (3).
However, even data thus expressed are of questionable value
for benchmarking B-cell epitope prediction within a dose-
response framework if unaccompanied by key contextual
data, most especially on antibody concentration in view of
(4) through (7). Currently, IEDB B-cell assay records lack
data fields specifically designated for representing antibody
concentration and many other data (e.g., antigen concentra-
tion and temperature) that are potentially important as input
for B-cell epitope prediction; in principle, such data could
be embedded in the text of the existing data field for assay
comments, but this practice would be potentially problematic
as regards data standardization.

3.3. Future Directions. Given the paucity of IEDB records
containing explicitly specified curated quantitative data suit-
able for benchmarking B-cell epitope prediction to produce
antipeptide antibodies that mediate biological effects, large-
scale accumulation of these data is imperative for further
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development of B-cell epitope prediction methods. If this
is to support biomedical applications such as the design
of peptide-based vaccines, the data should represent dose-
response relationships in a manner that is informative in
the sense of having a positive information entropy (e.g.,
according to (8)) and being sufficiently qualified in terms of
antibody concentrations and possibly other relevant parame-
ters (e.g., antigen concentrations and temperature).

The numerical discrepancy between all records (3996)
and those containing quantitative data (43) points to the
possibility of increasing the latter via data curation. Stan-
dard IEDB curation practice includes attempts to extract
quantitative data from sources in published literature [12],
which is more straightforward to accomplish where the
said data are written in the main text or in tables rather
than depicted in graphs. Among data in graphical form,
those representing proportions of populations (e.g., surviving
fractions of populations in Kaplan-Meier survival curves)
may be more readily ascertained than those representing
continuous variables (e.g., inhibition of enzyme activity),
particularly where population sizes are so small such that
values corresponding to discrete numbers of individuals
may be readily discerned. Alternatively, numeric values of
graphically depicted data might be obtained through corre-
spondence with authors in certain cases (still in accordance
with standard IEDB curation practice [12]), especially for
more recently published literature.

At a deeper level, the apparent numerical superiority of
qualitative-only over quantitative IEDB B-cell assay records

might be at least partially mitigated or even reversed in
the long run by curation of data as quantitative rather
than qualitative-only. This is feasible within the present
IEDB framework only to the extent that units of measure-
ment are already defined for particular assays, which is a
limitation that could be overcome by defining such units
as outlined in the immediately preceding Section 3.2, in
order to accommodate specialized forms of quantitative data
(e.g., on Ab-dependent phagocytosis/opsonization and on
enhancement/activation of antigen activity). Nevertheless,
available qualitative-only data may be viewed as guides to the
further acquisition of quantitative data by means of specific
experimental approaches. In particular, positive qualitative-
only data might justify confidence in the feasibility of obtain-
ing corresponding quantitative dose-response data, whereas
negative qualitative-only data might anticipate difficulties in
obtaining such quantitative data (e.g., without first increasing
antibody concentrations used in the assays, which itself may
still fail to demonstrate dose-response behavior under phys-
ically realizable conditions if antibody affinity is exceedingly
low).

The above proposed measures could be applied to the
curation of newly acquired data and possibly also to the
recuration of data that are already within IEDB, in line with
the goal of increasing the body of quantitative dose-response
data for benchmarking B-cell epitope prediction. However,
because minimally informative quantitative data (i.e., with
zero information entropy, which corresponds to either unde-
tectable or maximal responses) by themselves are inadequate
as bases for delineating dose-response relationships (e.g.,
using (4) through (7)), such data are little if any more
informative than qualitative-only data (which, as already
discussed, can serve as guides to acquiring more informative
quantitative data). At best, minimally informative quantita-
tive data define lower and upper limits on a dosage range over
which a dose-response relationship might be observed. For
instance, in a quantitative assay for neutralization/inhibition
of antigen activity wherein the antibody-mediated effect is a
strictly monotonically increasing function of antibody con-
centration, a zero (i.e., baseline) response at some antibody
concentration coupled with a maximal response at a higher
antibody concentration together suggest that an antibody
dose-response relationship might be observed somewhere
between the two antibody concentrations. In such a case,
the median effective antibody concentration may be provi-
sionally estimated (e.g., as the geometric mean of the two
antibody concentrations if they define the endpoint of a
titration experiment employing serial antibody dilutions),
whereas the actual value of the median effective antibody
concentration would be maximally informative data (i.e.,
with an information entropy of one bit according to (8)).
Combinations of minimally informative quantitative data
might thus yield estimates of quantitative dose-response data
that are useful for benchmarking B-cell epitope prediction,
although this purpose still would be best served by accurately
determined maximally informative quantitative data.

To appropriately highlight maximally informative quan-
titative dose-response data, these could be explicitly specified
as the numeric values for outcomes of quantitative B-cell
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assays, insofar as each of these values would represent an
overall dose-response relationship. Where a median effective
dose (e.g., of antibody or antibody-blocking peptide antigen)
can be defined in the context of a B-cell assay, it is the
most representative dose for the underlying dose-response
relationship in that it is an unbiased threshold or cut point
for dividing the dose-response curve into low- and high-dose
regimes. This role of the median effective dose is analogous
to that of the dissociation constant (or, equivalently, of its
reciprocal the association constant), whose numeric value
is explicitly specified in IEDB B-cell assay records as a
measure of antibody affinity for various quantitative assays
relating to characterization of antibody binding. The value
of the dissociation constant itself often may be regarded as
a median effective concentration, at which exactly half of
B-cell epitopes are antibody-bound (e.g., according to (4)).
Presently, the IEDB curation guidelines provide for bulk
curation of dose-response data obtained from a series of
related assays wherein only dose is varied, with a single
numeric value curated as representing the entire series, but
this value is of the highest documented response in the series
[12] rather than the median effective dose. Nevertheless,
any available data on the median effective dose could be
embedded within the existing data field for assay comments,
so as to facilitate future assembly of benchmark datasets from
such maximally informative data.

The special status of median effective doses as maximally
informative data suggests the prospect of revising the IEDB
curation guidelines in order to specify the value of themedian
effective dose (rather than that of the highest recorded
response) as representing bulk-curated dose-response data.
However, a more generally applicable approach to curat-
ing quantitative dose-response data would be to continue
expressing actual response magnitudes as quantitative data
(e.g., in terms of inhibition [%] and survival [%]) while
explicitly qualifying these with respect to the conditions
(of antibody concentration, antigen concentration, temper-
ature, etc.) under which they were observed. This would
adequately capture even observations not forming part of a
dose-response series (e.g., where the extent of an antibody-
mediated biological effect has been measured only for a
single antibody concentration). As has already been indicated
in the immediately preceding Section 3.2, this approach
could be adopted within the present IEDB framework by
specifying the conditions as data embedded in the existing
data field for assay comments, albeit without the benefit
of data standardization that otherwise could be achieved
by introducing additional data fields. Yet, the alternative
of adding such data fields would clearly be much more
difficult to fully conceptualize and implement considering
the current size and complexity of IEDB. Furthermore, the
current practice of bulk-curating quantitative dose-response
data as a single representative value serves to maintain
the relative compactness of IEDB, but it nonetheless still
facilitates the identification of published dose-response data
that are represented as bulk-curated records in IEDB. This
directs investigators to the original published sources from
which entire sets of dose-response data might be extracted
and incorporated into benchmark datasets for B-cell epitope

prediction (e.g., for benchmarking with continuous rather
than dichotomous data, according to (1) through (7)).

In line with the preceding considerations, an antibody-
mediated biological effect might be expressed as an apparent
change in the median effective dose (e.g., median lethal
dose or median infective dose) of a particular causative
agent (e.g., toxin or pathogen) as a function of antibody
concentration; accordingly, the median effective dose might
be apparently increased in the presence of antibody relative to
an antibody-free baseline reference system. Numeric values
of the baseline and apparently increased median effective
doses in conjunction with the antibody concentration at
which the apparent increase is observed could enable B-cell
epitope prediction and benchmarking thereof, for example,
where the ratio of the baseline to the apparently increased
doses is estimated as the complement of the antibody-bound
antigen fraction (e.g., by means of (4)). This approach is
potentially applicable to assay types including survival after
challenge and protection after challenge.

Ultimately, the most crucial determinant of the avail-
ability of benchmark data is their actual generation in the
first place. Experimentalists thus could greatly contribute
to the further accumulation of informative benchmark data
by generating dose-response data at or near half-maximal
response levels, expressing antibody-mediated effects as
apparent concentration-dependent changes in median effec-
tive doses of particular causative agents wherever possible.
This demands explicit specification of antibody concentra-
tions in molar or equivalent terms rather than incommen-
surable arbitrary units (e.g., based on titers operationally
defined only for a particular immunoassay protocol).

With further accumulation of quantitative data suit-
able for benchmarking B-cell epitope prediction as regards
biological effects of antipeptide antibodies, rigorous val-
idation would be increasingly enabled for B-cell epitope
prediction tools to support the rational design of peptide-
based immunogens relevant to the development of novel
pharmaceutical products. (In particular, the said products
would include peptide-based vaccines and prophylactic or
therapeutic antipeptide antibodies including antidotes to
other peptidic pharmaceutical agents.) By the same token,
the new data could provide the basis for developing such B-
cell epitope prediction tools via machine-learning techniques
(e.g., using artificial neural networks and support vector
machines) with emphasis on predicting biological outcomes
of antibody binding as continuous rather than dichotomous
variables.

The present work thus further clarifies the challenges of
developing B-cell epitope prediction and how these might
be overcome, particularly for vaccines and other biomedical
applications. As noted in previous work, B-cell epitope
prediction encompasses diverse phenomena ranging from
mechanistically very simple cases (e.g., antibody-mediated
enzyme inhibition in vitro) to high-level biological processes
(e.g., of antibody-mediated immunity to infection) [9]. This
suggests that B-cell epitope prediction can be systematically
developed through iterative refinement extending its appli-
cability to increasingly complex systems, towards the long-
term goal of effecting biological outcomes that advance global
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health [10]. Accordingly, linear (i.e., continuous, rather than
discontinuous) B-cell epitopes are the main concern of B-
cell epitope prediction, as they can be operationally defined
(i.e., as peptide sequences) even in the context of polyclonal
antibody responses relevant to vaccine design [55]. Notwith-
standing the importance of discontinuous B-cell epitopes
(e.g., as virus neutralization epitopes [54]), progress in B-cell
epitope prediction is thus currently a much more realistic
prospect for linear rather than discontinuous epitopes, inso-
far as empirical confirmation of epitope-specific targeting
is readily feasible with antipeptide antibodies directed to
linear epitopes [55]. Consequently, application of information
entropy to B-cell epitope prediction was initially outlined in
preliminary form [56] andmuchmore extensively elaborated
in the present work vis-a-vis the body of pertinent data
currently available via IEDB, within the practically meaning-
ful context of prospective biomedical applications with due
emphasis on pharmaceutical product development.

Still, B-cell epitope prediction conceivably could be devel-
oped much further for translational research. As a case in
point, severity of infectious disease is a function of many
factors (e.g., genetic background and life history). Hence,
dose-response data on pathogen exposure levels vis-a-vis
epitope-specific antibody levels may be difficult to model on
the basis of currently sparse data, especially for prediction of
stochastic individual-level outcomes (e.g., death or survival
of a host organism). Nevertheless, the ability to predict
antibody-mediated biological effects even only in terms of
statistical averages (i.e., of groups rather than individuals)
is of practical value (e.g., in order to attain population-level
resistance to epidemic spread of infectious disease [55]).

4. Conclusions

Quantitative dose-response data represent a more practically
meaningful alternative to qualitative dichotomous data as
basis for benchmarking B-cell epitope prediction particularly
where antibody-mediated biological effects are the outcomes
of interest, as exemplified by peptide-based vaccine design
and similar efforts toward the production of antipeptide anti-
bodies that cross-react with proteins and thereby modulate
protein function. The said effects typically can be expressed
in fractional form relative to context-dependent maximal
effects, allowing for the evaluation of the Shannon informa-
tion entropy where the effects may be interpreted in terms
of underlying two-state probability distributions. According
to this scheme, maximally informative data correspond to
half-maximal effects while minimally informative data cor-
respond to either zero or maximal effects; although the latter
data are associated with zero information entropy, they may
still be informative in the sense of suggesting possible changes
in experimental conditions to yield more informative data
(e.g., by adjusting antibody concentrations to approach half-
maximal levels of antibody-mediated effects). The present
paucity of such informative dose-response data, particularly
as observed in IEDB, thus conceivably could be addressed
through large-scale generation and curation of data on anti-
body concentrations vis-a-vis quantitative effects of antibody

binding, expressing the antibody-mediated effects as appar-
ent concentration-dependent changes in median effective
doses of particular causative agents such as toxins and
pathogens wherever applicable. This could better enable B-
cell epitope prediction to better support the development
of novel pharmaceutical products such as peptide-based
vaccines and antipeptide antibodies including antidotes to
other pharmaceutical agents.
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