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The transcriptional network of Escherichia coli may well be the most complete experimentally characterized network of
a single cell. A rule-based approach was built to assess the degree of consistency between whole-genome microarray
experiments in different experimental conditions and the accumulated knowledge in the literature compiled in
RegulonDB, a data base of transcriptional regulation and operon organization in E. coli. We observed a high and
statistical significant level of consistency, ranging from 70%–87%. When effector metabolites of regulatory proteins
are not considered in the prediction of the active or inactive state of the regulators, consistency falls by up to 40%.
Similarly, consistency decreases when rules for multiple regulatory interactions are altered or when “on” and “off”
entries were assigned randomly. We modified the initial state of regulators and evaluated the propagation of errors
in the network that do not correlate linearly with the connectivity of regulators. We interpret this deviation mainly
as a result of the existence of redundant regulatory interactions. Consistency evaluation opens a new space of
dialogue between theory and experiment, as the consequences of different assumptions can be evaluated and
compared.

[Supplemental material is available online at www.genome.org. The data set and supplemental material are available
at http://www.cifn.unam.mx/Computational_Genomics/Consistency/.]

Regulatory gene networks in the cell play an essential role in
controlling the expression of specific genes according to environ-
mental changes. The resulting patterns of gene expression vary
temporally and spatially, as the outcome of a set of decisions
executed by the regulatory network (Oosawa and Savageau
2002).

Extensive molecular studies in Escherichia coli have deter-
mined details of regulatory mechanisms and have also revealed
many global aspects of the gene regulatory network (Neidhardt
and Savageau 1996; Oosawa and Savageau 2002). RegulonDB is a
database that contains information about transcriptional regula-
tion and operon organization of E. coli derived from the careful
examination of pertinent literature (Salgado et al. 2001). Al-
though the information is still far from complete, there is cur-
rently data for about 83 (of the total possible 314) regulatory
proteins (Pérez-Rueda and Collado-Vides 2000) that regulate 600
genes. All of this knowledge together, comprising around 25% of
the cellular network, provides us with the largest known regula-
tory network of a single cell.

The understanding of how structural properties of regula-
tory networks determine the dynamics of their regulated genes
has been the subject of studies for four decades (Kauffman 1974;
Savageau 1998; Thieffry et al. 1998; Thomas and D’Ari 1990). The
comparison of whole-genome expression profiles with a known
network as large as that of E. coli provides a great opportunity to
test established hypotheses, to assess more recent theoretical

models (Palsson 2001; Pilpel et al. 2001), and in general, to evalu-
ate all aspects on our modeling of the knowledge of gene regu-
lation, such as, for instance, general rules governing the expres-
sion by multiple regulators.

Given an initial condition specifying the state of regulatory
proteins derived from an experiment, the network of regulatory
interactions and conformations of regulators determines theo-
retical expression states of the regulated genes that can be com-
pared with experimental data. This comparison, which generates
a single number, the consistency between experiment and
theory, opens a new space of dialogue between theory and ex-
periment. The effects of different assumptions and their corre-
sponding propagation of errors can be tested and compared.
Contrary to most recent studies aimed at reconstructing the regu-
latory wiring from microarray experimental data alone (Eisen et
al. 1998; Brown et al. 2000), we used the regulatory interactions
described in RegulonDB to establish the network of causal rela-
tionships that allowed us to evaluate the congruence between
literature and whole-genome expression profiles of E. coli in dif-
ferent conditions. The levels of consistency obtained with this
approach range from 70%–87%, and fall by up to 40% when
metabolites affecting the conformations of regulatory proteins
are not considered. The degree of consistency depends both on
the quality of the experiment and on the quality and quantity of
knowledge about the regulatory elements governing gene expres-
sion.

RESULTS
We analyzed expression profiles of E. coli under four conditions,
minimal medium (the common control condition), heat shock,
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stationary phase, and anaerobic growth. Three control, indepen-
dently repeated experiments, showed a correlation coefficient
varying between 79% and 87%. The filtering of noise, as ex-
plained in the Methods section, left a set of 2157 (49%) genes for
all analyses presented here. Similarly, of 170 known regulatory
proteins, only 83 (49%) satisfied these conditions and were used
in our analyses. We used a relative expression scale to transform
expression ratios into on and off states, as described in the Meth-
ods section. This discretization could be done because all experi-
mental values are relative to a unique control condition, that of
minimal medium. Minimal medium shows a larger fraction of on
genes, contrary to anaerobic and stationary phase conditions,
consistent with overall results obtained in other laboratories
(Richmond et al. 1999; Tao et al. 1999; Oh and Liao 2000).

To get an initial estimate of the expected consistency, we
performed a comparison of microarray expression values with
well-defined known sets of genes of each stimulon. The results of
literature comparison are detailed in Tables 1–4S in the Supple-
mental material, available online at www.genome.org. Table 1
shows that in all conditions except stationary phase, the expres-
sion of genes corresponds to that reported in the literature for
86%–88% of the cases. The lower consistency of 69% in station-
ary phase is not a surprise, as the experimental settings of dep-
rivation and stresses to induce this condition are rather variable
in the literature and do not correspond exactly with those used in
the microarray experiment. We considered in stationary phase,
the subset of genes induced by sigmaS, which precedes the most
significant changes involved in the transcription of most of the
genes when the cell enters to stationary phase (Ishihama 2000).

Definitions of Complex, Simple, and Strict Regulons
and Homogeneity of Their Expression
Consistency can be evaluated because of the rich structure of the
transcriptional regulatory network, in which regulatory proteins
work together in several combinations, governing the expression
of several genes. We used the term regulon, as initially defined by
Maas for the ArgR regulon in E. coli (Maas 1964), as the set of
genes regulated by only one transcriptional regulator. We call these
simple regulons. We define as complex regulons, a group of genes
regulated by exactly the same set of several regulatory proteins.

Furthermore, complex and simple regulons are strict regu-
lons if the role (activator or repressor) of each regulatory protein
is the same for every gene in the regulon. For instance, the group

of genes fruB, fruA, fruK, and pykF define the negative strict
simple regulon of FruR. On the other hand, the genes edp and pgk
conform the complex regulon regulated by FruR and CRP. Once
we have discretized individual genes, we identify those simple
and complex strict regulons that are homogeneously expressed
in a given condition (as explained in the Methods section). Now,
we can refer to the on or off state for each strict regulon. We
performed this process in all cases, excluding the regulator from
the regulon set, even if subject to autoregulation, to prevent
noise in the homogeneity due to possible conflicts in the expres-
sion of the regulatory gene, such as oscillations or other complex
behavior. In the four conditions tested, 77% of the regulons, on
average, show a homogeneous expression as shown in Table 2.
This is rather high, considering the experimental noise inherent
in the methodology of microarrays, messenger stability, and the
amount of plausible incomplete knowledge of gene regulation in
the database, such as unknown additional regulators affecting
transcription initiation, and alternative levels of regulation. In
addition, we are not certain that the experiments as performed
were done under steady-state conditions. This could be an addi-
tional source of error that may have a consequence in our esti-
mates of consistency. The subsequent analysis of consistency is
limited to regulons with a homogeneous expression profile. We
have information for 77 simple regulons in RegulonDB, with an
average of 4.71 genes per regulon. Of these, only on average,
18.25 were shown homogeneous in at least one condition. There
are 171 strict complex regulons in the database, of which 39.5,
on average, were homogeneously expressed and are analyzed.
Table 2 also shows that, on average, 57 simple regulons in each
condition are regulating just one gene. Of these, only 20, on
average, were used in evaluations of consistency. These left us
∼ 78 simple and complex strict regulons to work with.

Prediction of Conformation and State of Regulators
The initial conditions of the network in terms of regulatory pro-
teins being present or absent, and active or inactive, are derived
from their discretized expression values in the microarray experi-
ment, as well as from the expression of their corresponding strict
simple regulons. Presence or absence of regulators is based on
their discretized on or off values. In the absence of the regulatory
protein, if it is a repressor, the genes of its simple regulon should
be on assuming that a strong promoter transcribes them. In the
case of a promoter regulated by an activator, we assumed a weak

Table 1. Comparison of Microarray Expression With Previous Reports in Literature

Condition
Number of

genes compared
Fraction of genes consistent

with literature

Heat As reported in literature 19 0.86
Shock Different from literature 3 0.14

Total 22

Stationary As reported in literature 51 0.69
Phase Different from literature 23 0.31

Total 74

Anaerobic growth As reported in literature 66 0.88
Different from literature 9 0.12
Total 75

Minimal As reported in literature 103 0.88
Medium Different from literature 14 0.12

Total 117

Literature search of genes induced or repressed in each condition were compared with expression-discretized values.
Consistency ranges from 88% to 69% in the four conditions tested. The complete set of compared genes can be found in
Table 1–4S of Supplemental material.
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promoter, therefore, in the absence of the activator, the gene
should be off (Neidhardt and Savageau 1996). We refer to these as
the promoter rules when determining consistency. We found
32% of the 83 regulators to be off in all conditions.

When a regulator is present, a more elaborated process, us-
ing our basic knowledge of gene regulation, is required. First, we
assume that when a gene gives an on value on the microarray, its
protein product is present too. But presence of a regulator does
not mean it is in a conformation able to exert its positive (if an
activator) or its negative (if a repressor) effect on regulated genes.
We assume that regulators have two conformations—which is
the case, except for very few exceptions—one in which the allo-
steric metabolite (i.e., cAMP for CRP, allolactose for LacI, arabi-
nose for AraC, etc.) is bound to the protein and one in which it
is unbound. In some cases, alternative conformations involve
phosphorylation or other processes, which, in the model, are
similarly treated. Conformations are defined as active (for pre-
sent regulators) or inactive (for present regulators—depending on
the presence or absence of its effector—and for absent regula-
tors), and are deduced from the expression of the strict simple
regulon for each regulator. Conformations, as defined, can in fact
be assigned also for regulators whose effector metabolites have
not been identified.

Briefly, we can say that a simple regulon is expressed either
when its transcriptional activator is present and active, or when
its transcriptional repressor is absent or inactive. We call this the
simple rule, as it can be applied only to genes whose promoters
are regulated by only one transcription factor, that is to say, to
strict simple regulons. Table 3 summarizes the rules used to de-
termine all possible active and inactive states of regulators deter-
mining simple regulons to be on or off. The first half of the table,
when the regulatory gene is absent, is based on the promoter
rules, whereas the second half, when regulatory proteins are pres-
ent, uses the simple rule. We were able to predict in all of the
conditions, on average, the conformation state as active or inac-
tive for 64% of regulators from the initial set of 83. We found that
51% of the regulatory proteins have an inactive state (on average,
around 25 are activators and 17 are repressors), whereas 13% are
active (around five are activators and six are repressors). For 36%
of the regulators (around 30), we were unable to predict whether
the proteins were in an active or inactive state, either because the
simple regulon did not behave homogeneously, or because there
is no known strict simple regulon. With these data at hand, we
are now in a position to exploit the structure of the network and
evaluate consistency between simple and complex regulons.

Consistency in Expression Between Simple
and Complex Regulons
Regulatory proteins govern the expression of groups of genes
beyond their specific simple regulons (Neidhardt and Savageau

1996). As described previously, we identified which regulators are
on and off, as well as which ones are active or inactive to exert
their function. These can be considered the initial conditions of
the network, in the sense that they apply only to simple regulons
and depend on the experimental values for a given condition.
Because these same regulators also work coordinately regulating
the expression of a diversity of complex regulons, we can ask
whether all of these interconnected complex regulons are ex-
pressed consistently by comparing the derived expression values
with those from the experiment. An additional required ingredi-
ent to answer this question is a set of rules that define the level
of expression of genes subject to the action of multiple regula-
tors. Traditionally, logical rules have been used when modeling
multiple interactions (Thomas and D’Ari 1990). We evaluated
consistency on the basis of two types of rules, logical rules and
rules derived from an extensive literature search of the few well-
studied complex regulons in E. coli. Logical rules stipulate that for
multiple repression, one repressor is sufficient to repress, and for
multiple activators, one activator is also sufficient to activate. As
a result of a literature survey summarized in Table 4, we identi-
fied a combination of general rules and specific rules for the case

Table 3. Simple Regulatory Rules

Regulator
presence

Regulator
function

DNA binding
conformation

Effector
presence

(i)

Discrete
expression

level

P Absent → Off
Positive Present → Off

P-i Absent → Off
Absence Present → Off

P Absent → On
Negative Present → On

P-i Absent → On
Present → On

P Absent → On
Positive Present → Off

Presence P-i Absent → Off
Present → On

P Absent → Off
Negative Present → On

P-i Absent → On
Present → Off

This table describes the rules determining gene expression when a
single protein regulates genes. The rules show the regulatory protein
complexes (protein and effector-metabolite), when present. We dis-
tinguish two types of conformation of regulators notated as P when
they bind to their DNA-binding site with no effector, and as P-i regu-
lators when they bind to DNA with the effector present. In the case of
an absent protein, we assume that the expression state depends on
the promoter strength.

Table 2. Homogeneity of Expression Levels in Strictly Coregulated Groups Coming From Transcriptome Data

Conditions
Two or more genes
per complex regulon Simple regulons

Group state
on off Rejected Fraction of homogeneous complex regulons on off Total of regulons

Heat shock 21 30 20 0.72 27 31 129
Stationary phase 31 32 11 0.85 28 26 128
Anaerobic growth 30 26 16 0.78 32 26 130
Minimal medium 36 25 18 0.77 25 34 138

Homogeneity of expression within strict regulons was evaluated on the basis of a binomial probability using the Boolean values of expression in the
four conditions tested.
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Table 4. An Example of the TU’s Used to Infer the Behavior of Multiple Regulated Systems

Protein
function

Coregulated
group

Regulated
promoter(s) Evidence Reference Hypothesis

Activators CRP-MalT malK, malE CRP triggers MalT repositioning
to an appropriate activating
position

(Richet et al. 1991) Both activators are required

CRP-FNR ansB Both proteins make
independent contacts with
RNApol-activating
transcription

(Busby and Ebright 1997) Both activators are required

CRP-MelR melAB MelR and CRP bind
cooperatively at the
promoter forming a complex
that activates transcription in
a codependent manner

(Wade et al. 2001) Both activators are required

IHF-NR(I),
IHF-Xy1R,
IHF-NarL

sigma54
promoters
and narG

The first protein bends DNA in
such a way that the second
protein can interact directly
with RNApol. Both are
required for maximal
activation. The presence of
IHF alone (bending protein)
does not activate
transcription

(Goosen and van de Putte
1995)

One specific activator is
sufficient

FNR-NarL napF Both are required for maximal
activation. NarL (proximal
site) can activate
transcription a few folds
compared with the control,
but FNR is unable to do it.

(Darwin et al. 1998) One specific activator is
sufficient

DnaA-FIS nrd Both are required for maximal
activation. DnaA causes more
activation than FIS.

(Jacobson and Fuchs 1998) One specific activator is
sufficient

Dual CRP-CytR deo CytR functions as CRP
corepressor, causing CRP to
repressed transcription

(Rasmussen et al. 1996) One repressor is sufficient

CRP-LacI lacZYA When LacI is bound, CRP is
unable to reach its regulatory
site

(Lewis et al. 1996; Matthews,
1996)

One repressor is sufficient

CRP-AraC araBAD When AraC is bound, CRP is
unable to activate
transcription.

(Lee et al. 1981, 1992) One repressor is sufficient

FNR-FIS-HNS nirB FNR anaerobic activation is
repressed by the presence of
FIS and HNS.

(Wu et al. 1998; Browning et
al. 2000)

One repressor is sufficient

NarL-NarP, -IHF nirB NarL-NarP complex displaces
IHF repression, permitting
RNApol to initiate
transcription.

(Wu et al. 1998; Browning et
al. 2000)

The activator displaces the
repressor activity

Repressor CRP-GalR gal The GalR repressor could bind
alone to its operators’ sites,
generating repression. When
the repressor HU binds, the
repression of gal promoter
increases. The proteins
repress independently, but
maximal repression is
reached when both are
present

(Aki and Adhya 1997) One repressor is sufficient

FNR-ArcA(over
two different
promoters)

cyoAB, sdh The proteins show independent
repression, but maximal
repression is reached when
both are present.

(Cotter and Gunsalus 1992) One specific repressor is
sufficient

ArcA-BetI betT The proteins repress
independently, but maximal
repression is reached when
both are present

(Lamark et al. 1996) One specific repressor is
sufficient

TyrR-TrpR aroLM TyrR represses in absence of
TrpR, but TrpR is unable to
repress alone

(Lawley and Pittard 1994) One specific repressor is
sufficient

Gutiérrez-Rı́os et al.

2438 Genome Research
www.genome.org



of CRP. CRP-dependent promoters in the case of positive systems
dominate well-studied complex regulons. For positively regu-
lated complex regulons, we define a separate CRP-dependent rule
(Lawley and Pittard 1994; Goosen and van de Putte 1995; Darwin
et al. 1998; Jacobson and Fuchs 1998; Ishihama 2000; Pilpel et al.
2001), stipulating that both activators have to be active for genes
to be expressed. In the case of CRP independent promoters, we
propose that the presence of one of the activators in its active
conformation is enough for gene expression. Complex regulons
subject to negative regulation or dual systems follow the ex-
pected logical rule, stipulating that the presence of an active re-
pressor is enough to cause the genes to be turned off. Finally, for
systems regulated by two repressors, we observed that the pro-
teins show independent repression on the promoters, but maxi-
mal repression is obtained when both repressors are active (ana-
lyzed cases can be seen in Table 4). Thus, within our Boolean
model, the presence of an active repressor is enough to turn
genes off. We did not find enough experiments performed in
complex systems involving three or more regulatory proteins in
a single promoter with sufficient detail to dissect the role of each
regulator separately. We therefore extended the rules proposed
here for regulons with more than two regulators, as explained in
the Methods section. It is clear that these rules are in some cases
excessive generalizations that could, as more knowledge accumu-
lates in these complex mechanisms, be improved in this process
of putting things together. Nothing prevents our methodology
from having ultimately precise rules for every complex regulon,
as long as they are well defined.

The application of these rules, together with the defined
active or inactive state of regulator proteins enables us to predict
the expression of complex regulons. We assessed the consistency
of individual strict complex regulons, comparing our predictions
with the observed expression state in the experiments. For ex-
ample, ArcA and FNR are two repressors predicted to be repress-
ing five genes. These five genes appeared off under heat shock, a
state that is consistent with both repressors being in an active

state. In this case, the experimental and the predicted expression
state coincide, so we define the (ArcA, FNR) complex regulon as
a case of direct consistency.

All of the combinations of multiple interactions were con-
sidered, and different cases and types of rules associated with
consistency of complex regulons are listed in the last column of
Table 5. We found the highest level of consistency (87%) in heat
shock, compared with that of stationary phase, in which we ob-
tained 70% of consistent regulons. These values are similar to our
previous estimates, on the basis of a small set of well-studied
genes under these different conditions. We obtained a consis-
tency of 76% and 71% for minimal medium and anaerobiosis
growth, respectively. The random estimations of consistency on
the basis of an average of 1000 simulated values, given the net-
work and the rules (see the Methods section), are 45% for heat
shock, 49% for stationary phase, 54% for minimal medium, and
53% in anaerobiosis. The corresponding Z scores of 4.48, 2.49,
2.54, and 2.24 clearly suggest that the observed values are sig-
nificantly different from random values.

Re-evaluating Consistency: Alternative Model
and Error Propagation
The evaluation of consistency involves several assumptions and
operational definitions that function as abstractions of our
knowledge on gene regulation. Our approach enables us to evalu-
ate how different components of the model, and knowledge in-
volved, affect consistency. It is interesting to compare the results
we obtained with a simpler model that does not take into ac-
count the different conformations of regulatory proteins. In such
a model, if an activator is on, it is activating, and if a repressor is
on, it is repressing. Accordingly, an off activator is not activating
and an off repressor is not repressing.

As shown in Figure 1, we found that in all conditions tested
the difference between the maximum and minimum level of
consistency of NC (no conformation) and NCRP (no conforma-

Table 5. Rules for Multiple Regulated Systems

Regulator1 Regulator2
Conformation
of regulator1

Conformation
of regulator2

Predicted
discrete state

Experimental
discrete state Consistency

Any two activators
activator activator activating activating on on direct
activator activator not activating not activating off on incongruent
activator activator not activating activating on on activator rule
activator activator not activating activating on off incongruent
activator activator not activating not activating off off direct

One activator is CRP
Crp activator not activating activating off off crp rule
Crp activator not activating activating off on incongruent
Crp activator activating activating on on direct
Crp activator not activating not activating off on incongruent

Repressors
repressor repressor repressing not repressing off on incongruent
repressor repressor repressing repressing off off direct
repressor repressor not repressing repressing off off repressor rule

Dual groups
activator repressor activating repressing off on incongruent
activator repressor activating not repressing on on direct
activator repressor not activating not repressing ??? on basal level
activator repressor activating repressing off off repressor rule
activator repressor not activating repressing off off direct

Example of multiple interaction rules extracted from literature for positive, negative, and dual regulated. The first two columns describe the regulator
function. Columns 3 and 4 represent the state of the regulator. Column 5 describes the predicted state. Column 6 gives the microarray discrete state,
and column 7 represents the consistency between columns 5 (predicted discrete state) and 6 (experimental discrete state).
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tion and no CRP rule) ranges from around 18% to 40%, with heat
shock and anaerobiosis being the most affected conditions. This
dramatic decrease illustrates how sensitive these numbers are to
different definitions of rules.

We observe that simple negative autoregulated regulons
tend to be less consistent in several conditions than simple nega-
tive regulons in which there is no autoregulation. This was ob-
served in the autoregulated regulons governed by PdhR, PurR,
and FhlA and OxyR, contrary to simple regulons like ArcA, DnaA,
and OmpR. This observation can be rationalized in terms of the
oscillations of expression of homeostatic systems (Thomas and
D’Ari 1990). Additionally, the identification of low-expressed
regulatory proteins, problems in quantification specific to the
experiments analyzed, and our partial knowledge of all regula-
tory interactions affecting the sets of genes analyzed, also affect
consistency estimates. On the other hand, the connectivity of
regulatory interactions offers a support to restrict the possible
outcomes in an important way. CRP participates in 47 complex
regulons, FNR in 20, in addition to their simple regulon, whereas
AraC participates in only one complex regulon. Figure 2 shows
the connectivity across all regulons, simple and complex, with
our current knowledge in E. coli. It is this rich structure that was
exploited here to evaluate the consistency of expression of global
profile experiments in E. coli.

The E. coli network of regulatory interactions follows a
power-law distribution (Oosawa and Savageau 2002) similar to
what has been observed in other biological networks (Ravasz et
al. 2002), that is to say, few nodes are highly connected, whereas
many have a low connectivity. One would expect that highly
connected regulons, because they are subject to multiple con-
trols, are more sensitive in their expression values than regions
with little dependencies/connectivity. On the other hand, local
regulators would tend to define distinguishable expression
ranges. In this sense, it is interesting to evaluate the impact on

overall consistency of a wrongly assigned value of initial condi-
tions to a regulatory protein. Figure 3 shows how a wrong-state
assignment of a regulator affects consistency as a function of the
connectivity of the regulator. In all of the conditions tested, the
most connected protein (CRP) affects consistency less (12% on
average) than two regulatory proteins in the middle range of
connectivity. FNR connected to 20 complex regulons, and ArcA,
with 18 connections, diminish consistency on average 16% and
19%, respectively. The less connected protein FIS, affecting eight
complex regulons in our set, decreases consistency only 2%.
We suggest that the reason for such a phenomenon is that CRP is
a global regulator, with regulatory effects that are redundant
compared with those already defined by other regulators. Cer-
tainly, global regulators tend to collaborate with other regulators
quite extensively (Martı́nez-Antonio and Collado-Vides 2003).

The results presented here suggest that our rule-based ap-
proach gives the best levels of congruence, in spite of the noise
prevailing in the microarray data and the generalizations made
about gene regulation. The results related to each condition are
shown in Table 5S in the Supplemental material.

DISCUSSION
The final quantitative result of comparing the consistency be-
tween the microarray experiments and the predictions on the
basis of the literature is a single number of consistency for each
experiment. The range and reproducibility of the high consis-
tency observed shall be strongly dependent on the quality of the
experiments. Note that we used a single control as a reference,
and all experiments were performed in the same laboratory.

The value of the work presented here is not only the precise
degree of consistency, but also an elaborated construction of
ideas and knowledge of gene regulation integrated into a rich
system whose output is compared with that of the experiment.
Furthermore, the virtue of the approach presented here lies in the
fact that almost any piece in this construction can be substituted
by a different alternative, and can be evaluated by means of the
effect on consistency with experimental data. In this sense, this
work opens a large window of possibilities for future research. It
is also important to emphasize that this setting of ideas and con-
struction is only applicable when the network is known. The
large amount of accumulated knowledge on transcription initia-
tion, as well as on operon organization—estimated to represent
25% of the total regulatory network in E. coli—is currently rather
unique in this respect.

RegulonDB describes knowledge in a discrete and static way,
indicating regulatory interactions and their positive and negative
effects. Consistency as described in this work was assigned to a
single experimental condition. The expression levels of genes in
simple regulons were used to assign the active and inactive state
of regulators. We made a comparison, using rules of multiple inter-
actions and gene expression levels within complex regulons. In this
way, the comparison of these two levels (state assignment andmul-
tiple interaction comparison), determine our final measurements.

Given the rules of multiple interactions, one could think
that positive regulators have more redundant interactions than
negative regulators. However, we did not observe a difference in
consistency when comparing repressors and activators; in all of
the conditions analyzed, we found, on average, that 51% of the
complex regulons regulated only by activators were consistent,
and 49% of those regulated only by repressors were consistent
also. One would expect that the total connectivity of nonredun-
dant interactions would exhibit a linear relationship with error
propagation. If this were the case, the confidence associated with
the experimental determination of the expression of genes could
depend on their place within the network.

Figure 1 Summary of consistency in each condition. The figure de-
scribes the consistency between knowledge extracted from particular
experiments written in terms of our multiple rules and microarray data.
We show four measures, the first one with the protein state depending on
its effector prediction; the second, assuming no CRP rule (NCRP), the
third, assuming that all regulatory genes on are active (NC) for no con-
formation, and the last one considering a combination between the sec-
ond and the third assumption (NC NCRP). In all cases, off regulatory
genes were assumed as inactive.
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Estimation of consistency put together three ingredients,
the knowledge of the network and precise interactions, the set-
ting of the initial conditions of the state of regulatory proteins as
derived from the experiment, and the rules determining the out-
come of multiple interactions. As genome projects, modeling of
regulatory networks (Covert et al. 2001), and the associated bio-
informatic tools progress, such as predictions of regulatory inter-
actions in upstream regions in a large number of bacterial and
eukaryotic genomes (Tao et al. 1999; Dombrecht et al. 2002; Hal-
fon et al. 2002; Ravasz et al. 2002), the construction and ap-
proach implemented here could, in principle, be applicable and
expandable to many other organisms beyond E. coli.

The ability to perform these comparisons opens questions to
future research in order to precisely address and improve the
adequate level of representation in the modeling of regulatory
network interactions, and to integrate our understanding of the
regulatory mechanisms as a function of the large set of intercon-
nected regulatory interactions.

METHODS
Growth Conditions
For all experiments, a single colony of E. coli strain MG1655 was
inoculated into MOPS minimal medium supplemented with

0.2% glucose (Neidhardt et al. 1974) as initial condition. Three
control cultures were grown to mid-logarithmic phase in Erlen-
meyer flasks at 37°C with constant aeration. The heat-shock ex-
periment was performed by moving a flask with a mid-
logarithmic phase culture from a 37°C water bath to a 50°C bath
for 5 min. For the anaerobic growth experiment (or perhaps more
correctly called microaerobic growth), the culture was grown in a
sealed and evacuated flask to mid-logarithmic phase. For the sta-
tionary-phase experiment, a culture was grown until cells
reached a stable optical density (600 nm) of 1.5.

Microarray Experiments
Total RNA was prepared from cells using QIAGEN RNeasy col-
umns. Each control RNA sample was labeled with Cy3, and the
corresponding experimental RNA sample labeled with Cy5 and
cohybridized to a microarray as described previously (Richmond
et al. 1999). High-density glass microarrays containing spots cor-
responding to nearly all E. coli ORFs were prepared as described
previously (Richmond et al. 1999; Tao et al. 1999).

Data Treatment
Microarrays were scanned using a Packard Scanarray microarray
scanner. The resulting images files were analyzed by determining
the average pixel density (intensity) for each spot in the array
using Quantarray detection software. A grid of individual ellipses

Figure 2 Connectivity across simple regulons and complex regulons. Each box represents a regulon. Simple regulons are alphabetically ordered at left.
Complex regulons are ordered in increasing numbers of regulatory proteins. Connections depart only from simple regulons and arrive at complex
regulons that share the same protein. In a few cases, the number of connections of a complex regulon is smaller than the number of its proteins. This
is because not every regulator has a simple regulon.
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corresponding to each spot was overlaid on the image to identify
each spot to be quantified. Spot-specific and local background
intensity values were exported to a Microsoft Access database,
where background was subtracted from each intensity value.
These processed signals between Cy3 and Cy5 channels were
normalized, dividing each intensity value by the total intensity
of all the spots on the DNA array.

Because the three conditions tested used the same control,
we determined the Pearson correlation coefficient of the loga-
rithmic percentage intensities individually for each gene as a
measure of reproducibility on these repeated initial conditions.
These varied from 0.79 to 0.87. All analyses performed were re-
stricted to the set of genes whose expression values, defined as
(Intensity–background)/background were �2 in each of the three
experimental conditions. A total of 2157 genes satisfied this re-
quirement.

We used the normalized intensities to generate logarithmic
expression ratios, as shown in the equation

R�i� = ln
�Ei�n��

Ci

in which Ci is the mean normalized expression value of the three
repetitions, and Ei(n) is the normalized intensity value for gene i
in the stress condition n. We used these values to create a relative
expression scale for each gene. We included in our scale the loga-
rithmic expression ratio of the control condition, being zero for
all of the genes. Even if we know that this value reports no
change in expression, its position in the scale describes the dis-
crete state of the genes in the control condition. The relative
expression error RE(i) for each gene i, in each condition n, was
computed as

RE�i� =
�i � Ci

ln�Ei�n� � Ci�
in which � is the standard deviation estimated from the normal-
ized expression values for gene i in the three control repetitions.

Discretization in on and off values was performed for each
gene by taking the midpoint of the maximum and minimum of
the relative values (in which the control is also included with a
value of zero). Only those genes whose values and relative errors
did not touch the midline were considered as either on if above,
or off if below such midline. Note that in this way, we could
discretize values for all four conditions, including the control.

Homogeneity in Strict Regulons
Once each gene had an assigned on or off value for each experi-
ment, we grouped the on and off values in regulons strictly co-
regulated by the same set of proteins having the same function as
an activator or a repressor. We accepted or rejected homogeneous
strict regulons using a binomial probability on the basis of the
total fraction of genes labeled as off. This measurement assumes
independence between the results of each experiment, and in-
dependence for each gene within a strict regulon. The probabil-
ity that k genes show an off state in a strict regulon of N mem-
bers follows a binomial distribution. Now, we define an interval
given by

� − � � x � � + �

in which µ = Np and � = Np (1� p) are the expected value and
standard deviation, respectively, in the binomial distribution,
and p is the global frequency of genes in an off state. For a par-
ticular strict regulon, frequencies k/N within this interval were
rejected, and those outside of the interval were accepted. Values
below µ � � are considered off, and values above µ + � are con-
sidered on.

Prediction of Conformation and State of Regulators
We used the discrete and homogeneous expression values of
strict regulons of a single protein to infer the presence or absence
of the allosteric effector of the corresponding regulatory protein;
we called this process conformation assignment. In the cases in
which a regulator has no simple regulon, but the regulator par-
ticipates in a complex regulon, their state was deduced after de-
fining that of the other coregulators.

The effector prediction was performed automatically using a
program implemented in Prolog, which uses as inputs, (1) the set
of on and off values of homogeneous strictly coregulated simple
regulons, (2) the known conformations obtained from Regu-
lonDB, and (3) the rules from Table 3 under “Regulator Pres-
ence”.

Consistency Evaluation
We determined the consistency for each strict complex regulon
in each condition. This is done performing a prediction of its
discrete expression state given the conformations and states of
the regulatory proteins involved, and the rules for multiple in-
teractions. When this prediction matches the observed homoge-
neous expression of the strict regulon, it is considered as consis-
tent, otherwise, it is inconsistent. Table 5 gives examples of the
combinations for two protein-regulated systems. Taking the rules
for two regulators and combining their effects, we defined rules
for systems involving more than two regulators. In the case of
negative and dual complex regulons, the presence of one active
repressor is enough to turn genes off, regardless of the number
and state of additional regulators affecting the regulon. For com-
plex regulons coregulated only by activators and excluding CRP,
the presence of an active positive regulator is sufficient to turn
the genes on. For CRP-dependent strict complex regulons, all of
the positive regulators have to be active to turn the regulon on;
otherwise the genes are off.

We generated 1000 arrays with on and off entries selected
randomly. Each of these randomized arrays of complex regulons
were compared with the original arrays of complex regulons in
such a way that we were able to generate the distribution of
matches for each condition tested. With this information, we
calculated the expected value of consistent entries and their stan-
dard deviation.
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