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Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways.
This problem is stated as a nonlinear programming (NLP) problem subject to nonlinear differential-algebraic
constraints. These problems are known to be frequently ill-conditioned and multimodal. Thus, traditional
(gradient-based) local optimization methods fail to arrive at satisfactory solutions. To surmount this limitation, the
use of several state-of-the-art deterministic and stochastic global optimization methods is explored. A case study
considering the estimation of 36 parameters of a nonlinear biochemical dynamic model is taken as a benchmark.
Only a certain type of stochastic algorithm, evolution strategies (ES), is able to solve this problem successfully.
Although these stochastic methods cannot guarantee global optimality with certainty, their robustness, plus the fact
that in inverse problems they have a known lower bound for the cost function, make them the best available
candidates.

Mathematical optimization can be used as a computational en-
gine to arrive at the best solution for a given problem in a sys-
tematic and efficient way. In the context of biochemical systems,
coupling optimization with suitable simulation modules opens a
whole new avenue of possibilities. Mendes and Kell (1998) high-
light two types of important applications:

1. Design problems: How to rationally design improved meta-
bolic pathways to maximize the flux of interesting products
and minimize the production of undesired by-products (meta-
bolic engineering and biochemical evolution studies);

2. Parameter estimation: Given a set of experimental data, cali-
brate the model so as to reproduce the experimental results in
the best possible way.

This contribution considers the latter case, that is, the so-
called inverse problem. The correct solution of inverse problems
plays a key role in the development of dynamic models, which,
in turn, can promote functional understanding at the systems
level, as shown by, for example, Swameye et al. (2003) and Cho
et al. (2003) for signaling pathways.

The paper is structured as follows: In the next section, we
state the mathematical problem, highlighting its main character-
istics, and very especially its challenging nature for traditional
local optimization methods. Next, global optimization (GO) is
presented as an alternative to surmount those difficulties. A brief
review of GO methods is given, and a selection of the presently
most promising alternatives is presented. The following section
outlines a case study considering the estimation of 36 parameters
of a three-step pathway, which will be used as a benchmark to
compare the different GO methods selected. A Results and Dis-
cussion section follows, ending with a set of Conclusions.

METHODS

Statement of the Inverse Problem
Parameter estimation problems of nonlinear dynamic systems
are stated as minimizing a cost function that measures the good-

ness of the fit of the model with respect to a given experimental
data set, subject to the dynamics of the system (acting as a set of
differential equality constraints) plus possibly other algebraic
constraints. Mathematically, the formulation is that of a nonlin-
ear programming problem (NLP) with differential-algebraic con-
straints:

Find p to minimize

J = �0

tf
�ymsd�t� − y�p,t��TW�t��ymsd�t� − y�p,t��dt (1)

subject to

f�dxdt , x,y,p,v,t� = 0 ( 2 )

x�t0� = x0 ( 3 )

h�x,y,p,v� = 0 ( 4 )

g�x,y,p,v� � 0 ( 5 )

pL � p � pU ( 6 )

where J is the cost function to be minimized, p is the vector of
decision variables of the optimization problem, the set of param-
eters to be estimated, ymsd is the experimental measure of a subset
of the (so-called) output state variables, y(p, t) is the model pre-
diction for those outputs,W(t) is a weighting (or scaling) matrix,
x is the differential state variables, v is a vector of other (usually
time-invariant) parameters that are not estimated, f is the set of
differential and algebraic equality constraints describing the sys-
tem dynamics (i.e., the nonlinear process model), and h and g
are the possible equality and inequality path and point con-
straints that express additional requirements for the system per-
formance. Finally, p is subject to upper and lower bounds acting
as inequality constraints.

The formulation above is that of a nonlinear programming
problem (NLP) with differential-algebraic (DAEs) constraints. Be-
cause of the nonlinear and constrained nature of the system dy-
namics, these problems are very often multimodal (nonconvex).
Therefore, if this NLP-DAEs is solved via standard local methods,
such as the standard Levenberg-Marquardt method, it is very
likely that the solution found will be of local nature, as discussed
by Mendes and Kell (1998), for example.

The earliest and simplest attempt to surmount the noncon-
vexity of many optimization problems was based on the idea of
using a local method repeatedly, starting from a number of dif-
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ferent initial decision vectors, which is the so-called multistart
strategy (Guus et al. 1995). However, the approach usually does
not work for realistic applications, because it exhibits a major
drawback: When many starting points are used, the same mini-
mum will eventually be determined several times (Törn 1973;
Guus et al. 1995), thus, the method becomes very inefficient.
Clustering methods and other so-called global optimization (GO)
methods (more details given below) have been developed to en-
sure better efficiency and robustness.

Mendes and Kell (1998) considered the parameter estima-
tion of several rate constants of the mechanism of irreversible
inhibition of HIV proteinase. This problem has a total of 20 pa-
rameters to estimate, and these authors obtained the best fit us-
ing the simulated annealing (SA) method. However, they high-
lighted the huge computational effort associated with this
method, noting that the topic deserves more detailed study.

More recently, Mendes (2001) considered a larger inverse
problem regarding a three-step pathway, finding that gradient
methods could not converge to the solution from any arbitrary
starting vector. After comparing a number of stochastic methods,
evolutionary programming (EP) was found to be the best per-
forming algorithm, with a final refined solution that replicated
the true dynamics rather well. As a drawback, the needed com-
putation time was again excessive.

In this contribution, we have considered this same three-
step pathway as a benchmark, and we have attempted to solve
the associated inverse problem using several state-of-the-art de-
terministic and stochastic global optimization (GO) algorithms.
Our main objective was to investigate if the present state of GO
can provide us with a more efficient and reliable method for this
class of problems.

Global Optimization Methods
Global optimization methods can be roughly classified as deter-
ministic (Horst and Tuy 1990; Grossmann 1996; Pinter 1996;
Esposito and Floudas 2000) and stochastic strategies (Guus et al.
1995; Ali et al. 1997; Törn et al. 1999).

Stochastic methods for global optimization ultimately rely
on probabilistic approaches. Given that random elements are
involved, these methods only have weak theoretical guarantees
of convergence to the global solution. Deterministic methods are
those that can provide a level of assurance that the global opti-
mum will be located, and several important advances in the GO
of certain types of nonlinear dynamic systems have been made
recently (Esposito and Floudas 2000; Singer et al. 2001; Papami-
chail and Adjiman 2002). However, it should be noted that, al-
though deterministic methods can guarantee global optimality
for certain GO problems, no algorithm can solve general GO
problems with certainty in finite time (Guus et al. 1995). In fact,
although several classes of deterministic methods (e.g., branch
and bound) have sound theoretical convergence properties, the
associated computational effort increases very rapidly (often ex-
ponentially) with the problem size.

In contrast, many stochastic methods can locate the vicinity
of global solutions with relative efficiency, but the cost to pay is
that global optimality cannot be guaranteed. However, in prac-
tice, the user can be satisfied if these methods provide a very
good (often, the best available) solution in modest computation
times. Furthermore, stochastic methods are usually quite simple
to implement and use, and they do not require transformation of
the original problem, which can be treated as a black box. This
characteristic is especially interesting because very often the re-
searcher must link the optimizer with a third-party software
package in which the process dynamic model has been imple-
mented.

Stochastic GO Methods
There are many different kinds of stochastic methods for global
optimization, but the following groups must be highlighted:

● Adaptive stochastic methods (or adaptive random search),
which were originally developed in the domains of electrical
and control engineering and applied mathematics in the 1950s
and 1960s (Brooks 1958; Matyas 1965; Rastrigin and Rubin-
stein 1969).

● Clustering methods (Törn 1973; Rinnooy-Kan and Timmer
1987) were derived from the initial concepts of multistart
methods, that is, local methods started from different initial
points. Clustering methods are more efficient and robust than
multistart methods because they try to identify the vicinity of
local optima, thus increasing efficiency by avoiding the re-
peated determination of the same local solutions. However,
they do not seem to work well for a large number of decision
variables.

● Evolutionary computation (EC), also known as biologically in-
spired methods, or population-based stochastic methods. This

Table 1. Search Parameters Utilized in the Different Algorithms

SRES uES DE CMA-ES

Search parameters G = 8000 G = 8000 VTR = 0.0; st = 6 N = 36
lambda = 350 lambda = 350 D = 36; NP = 450 lambda = 15
µ = 30; pf = 0.450 µ = 30 iterMax = 5000 µ = 7; xlow = xl; xup = xu
varphi = 1 varphi = 1 F = 0.5; CR = 0.55 MaxFunEvals = 3000N2

ICRS MCS GBLSOLVE

Search parameters e = 10�3 n = 36; smax = 370 eps_x = eps_f = 10�4

kl = 1 nf = 600 n2; stop(2) = 0 Iterations = 1500
k2 = 1/2 stop(1) = n + 2000
maxfsd = 4 iinit = 3; local = 15

Figure 1 The model metabolic pathway used in these studies. Solid
arrows represent mass flow, dashed arrows represent kinetic regulation;
arrow ends represent activation, blunt ends inhibition. S and P are the
pathway substrate and product and are held at constant concentrations;
M1 and M2 are intermediate metabolites of the pathway; E1, E2, and E3
are the enzymes; G1, G2, and G3 are the mRNA species for the enzymes.
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is a very popular class of methods based on the ideas of bio-
logical evolution (Fogel 2000), which is driven by the mecha-
nisms of reproduction, mutation, and the principle of survival
of the fittest (Darwin 1859). Similarly to biological evolution,
evolutionary computing methods generate better and better
solutions by iteratively creating new “generations” by means
of those mechanisms in numerical form. EC methods are usu-
ally classified into three groups: Genetic Algorithms (GAs;
Goldberg 1989; Holland 1992; Michalewicz 1996), Evolution-
ary Programming (EP; Fogel et al. 1966), and Evolution Strat-
egies (ES; Schwefel 1995; Beyer and Schwefel 2002).

● Simulated annealing (SA; and other similar physically inspired
methods) is another extremely popular class of methods. These
methods were created by simulating certain natural phenom-
ena taking place in, for example, the cooling of metals, where
atoms adopt the most stable configuration as slow cooling of a
metal takes place (Kirkpatrick et al. 1983; van Laarhoven and
Aarts 1987).

● Other meta-heuristics: Several stochastic methods have been
presented during recent years that are mostly based on other
biological or physical phenomena, and with combinatorial op-
timization as their original domain of application. Examples of
these more recent methods are Taboo Search (TS), Ant Colony
Optimization (ACO), and particle swarmmethods. A thorough
review of these and other recent techniques can be found in
Corne et al. (1999).

GO Methods Used
In this study, we have considered a set of selected stochastic and
deterministic GO methods that can handle black-box models.
The selection has been made based on their published perfor-
mance and on our own experiences considering their results for
a set of GO benchmark problems. Although none of these meth-
ods can guarantee optimality, at least the researcher can solve a
given problem with different methods andmake a decision based
on the set of solutions found. Usually, several of the methods will
converge to essentially the same (best) solution. It should be
noted that although this result can not be regarded as a confir-
mation of global optimality (it might be the same local opti-
mum), it does give the user some extra confidence. Furthermore,
it is usually possible to have estimates of lower bounds for the
cost function and its different terms, so the goodness of the “glo-
bal” solution can be evaluated (sometimes a “good enough” so-
lution is sufficient).

The GO methods that we have considered are:

GBLSOLVE
A deterministic GO method, implemented in Matlab as part of
the optimization environment TOMLAB (Holmström 1999). It is
a version of the DIRECT algorithm (Jones et al. 1993; Jones 2001)
that handles nonlinear and integer constraints. GBLSOLVE runs
for a predefined number of iterations and considers the best func-
tion value found as the global optimum.

MCS
The Multilevel Coordinate Search algorithm by Huyer and Neu-
maier (1999), also inspired by the DIRECT method (Jones 2001),
is an intermediate between purely heuristic methods and those
allowing an assessment of the quality of the minimum obtained.
It has an initial global phase after which a local procedure, based
on an SQP algorithm, is launched. These local enhancements

lead to quick convergence once the global step has found a point
in the basin of attraction of a global minimizer.

ICRS
An adaptive stochastic presented by Banga and Casares (1987),
improving the Controlled Random Search (CRS) method of
Goulcher and Casares (1978). Basically, ICRS is a sequential (one
trial vector at a time), adaptive random search method that can
handle inequality constraints via penalty functions, and which
has been successfully applied to a number of dynamic optimiza-
tion problems (Banga and Seider 1996; Banga et al. 1997).

Table 2. Experiment Generation

P value 0.05 0.13572 0.36840 1.0
S value 0.1 0.46416 2.1544 10

Parameter
Element of decision
variables vector

Nominal
value

V1 p1 1
Ki1 p2 1
ni1 p3 2
Ka1 p4 1
na1 p5 2
k1 p6 1
V2 p7 1
Ki2 p8 1
ni2 p9 2
Ka2 p10 1
na2 p11 2
k2 p12 1
V3 p13 1
Ki3 p14 1
ni3 p15 2
Ka3 p16 1
na3 p17 2
k3 p18 1
V4 p19 0.1
K4 p20 1
k4 p21 0.1
V5 p22 0.1
K5 p23 1
k5 p24 0.1
V6 p25 0.1
K6 p26 1
k6 p27 0.1
kcat1 p28 1
Km1 p29 1
Km2 p30 1
kcat2 p31 1
Km3 p32 1
Km4 p33 1
kcat3 p34 1
Km5 p35 1
Km6 p36 1

S and P values were combined to generate a total of 16 sets of pseu-
doexperimental measurements, and nominal values of the param-
eters, also indicating the corresponding element of the decision vari-
ables vector (p).

Table 3. Results of the Global Optimization Methods

SRES uES DE ICRS CMA-ES MCS GBLSOLVE

J 0.0013 0.0109 151.779 183.579 37.881 364.139 1179.464
Neval 28e5 28e5 22.5e5 16515 756135 327698 649431
CPU time (h) 39.42 41.27 46.03 0.41 17.31 39.06 114.69

Objective function, J, number of function evaluations, Neval, and computation time, in hours of a PC/Pentium III 866 MHz.
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DE
The Differential Evolution method as presented by Storn and
Price (1997). DE is a heuristic, population-based approach to GO.
The original code of the DE algorithm (Storn and Price 1997) did
not check if the new generated vectors were within their bound
constraints, therefore we have slightly modified the code for that
purpose.

uES
The unconstrained Evolution Strategy (uES) is a (µ, �)-ES evolu-
tionary optimization algorithm (based on Schwefel 1995) for
problems only constrained by bounds on the decision variables.

SRES
The Evolution Strategy using Stochastic Ranking (Runarsson and
Yao 2000) is a (µ, �)-ES evolutionary optimization algorithm that
uses stochastic ranking as the constraint handling technique.
The stochastic ranking is based on the bubble-sort algorithm and
is supported by the idea of dominance. It adjusts the balance
between the objective and penalty functions automatically dur-
ing the evolutionary search.

CMA-ES
Another Evolution Strategy method. To improve the conver-
gence rates, especially on nonseparable and/or badly scaled func-
tions, this method introduces in the evolution strategy the in-
termediate (center of mass) recombination with derandomized
covariance matrix adaptation (CMA). This is a generalized indi-
vidual step-size control approach independent of the orientation
and permutation of the coordinate axes (Hansen and Ostermeier
1997).

Justification of the Selection
The above set of GO methods should be regarded as a balanced
selection of competitive algorithms trying to reflect the state of
the art for each type of approach:

Deterministic methods
GBLSOLVE was chosen as a recent method with good reported
results for several challenging problems. Similarly, the related
and similarly recent MCS method was included as a qualified
representative of those methods combining deterministic ap-
proaches with some heuristics.

Adaptive stochastic methods
The ICRS algorithm, the oldest in the set, was taken as a repre-
sentative of the adaptive random search methods. Although this
type of algorithm is not as popular as, for example, Evolutionary

Computation methods, they have been shown to exhibit nice
properties especially regarding their good scaling with the prob-
lem size (Zabinsky and Smith 1992). In fact, Evolutionary Com-
putation methods can be regarded as population-based exten-
sions of adaptive random search methods.

Evolutionary Computation (EC) methods
The rest of the selected methods, DE, uES, SRES, and CMA-ES,
have been included as the most competitive representatives of EC
methods. DE (Storn and Price 1997) can be considered as a hybrid
between adaptive random search methods and genetic algo-
rithms (GAs). Although pure GAs are by far the most popular EC
methods, an increasing amount of literature during recent years
has consistently shown that ES methods, closely followed by EP,
are usually more efficient and robust than GAs, especially for
continuous problems (Hoffmeister and Bäck 1991; Saravanan et
al. 1995; Bäck 1996; Balsa-Canto et al. 1998). For this reason, we
have selected SRES and CMA-ES as recent and competitive ES
methods. Their superiority over more traditional GAs has been
shown considering many different test problems (Hansen and
Ostermeier 1997; Runarsson and Yao 2000).

It should be noted that we have not included any represen-
tative of the type of GO methods known as Simulated Annealing
(SA), which are almost as popular as GAs. As in the case of GAs,
the decision to exclude SA-based methods was based on its re-
ported poor performance with respect to the above selected
methods. It should be noted that both GAs and SA were origi-
nally devised for combinatorial optimization problems (i.e.,
those with discrete decision variables), and later adapted for glo-
bal optimization in real valued search spaces. In contrast, the
above methods were designed with real (continuous) decision

Table 4. Decision Vector for the Best Solution (Found
by SRES)

Elements of best vector

p1–p4 0.8360 0.9997 1.9990 1.0000
p5–p8 1.9989 0.8359 1.0387 1.0001
p9–p12 1.9980 0.9992 2.0012 1.0390
p13–p16 0.9321 1.0007 2.0028 0.9995
p17–p20 2.0019 0.9329 0.1026 1.0000
p21–p24 0.1026 0.0995 1.0025 0.0993
p25–p28 0.1008 0.9990 0.1008 1.0076
p29–p32 0.9996 0.9678 1.0124 1.0036
p33–p36 0.9514 1.0021 1.0041 0.9856

Figure 2 Convergence curves (objective function versus computation
time, in seconds, using a PC/Pentium III 866 MHz).

Figure 3 Histogram of the results obtained with the multistart local
method.
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variables in mind, and this could be one of the main reasons for
their better efficiency and robustness for this class of problems.

Implementation Details
For the sake of fair comparison, we have considered Matlab
(http://www.mathworks.com) implementations of all these
methods. The main reason to use Matlab is that it is a convenient
environment to postprocess and visualize all the information
arising from the optimization runs of the different solvers, allow-
ing careful comparisons with little programming effort. Further-
more, new methods (or modifications to existing ones) can be
easily prototyped and evaluated. However, as a drawback, it is
well known that Matlab programs usually are one order of mag-
nitude (or more) slower than equivalent compiled Fortran or C
codes. To minimize this effect, we have implemented the more
costly part of the problem (i.e., system dynamic simulation plus
objective function evaluation) in a compiled Fortran-77 module,
using LSODA as the initial value solver (Hindmarsh 1983). This
solver is able to solve both stiff and nonstiff systems with auto-
matic switching between the necessary numerical schemes. The
resulting module (a dynamic link library) is callable from the
Matlab solvers via suitable gateways. Because most stochastic
methods use 90% (or more) of the computation time in system
simulations (especially if their complexity level is medium to
large), this procedure ensures good efficiency while retaining the
main advantages of the Matlab environment. Table 1 shows the
internal search parameters used for the different algorithms,
which were selected according to either published recommenda-
tions and/or our personal experience with several preliminary
runs.

Finally, to illustrate the comparative performance of mul-
tistart local methods for this type of problem, a multistart code
(named ms-FMINCON) was also implemented in Matlab making
use of the FMINCON code, which is part of the MATLAB Opti-
mization Toolbox (Anonymous 2000). FMINCON is a gradient-
based solver indicated for unconstrained functions. Its default
algorithm is a quasi-Newtonian method that uses the BFGS for-
mula for updating the approximation of the Hessian matrix. Its
default line search algorithm is a safeguarded mixed quadratic
and cubic polynomial interpolation and extrapolation method.

Case Study: A Three-Step Pathway
The optimization problem consists of the estimation of 36 ki-
netic parameters of a nonlinear biochemical dynamic model
formed by 8 ODEs that describe the variation of the metabolite
concentrations with time (see Fig. 1).

The mathematical formulation of the nonlinear dynamic
model is:

dG1

dt
=

V1

1 + � pKi1�
ni1

+ �Ka1S �na1 − k1 � G1 ( 7 )

dG2

dt
=

V2

1 + � pKi2�
ni2

+ �Ka2M1 �na2
− k2 � G2 ( 8 )

dG3

dt
=

V3

1 + � pKi3�
ni3

+ �Ka3M2
�na3 − k3 � G3 ( 9 )

dE1
dt

=
V4 � G1

K4 + G1
− k4 � E1 ( 10 )

dE2
dt

=
V5 � G2

K5 + G2
− k5 � E2 ( 11 )

dE3
dt

=
V6 � G2

K6 + G3
− k6 � E3 ( 12 )

dM1

dt
=
kcat1 � E1 � � 1

Km1
� � �S − M1�

1 +
S

Km1
+
M1

Km2

−
kcat2 � E2 � � 1

Km3
� � �M1 − M2�

1 +
M1

Km3
+
M2

Km4

(13)

dM2

dt
=
kcat2 � E2 � � 1

Km3
� � �M1 − M2�

1 +
M1

Km3
+
M2

Km4

−
kcat3 � E3 � � 1

Km5
� � �M2 − P�

1 +
M2

Km5
+

p
Km6

(14)

where M1, M2, E1, E2, E3, G1, G2, and G3 represent the concentra-
tions of the species involved in the different biochemical reac-
tions and S and P keep fixed initial values for each experiment
(i.e., parameters under our control). The optimization problem is
then to fit the 36 remaining parameters, which are divided into
two different classes: Hill coefficients, allowed to vary within the

Figure 4 M2 predicted (continuous line) and experimental (marker)
behavior for the 16 experiments.

Figure 5 E1 predicted (continuous line) and experimental (marker) be-
havior for the 16 experiments.
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range (0.1, 10) and all the others, allowed to vary within the
range (10�12, 10+12).

The global optimization problem is stated as the minimiza-
tion of a weighted distance measure J between experimental and
predicted values of the 8 state variables, represented by the vector y:

J = �
i = 1

n

�
j = 1

m

wij ��ypred�i� − yexp�i�� j�
2 ( 15 )

where n is the number of data for each experiment, m is the
number of experiments, yexp represents the known experimental
data, and ypred is the vector of states that corresponds to the
predicted theoretical evolution using the model with a given set
of the 36 parameters. Furthermore, wij corresponds to the differ-
ent weights taken to normalize the contributions of each term
(i.e., wij = {1/max[yexp(i)]j}

2).
To better assess the performance of the GO techniques for

the solution of the inverse problem, pseudoexperimental data
were generated by simulation from a set of chosen parameters (to
be considered as the true, or nominal, values). Thus, pseudomea-
surements of the concentrations of metabolites, proteins, and
messenger RNA species were the result of 16 different experi-
ments (simulations) in which the initial concentrations of the
pathway substrate, S, and product, P, were varied (see Table 2 to
examine S and P values for each experimental design, plus the
nominal values considered for the parameters). These simulated
data represent exact results, that is, devoid of measurement
noise.

RESULTS AND DISCUSSION
All the computations were performed using a PC/Pentium III
(866 MHz) platform running Windows 2000. The best result
(J = 0.0013) was obtained using the SRES method (Runarsson and
Yao 2000) after a total computation time of 39.42 h. However, it
should be noted that this large computational effort was the con-
sequence of the very tight convergence criteria used, but from a
practical point of view, an almost equally good result was
reached in a few hours. The second best method was the uES
method, which converged to a very close value of J = 0.0109.
Thus, uES can be regarded as a very close second winner. Detailed
results are given in Table 3 with the best solution vector shown in
Table 4. Table 3 shows that none of the other algorithms tested,
neither deterministic nor stochastic, could arrive at the vicinity
of the abovementioned solutions. This is, indeed, a clear sign of
the very challenging nature of these problems. The results in
Table 3 also reveal an interesting result that might be surprising

at first sight: The MCS and GBLSOLVE methods present a larger
computation time per function evaluation than the rest of the
algorithms. However, this is simply a consequence of the larger
overhead introduced by these methods to generate each new
decision vector.

Simply comparing the final cost function values and the
overall computation times can be misleading. In Figure 2, the
convergence curves (objective function versus computation
time) of the best five methods, all of them stochastic, are plotted
(note the log–log scales). It is quite clear that SRES and uES pre-
sented the best convergence rates at all times.

It is, indeed, surprising to note that several global optimiza-
tion methods (e.g., DE, ICRS), which in the past presented a very
good performance dealing with a number of hard GO problems,
have clearly failed here. This is probably because of the greater
complexity of this parameter estimation problem (i.e., a very
large number of local solutions) and/or its relatively large dimen-
sionality. In the case of ICRS, its reported CPU time in Table 3 is
much shorter that those of the other algorithms, but this is only
a consequence of its early stop at a local minimum. In fact, the
true story about comparative performance is told in Figure 2
(convergence curves), where it can be seen that the uES and SRES
methods were better than ICRS at all times. Moreover, by the
time ICRS stopped (0.41 h), the running ES-based methods had
already arrived at much better objective function values, as
shown in Figure 2.

In the case of the MCS and GBLSOLVE methods, which are
both inspired by the DIRECT method of Jones (2001), the results
are probably due to the dimensionality of the problem, but also
to implementation issues, at least in the case of GBLSOLVE, be-
cause more efficient implementations have been reported in the
latest version of the TOMLAB library (Holmström 2001).

Regarding the multistart local search, the ms-FMINCON
method was executed starting from >300 random initial points.
The best result was J = 763.72, very far from the best solution
obtained with SRES. Furthermore, most of the other local solu-
tions obtained were much worse. Figure 3 shows a histogram
with the distribution of all the local solutions found with this
method. Clearly, and in contrast with popular belief (or “folk-
lore,” in the words of Guus et al. 1995), multistart local methods
are unsatisfactory for hard parameter estimation problems like
this one.

Figures 4 and 5 show a comparison (between the predicted
and experimental data) for the best decision vector (found with
SRES) of the concentrationsM2 and E1. It is worth noting the very
good correlation between the experimental and predicted data.
The representation of the dynamic behavior for the other vari-
ables is quite similar and is not included here for the sake of
brevity.

Finally, to underline the merit of the best solution obtained
by the SRES optimizer, the error values, that is, the relative dif-
ferences between the known (real) and the estimated parameters
are shown in Figure 6. Only parameters 1 and 6 were estimated
with an error >16%. All the other errors were below 7%, with the
majority being below 3%, which is a very remarkable result. The
earlier study had not been able to achieve such good results
(Mendes 2001). We believe that this is because here we used the
results of 16 different experiments, rather than just a single one.
The data used in the earlier study reflected a greater level of
underdetermination, and this resulted in the somewhat imper-
fect solution obtained. By covering a larger set of dynamics that
the model is capable of, we have been able to obtain near-exact
results (convergence to the global optimum). We stress that these
excellent results were obtained (as before) in conditions in which
measurement noise is absent, whereas in reality, one expects it to
be present to some extent, sometimes even in considerable mag-

Figure 6 Relative error (%) for the estimated parameters (for the best
solution, obtained by SRES).
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nitudes (e.g., microarray data). Nevertheless, the problem was
already sufficiently hard that most algorithms did not perform
satisfactorily. Later we intend to repeat this study in the presence
of measurement noise.

Conclusions
Only evolutionary strategies, namely, the SRES and uES methods,
were able to successfully solve the inverse problem associated
with a three-step pathway. This result is in agreement with other
recent global optimization studies (Rechenberg 2000; Runarsson
and Yao 2000; Costa and Oliveira 2001), some of them dealing
with nonlinear dynamic systems (Moles et al. 2001; Banga et al.
2002), which indicate that evolution strategies might be the most
competitive stochastic optimization method, especially for large
problems.

A possible drawback of ES methods, in spite of these good
results, is the computational effort required, which is on the or-
der of hours using low-cost PC platforms. However, it is well
known that many stochastic methods, including ES, lend them-
selves to parallelization very easily, which means that this prob-
lem could be handled in reasonable wallclock time by suitable
parallel versions. Present technologies for cluster computing
(e.g., http://www.beowulf.org) or grid computing (e.g., http://
www.globus.org) can greatly facilitate the development of such
versions.

One of us (P.M.) wrote and distributes a biochemical simu-
lation package, Gepasi (http://www.gepasi.org, Mendes 1993),
which implements several numerical optimization methods, in-
cluding GO. Although that software is easily extensible, most of
the methods implemented and tested here are not yet included
in that software. Given the superior performance of SRES and
uES, these are now being implemented in that package, which
will make them available to the biochemical modeling commu-
nity at large.
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