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One of the most important uses of whole-genome expression data is for the discovery of new genes with similar
function to a given list of genes (the query) already known to have closely related function. We have developed an
algorithm, called the gene recommender, that ranks genes according to how strongly they correlate with a set of
query genes in those experiments for which the query genes are most strongly coregulated. We used the gene
recommender to find other genes coexpressed with several sets of query genes, including genes known to function in
the retinoblastoma complex. Genetic experiments confirmed that one gene (JC8.6) identified by the gene
recommender acts with lin-35 Rb to regulate vulval cell fates, and that another gene (wrm-1) acts antagonistically. We
find that the gene recommender returns lists of genes with better precision, for fixed levels of recall, than lists
generated using the C. elegans expression topomap.

[Supplemental material is available online at www.genome.org.]

The genome sequences of several animals have now been deter-
mined, revealing that the majority of genes have never been
studied before (C. elegans Sequencing Consortium 1998; Myers et
al. 2000; Lander et al. 2001; Venter et al. 2001). A key goal is to
use high-throughput approaches to elucidate the function of
large numbers of genes in parallel, in order to map gene func-
tions onto the genome sequence. One of the most powerful
methods to annotate the function of genes is to cluster sets of
genes based on their expression profiles from microarray experi-
ments (Eisen et al. 1998). Genes that show tight levels of coex-
pression not only in one microarray experiment, but in a large
number of diverse experiments are likely to function together
(Eisen et al. 1998; Brown and Botstein 1999).

A previous report compiled data from a large number of C.
elegans DNA microarray experiments, and then used a variant of
multidimensional scaling to generate a gene expression terrain
map (a topomap; Kim et al. 2001). In this topomap, gene clusters
are represented as different mountains on a two-dimensional
plane; the height of the mountain indicates the local density of
genes in the plane. Of the 44 different mountains in the gene
expression topomap, 38 have so far been found to be enriched for
genes expressed in specific tissues or involved in particular bio-
logical functions. For example, several mountains (mounts 7, 11,
18, and 20) are highly enriched for germ line genes, mount 16 is
enriched for muscle genes, mount 1 is enriched for both muscle
and neuronal genes, and mount 15 is enriched for aging-
regulated genes (Kim et al. 2001). The clustering depicted by the
topomap is a powerful resource that has been used to suggest
potential biological functions for genes that had not been stud-
ied previously (Lund et al. 2002; Piano et al. 2002; Roy et al. 2002;
Walhout et al. 2002; S. Mango, pers. comm.; A. Villeneuve, data
not shown). Similar approaches have been used in yeast to find
coexpressed genes from a compendium of many yeast DNA mi-
croarray experiments (Eisen et al. 1998; Hughes et al. 2000; Ih-
mels et al. 2002).

The multidimensional scaling algorithm used to generate
the gene expression topomap (Kim et al. 2001) used every mi-
croarray experiment to generate a solution mapping each gene
against every other gene. In many cases, however, one is not
interested in the entire genome but only in genes that are coex-
pressed with a particular set of genes of interest. In these cases, it
is not necessary to consider interactions between all pairs of
genes (global clustering), but only interactions that are relevant
to the genes of interest (targeted clustering). In this paper, we
develop such a targeted clustering algorithm (called the gene
recommender) that may be better suited to the predominant use
of the gene expression database. The gene recommender takes a
query list of genes, finds experiments in which those genes ap-
pear to be coregulated, and then uses only those experiments to
generate a ranked list of coexpressed genes. If the data values for
one experiment are very noisy, then the query values for that
experiment are unlikely to be very similar, and that experiment
will be filtered out.

In addition to noise, we must contend with multifunctional
genes. Suppose that all of our query genes are expressed in muscle
and that some, but not all, of these genes are also expressed in
neurons. We would then expect the entire query list to be co-
regulated in experiments relevant to muscle expression but to be
split in experiments related to neurons. Informed by the query
list, the gene recommender algorithm would likely include the
muscle experiments, exclude the neuronal experiments, and thus
produce a hit list consisting of new candidate muscle genes but
not neuronal genes. A global clustering approach such as the
method used to construct the gene expression topomap would be
expected to place a multifunctional gene with just one of its
relevant groups, either muscle or neuronal. The problem ad-
dressed by the gene recommender closely resembles that of rec-
ommending movies, books, or web documents similar to those in
a given list. Commonalities among these problems of diverse
origin are outlined at http://www-stat.stanford.edu/∼owen/
transposable.

We tested the gene recommender using a query of five C.
elegans genes involved in the retinoblastoma (Rb) complex. The
gene recommender produced a short list of genes that are highly
coexpressed with the five Rb query genes: three known to inter-
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act with Rb, five involved in the chromatin structure or the cell
cycle (functions similar to those of Rb), and two that we show to
have functions related to lin-35 Rb in RNA interference experi-
ments. We compared the performance of the gene recommender
algorithm to that of the gene expression topomap, and found
that the gene recommender produced candidate lists that were
shorter and more concentrated with the query genes.

RESULTS
We present a search algorithm called gene recommender to find
new genes that are coexpressed with a given set of genes using
data from a large number of C. elegans microarray experiments.
The expression data set consists of 553 DNA microarray hybrid-
izations, including a diverse set of experiments that profile ex-
pression changes during development, aging, following stress, in
various mutants, and under various growth conditions (Kim et al.
2001). Of these experiments, 178 used partial DNA microarrays
(containing 11,917 genes; 63% of the 18,967 genes from the C.
elegans genome) and the remaining 375 experiments used DNA
microarrays containing nearly all of the genes in the genome
(17,871 genes, 94%; Reinke et al. 2000; Jiang et al. 2001). Two
genes whose expression levels increase and decrease together are
considered to be coregulated, even if their absolute expression
levels differ markedly. To capture this notion of coregulation via
a simple correlation measure, we first applied a rank-based nor-
malization to the raw data. We rank the expression values of each
gene across the experiments from its most induced expression
level (+1) to that gene’s most repressed expression level (�1; see
Methods). Subsequent computations are performed on the nor-
malized data.

The gene recommender algorithm takes a list of query genes
and scores each gene in the genome based on how similar its
expression profile is to the expression profiles of the query genes.
We use the term “cassette” to refer to a group of genes with a
common function of interest. When some, but perhaps not all, of
the cassette genes are known to us, we can use the known mem-
bers as a query to the gene recommender and obtain a rank
ordering of all genes. High-ranking genes are then strong candi-
dates for membership in the cassette. The highest-ranking genes
constitute a hit list analogous to the high-ranking web pages
produced by a search engine. In both cases, there is usually not a
sharp demarcation between relevant and irrelevant hits.

The gene recommender first assigns a numerical score,
called a Z score, to each experiment measuring the extent to
which the query genes tend to cluster within that experiment
(Methods). The high-scoring experiments are taken to be the
ones that are most relevant to the query. The low-scoring ones
may be irrelevant to the query and detrimental to the search for
new genes. We use only the high-scoring experiments to rank
genes according to their correlation with the query genes. To find
the threshold score separating high-scoring from low-scoring ex-
periments, we re-compute the gene ranking using a variety of
thresholds and then select a threshold for which the query genes
come closest to the top of the list (Methods).

We tested the performance of the gene recommender algo-
rithm using four query lists (Table 1; http://pmgm2.stanford.
edu/∼kimlab/cassettes). The queries were: five genes related to
the retinoblastoma complex, 41 major sperm protein (MSP)
genes, six synaptonemal complex genes, and six meiotic recom-
bination/DNA repair genes (Table 1). These query lists were cho-
sen somewhat arbitrarily, except that we already knew that the
genes showed strong regulation in at least some DNA microarray
experiments (Kim et al. 2001). We anticipate that the gene rec-
ommender algorithm will work well for other query lists gener-
ated by the C. elegans research community, as long as at least
some of the DNA microarray experiments show strong coregula-
tion of the query genes; the Supplemental Web site includes a
search engine for researchers to input their own queries. Further-
more, we anticipate that gene recommender will perform well
not only for C. elegans data, but for data from any organism with
a reasonably extensive gene expression database; the Supplemen-
tal Web site also includes the code for the gene recommender
algorithm so that it could be used to analyze gene expression data
from other organisms.

For the sake of brevity, we only describe the results from the
Rb query here; the gene recommender performed well with the
other queries (presented on the Supplemental Web site). The reti-
noblastoma complex is a transcription factor complex that is
conserved from worms to humans, and is involved in regulating
the cell cycle (Dyson 1998). Our Rb query list contained five
genes (Table 1). lin-35 encodes the C. elegans retinoblastoma pro-
tein, and loss-of-function mutations in this gene result in a class
B synthetic multivulva phenotype (Lu and Horvitz 1998). lin-53
also has a class B synthetic multivulva mutant phenotype and
encodes an ortholog of RbAP48, which binds to Rb in mamma-

Table 1. Query Genes

Retinoblastomaa MSP
Synaptonemal

complex Recombination/repair

lin-35 msp-36 msp-10 Y50E8A.B syp-2 spo-11
lin-53 msp-55 msp-1 Y59E9AR.1 syp-1 him-14
hda-1 msp-40 msp-38 Y59E9AR.7 syp-3 msh-5
lin-9 msp-142 M199.2 Y59H11AM.D F41H10.10 rad-50
lin-36 msp-49 msp-31 ZK1248.17 F57C9.5 mre-11

C36H8.1 msp-32 ZK1248.4 him-3 rad-51
msp-74 msp-33 msp-113
msp-3 msp-57 ZK1251.6
msp-77 msp-53 msp-65
msp-19 T13F2.10 msp-59
msp-45 msp-78 msp-50
F58A6.9 Y116A8A.2 msp-51
msp-142 Y116A8A.7 ZK546.3
msp-63 Y39G10BM.E msp-152
msp82

aEach column lists the WormBase gene identifiers corresponding to each gene included in the query list.
MSP, major sperm protein.

Gene Recommender

Genome Research 1829
www.genome.org



lian cells (Lu and Horvitz 1998). lin-9 and lin-36 have the same
mutant phenotype as lin-35 (Ferguson and Horvitz 1989). hda-1
encodes histone deacetylase, which is known to bind Rb in mam-
malian cells (Solari and Ahringer 2000).

Coregulation of the Rb Query List in DNA
Microarray Experiments
In order to be useful input for the gene rec-
ommender algorithm, a set of query genes
must be coregulated in at least a subset of
microarray experiments. To evaluate
whether or not the genes in our Rb query
list show coregulation in the microarray ex-
periments, we first compared the level of
coregulation of the Rb query list to lists of
random genes of the same size; to do this,
we plotted the experimental ZE scores for
the Rb and control queries. The ZE scores
were designed to have roughly Student’s t
distribution on k�1 degrees of freedom for
queries of k genes, under some simplifying
assumptions. For large queries, the distribu-
tion is nearly normal. For small queries such
as the Rb query, we expect a heavier than
normal histogram qualitatively like the one
in Figure 1. The experiment ZE scores ob-
tained using the Rb query list were much
higher than those using random query lists
(Fig. 1). For example, there were 30 experi-
ments with a ZE score greater than 15 using
the Rb query genes, whereas there were
rarely any experiments with a ZE score
larger than this using a random set of five
genes (Fig. 1). This result shows that there is
strong coregulation of the Rb genes in the
DNA microarray data set. We obtained simi-
lar evidence for coregulation of genes for

the other query lists (Supplemental Web
site).

A second method to show that there is
strong coregulation of the query genes in
the microarray data is to determine that
each of the genes in the query has a high
score in leave-one-out experiments. For
each query, one of the genes in the query
was left out, the algorithm was rerun on the
remaining genes, and the rank obtained by
the gene that was left out was then scored.
The ranks are scored as percentiles with 100
corresponding to the gene most similar to
the query and 0 corresponding to the least
similar. As we would expect, the histogram
for random queries is nearly uniform over
the range from 0% to 100% (Fig. 2). In con-
trast, the histogram for the real queries has
a very large spike between the 95th and
100th percentile and a very small number
of genes with much lower scores. This result
shows that the genes in the query lists are
coregulated, and that the gene recom-
mender algorithm can accurately identify
genes based on their level of coregulation.

An Rb Hit List Generated by the
Gene Recommender

We then used gene recommender to identify other genes that are
coexpressed with the five genes in the Rb query list. The gene
recommender used 320 of the 553 experiments, including every
experiment in which none of the five query genes were missing.
The gene recommender was able to cluster the five Rb query
genes in a small group of 13 genes (shown in red in Table 2). As
a control, the gene recommender did not succeed in clustering

Figure 1 Some DNA microarray experiments show coregulation of the genes in the Rb query.
Histogram of experiment scores obtained using the retinoblastoma query (black bars) or using 100
random queries of the same size (white bars). The arrow indicates the maximum experiment score
obtained across all the randomizations. A substantial fraction of the experiment Z scores obtained
using the retinoblastoma query were higher than the maximum Z score obtained from random
queries.

Figure 2 Leave-one-out cross-validation. Histograms of percentile ranks obtained after removing
a gene from a query list of genes, building a cassette around the remaining query genes, and then
scoring the held-out gene. Open bars show the histogram obtained from random queries ranging
in size from 4 to 50; black bars show the histogram obtained from all the queries used in this study.
The inset is an expanded view of the highest-scoring genes.
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query genes into comparably small groups when it used five ran-
dom samples of five genes (Table 3). This finding is consistent
with the random queries having smaller experiment scores (Fig.
2), and indicates that the new candidate genes for the Rb query
identified by the gene recommender are unlikely to be due to
chance.

Among the top 20 ranked genes in the hit list generated
using the Rb query, five are from the Rb query set itself. Three of
the remaining 15 genes are also known to interact with Rb. In
hindsight, they could reasonably have been included in the
query group. Similarly, the top genes in the hit list generated by
the gene recommender for the MSP query included some MSP
genes that had been overlooked (Supplemental Table 2). The
gene at the top of the Rb hit list, dpl-1, has a mutant phenotype
similar to that of lin-35 Rb in worms and encodes a protein simi-
lar to mammalian DP1, a known Rb-binding protein (Lu and
Horvitz 1998). The next candidate gene, K12D12.1, encodes to-
poisomerase II, which is known to bind to the Rb protein in
mammalian cells (Bhat et al. 1999). The eighteenth gene on the
hit list (mcm-7) encodes a protein involved in regulating DNA
replication whose mammalian ortholog binds to Rb (Sterner et al.
1998).

Of the remaining 12 candidate genes, there are currently
no data directly confirming whether or not they interact with
the Rb complex. However, it is interesting that this set of genes
is highly enriched for genes involved in regulation of chromatin
structure and the cell cycle, which are functions related to those
of the Rb complex. F55A3.7 encodes a protein similar to S. cer-
evisiae general chromatin factor Spt16p (Rowley et al. 1991).
R06F6.1 encodes a protein similar to human histone hairpin-
binding protein, which binds to histone mRNA and regulates its
translation (Schaller et al. 1997). smc-4 encodes a component of
a condensing complex required for normal mitotic chromosome

architecture (Hagstrom et al. 2002). Ce Bub1 encodes a protein
similar to yeast Bub1p, which is a serine/threonine protein kinase
required for cell-cycle arrest in response to loss of microtubule
function (Oegema et al. 2001). plk-1 encodes a member of the
polo-like kinase family, which are involved in activation of
the anaphase-promoting complex in late mitosis (Chase et al.
2000).

To examine how the genes in the Rb pathway are regulated,
we analyzed the expression of the top 20 genes from the Rb hit
list in published microarray experiments (Fig. 3). Expression of
these genes is enriched in the germ line, and is stronger in oo-
cytes than in sperm (Reinke et al. 2000). During development,
the genes in the Rb hit list are expressed at highest levels in eggs
and in adults (Jiang et al. 2001), and are induced during exit from
the dauer stage (Wang and Kim 2003). As expected, the genes of
the Rb hit list show high levels of coregulation to each other, and
are most abundantly expressed under conditions with high levels
of cell growth and division, such as in embryos and in adults
with actively dividing germ cells.

RNAi Analysis
To analyze the function of the genes in the Rb hit list, we used
RNA interference (RNAi) to induce their loss-of-function pheno-
types. During C. elegans vulval development, the Rb complex and
a redundant pathway both regulate cell divisions (Ferguson and
Horvitz 1989; Lu and Horvitz 1998). Genes in the Rb pathway are
referred to as class B synMuv genes, and genes in the redundant
pathway are referred to as class A synMuv genes. Mutants defec-
tive in both pathways (class A and class B) have a multivulva
phenotype, but mutants defective in only one pathway are wild-
type (Ferguson and Horvitz 1989).

We used RNAi to specifically inhibit expression of the top 51
genes in the Rb hit list (Table 2 and Supplemental Web site). We
induced RNAi by feeding bacterial strains that express dsRNA
corresponding to genes in the Rb hit list. We tested the RNAi
phenotype for each candidate gene in wild-type worms, a class A
mutant strain (lin-8[n111]), and a class B mutant strain (lin-
9[n112]). In these experiments, we found that the RNAi treat-

Table 2. The Rb Hit List

Genea Protein/function SG
b ZG

c Ld

aRed denotes a gene from the query, blue denotes two genes known
to interact with Rb not included in the query, and green denotes
genes involved in the cell cycle or chromatin modeling.
bSG is the gene score.
cZG is the gene score SG divided by an estimate of its standard devia-
tion.
dL is the likelihood ratio computed as the probability the gene re-
ceived the score SG given it was drawn from the query’s distribution
over the probability the gene received the score SG given it was drawn
from the background distribution.

Table 3. Rb Query Has Higher Experiments Z Scores Than
Random Queries

Z*a Rbb r5ac r5b r5c r5d r5e

0 3 19 82 116 197 48
1 3 8 31 116 163 88
2 4 3 63 359 69 328
3 8 3 81 23 332
4 8 13 103 29 500
5 13 61 191 149 421
6 11 41 234 210 537
7 8 44 344 228 537
8 4 106 196 399
9 4 140 164
10 3 254 164
11 3
12 3
13 4
14 4

aZ* is a threshold used to select experiments.
bThe number of genes not in the query that score higher than the
median gene in the query, using an experiment threshold of Z*.
cResults for five randomly-generated queries of five genes each. The
blank entries appear for cases where fewer than five experiments
scored higher than Z*. No gene scoring was done in such cases.
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ment did not induce a mutant phenotype in many cases, indi-
cating that this assay may miss some new genes with a class B
synMuv phenotype. Specifically, 30 of the 51 genes in the gene
recommender hit list were previously known to have phenotypes
that we would score as mutant in our RNAi assay (Supplemental
Table 1). Of these 30, our RNAi experiments agreed with the
previous mutant phenotype for seven genes, showed a weaker
mutant phenotype for six genes, and exhibited no mutant phe-
notype for 17 genes. The RNAi experiments included four out of
the five genes included in the Rb query. lin-35(RNAi) and lin-
53(RNAi) had the expected class B synMuv phenotype. lin-
36(RNAi) and hda-1(RNAi) appeared wild-type in all strains, even
though loss-of-function mutations in these two genes result in a
class B synMuv phenotype (Ferguson and Horvitz 1989; Solari
and Ahringer 2000).

Of the three genes known to encode Rb-binding proteins,
one (dpl-1) had a class B synMuv phenotype in RNAi experi-
ments, consistent with previous results, whereas the other two
(K12D12.1 and mcm-7) showed no mutant phenotype using any
of the strains (Ceol and Horvitz 2001).

Among the remaining 43 genes that we tested, two showed
a phenotype indicating that they interact with the lin-35 Rb
pathway. RNAi analysis of the 42nd gene in the Rb list (JC8.6)
elicited a synMuv phenotype very similar to that of lin-35 Rb (Fig.
4). JC8.6 encodes a protein similar to mammalian tesmin and
Arabidopsis TSO1. Although little is known about the function of
tesmin, TSO1 plays a role in plant meristem cell division (Sugi-
hara et al. 1999; Hauser et al. 2000; Song et al. 2000). RNAi analy-
sis of the 35th gene in the Rb list (wrm-1) indicates that it might
act to antagonize the Rb pathway. Specifically, wrm-1(RNAi) re-
sulted in embryonic lethality that was suppressed by loss-of-
function lin-35 or lin-9 mutations (Table 4). wrm-1 encodes a �-

catenin that functions in an embryonic Wnt
signaling pathway (Rocheleau et al. 1999).

Gene Recommender Generates a
More Specific Hit List Than Does the
Gene Expression Topomap
One advantage of targeted clustering over
global clustering algorithms is that experi-
ments that do not contribute useful cluster-
ing information can be removed; for ex-
ample, experiments that do not show coor-
dinate regulation of the query list. Either
noise or multifunctionality of some query
genes can lead to an experiment’s removal.
To demonstrate the advantages of targeted
clustering, we compared hit lists generated
by the gene recommender to some hit lists
generated using the gene expression topo-
map. To derive a hit list from the topomap,
we located the query genes on the topomap,
and then ranked all genes according to their
distance from the centroid (average) of the
query gene locations.

First, we compared the hit lists pro-
duced by the gene recommender and the
topomap using a method borrowed from in-
formation retrieval. If we knew the com-
plete set of genes in the genome associated
with the Rb pathway (the true Rb cassette),
then we could compute the precision and
recall for any hit list. Precision is the frac-
tion of true Rb genes in a hit list out of the
total number of genes in that hit list. Recall

is the fraction of true Rb genes in the hit list out of all of the true
Rb genes in the genome. There is a precision–recall tradeoff, be-
cause increasing the size of a hit list usually lowers precision, but
cannot lower recall.

For us, precision is more important than recall. Higher pre-
cision means a greater chance that subsequent experiments will
confirm predictions made by the gene recommender. In contrast,
high recall is important when one is more interested in finding
all or almost all genes relevant to a query.

Because the true status of whether a gene interacts with the
Rb complex is usually unknown, we judge the precision of a hit
list by the proportion of the Rb query genes near the top of the
list. Specifically, we construct hit lists containing just enough of
the highest-ranking genes to obtain a given number of query
genes, such that a shorter list is evidence of a more precise result.
The true precision cannot be worse than our estimate, but it
could be better due to true unknown Rb genes in the list. When
comparing algorithms, small differences in estimated precision
could arise from our inability to count true Rb genes that were
not in the query. On the assumption that Rb genes are rare, large
differences in estimated precision, like those shown below, can-
not plausibly be due to uncounted true Rb genes.

The set of five Rb query genes are localized in a broad area of
mount 11 in the gene expression topomap. This broad area in-
cludes not only the five Rb query genes, but also 337 other genes
(at 100% recall). In comparison, the top 13 genes from the gene
recommender contained all five of the Rb query genes. To cap-
ture at least two Rb query genes requires the top six genes of the
gene recommender list, but requires the top 138 genes from the
topomap list (50% recall; Table 5). In addition to the Rb query
list, the gene recommender provided a shorter list of candidate
genes for each of the four sets of query genes compared to the list

Figure 3 Expression profiles of genes in the Rb hit list. The germ line experiments compared
expression in wild-type animals to glp-4 mutants lacking a germ line, and in mutants making only
sperm to mutants making only oocytes (Reinke et al. 2000). The development experiments com-
pared expression in whole wild-type worms throughout development and in hermaphrodites
versus males (Jiang et al. 2001). The dauer experiments compared expression as animals exit the
dauer stage following feeding in a timecourse experiment (Wang and Kim 2003). Rb query genes
are shown in red. Scale shows level of expression.
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generated by the gene expression topomap (Supplemental Web
site). These results demonstrate that the clusters generated by the
gene recommender algorithm are tighter than those created by
the gene expression topomap.

If a candidate gene showed tighter clustering with genes in
a second pathway or if there were more experiments showing
clustering with a second pathway, then a global clustering ap-
proach would include the candidate gene together with the genes
in the second pathway instead of with the query genes. However,
the gene recommender could cluster the candidate gene along
with the genes in the Rb complex, because it only scores inter-
actions with the query genes. We determined whether the gene
recommender found genes that were missed by the gene expres-
sion topomap. Among the top 15 candidate genes in the gene
recommender hit list, 11 are clustered along with the Rb genes in
mount 11 on the gene expression topomap. However, four

(K12D12.1, T16G12.5, F55A3.7, and drp-1) do not cluster with
the Rb genes at all but are clustered together in mount 5 (Kim et
al. 2001). This result suggests that these four genes are also co-
regulated with genes in another pathway, and that this coregu-
lation led to their clustering in mount 5 rather than mount 11.

DISCUSSION
The entire C. elegans research community is aided by functional
genomics approaches, such as whole-genome expression profil-
ing, global RNAi analysis, and high-throughput yeast two-hybrid
analysis (Kim 2001). For example, the gene expression topomap
has been used by a wide variety of labs to gain biological insight.
Several groups have used the topomap to study new genes that
are coexpressed with genes in the germ line or pharynx (Piano et
al. 2002; Walhout et al. 2002; S. Mango, pers. comm.; A. Ville-
neuve, data not shown). The topomap has been used to show
that genes that are coexpressed together are clustered on the
chromosome, possibly due to the effects of chromatin domains
on gene expression (Roy et al. 2002). The topomap was used to
show that genes in mount 15 are regulated by both aging and the
dauer state, possibly identifying genes involved in a common
mechanism between these two processes (Lund et al. 2002). Simi-
larly, we make the gene recommender available as a tool for the
C. elegans research community.

As many researchers use microarray data as the basis for
designing genetic experiments, it is critical to develop better al-
gorithms in order to better discern inherent biological patterns.
Better algorithms in this setting have greater specificity and re-
sult in fewer false positives, thus saving time and expense in
follow-up experiments.

Here, we present an algorithm called a gene recommender
to identify genes that are coexpressed with a given set of genes of
interest. For identifying new genes coexpressed with a known set
of genes, this algorithm has a number of advantages over global
approaches used previously. First, the gene recommender selects
for microarray experiments that are informative (i.e., showing
tight coregulation of the query genes) and ignores uninformative
experiments that would otherwise add noise to the calculations.
As a result, it generates hit lists that are shorter and more con-
centrated with query genes than lists generated by the gene ex-
pression topomap. Second, the gene recommender can find in-
teractions for genes that are in multiple clusters. Genes that are
multifunctional, that are expressed at different times during de-
velopment, or that are expressed in different tissues may interact
with multiple different pathways. Global clustering approaches
such as hierarchical clustering or multidimensional scaling
would place such multifunctional genes into the strongest cluster
and would thus lose interactions with other clusters. For ex-
ample, the Rb hit list generated by the gene recommender in-

Table 4. lin-8 Suppresses wrm-1 Lethality

RNAi feedinga

% viability of wrm-1 (RNAi)

Wild-type lin-8 (n111)b lin-9(n112)

8–16 h 17 (n = 36) 76 (n = 28) 14 (n = 21)
16–24 h 0.2 (n = 413) 25 (n = 342) 0 (n >300)

aLength of time that adult animals were fed bacteria expressing wrm-1
ds-RNA.
bIn addition to lin-8, we tested two other class A genes (lin-38 and
lin-15A). lin-38(n751) but not lin-15(n767) could suppress wrm-1
(RNAi) lethality.

Figure 4 JC8.6(RNAi) results in a Muv phenotype similar to lin-35
Rb(RNAi). (A) JC8.6(RNAi), (B) JC8.6(RNAi) lin-8(n111), (C) JC8.6(RNAi)
lin-9(n112), (D) lin-35 Rb(RNAi) lin-8(n111). Arrows point to the vulva in
A and C, and to pseudovulvae in B and D. Adults were fed bacteria
expressing JC8.6 dsRNA, and the phenotypes of their progeny were
scored. Scale bar is 20 µM.

Gene Recommender

Genome Research 1833
www.genome.org



cluded four genes (K12D12.1, T16G12.5, F55A3.7, and drp-1) that
were not clustered with Rb by the gene expression topomap,
but were instead clustered together along with other genes in
mount 5.

While our work was in progress, a similar strategy (termed
the signature algorithm) was developed independently by Ihmels
et al. (2002), and a strategy using fuzzy clustering was developed
by Gasch and Eisen (2002). Both of these clustering algorithms
allow one gene to be placed in several different gene clusters,
similar to the gene recommender algorithm presented here. Both
the gene recommender and the signature algorithm have the
ability to choose a subset of experiments to cluster genes, based
on the set of input query genes. These two algorithms may group
sets of genes that are coregulated in a small set of experiments,
but not in the entire set of experiments. In contrast, the hierar-
chical clustering and perhaps even fuzzy clustering algorithms
cluster genes based on correlations using the whole set of experi-
ments, and may have difficulty finding genes that cluster only in
a small number of experiments.

In addition to the examples shown here, the gene recom-
mender can be used by the research community to find interact-
ing genes, both in C. elegans and for other organisms once gene
expression databases have been assembled (http://pmgm2.
stanford.edu/∼kimlab/cassettes). For expository purposes, we
have taken a conservative approach using only fixed queries.
Users may prefer to iteratively modify their list of query genes.
When the gene recommender produces a list identifying a gene
that was inadvertently left off of the query list (such as dpl-1 from
the Rb query), the user could add such candidates to the query
list and re-run the gene recommender program. Similarly, when
a leave-one-out or other analysis suggests that a gene in the query
does not belong, that gene can be deleted from the query and the
recommender can be re-run. However, such ad hoc modifications
risk overfitting the data; for example, if one adds genes to the
query because they cluster tightly, then a leave-one-out analysis
of the modified list would not be meaningful because the new
genes must necessarily cluster. Even such ad hoc queries can be
convincingly confirmed by experimentation, such as with RNAi
knockdown experiments.

In some cases, a single query list might be divided into sub-
groups that have distinct gene expression profiles. For example,
the six genes in the meiotic recombination/DNA repair query
could be split into a repair group and a recombination group. In
some instances, it might be useful to run the gene recommender
on the separate groups instead of the entire list; using the entire
list could cause both subgroups to be averaged together, resulting
in a loss of specificity.

For the analysis discussed here, we found that queries rang-
ing from five to 41 genes were reliably distinct from queries of
the same size using random genes. But we found that queries
using only three genes were oftentimes not distinct from random
queries. These conclusions are specific to the data set used in the
present study, and thus these findings regarding usable sizes of
queries may change as more C. elegans expression data are added
or for calculations on expression from other organisms. By per-
forming the controls reported here, one can evaluate whether the
hit list generated by the gene recommender using a real query is
significantly different from a control using random data.

New Genes That Interact With the Rb Complex
For the case of the Rb complex, we found several new genes that
appear to interact with Rb in regulating the cell cycle, a finding
of some biological significance. The Rb protein complex has been
extensively analyzed in worms, flies, mice, and humans (Dyson
1998). In C. elegans, genes that encode components of the Rb
complex are involved in specifying vulval cell fates, and these
genes have been found and analyzed in a large number of genetic
experiments regarding vulval development (Ferguson and Hor-
vitz 1989; Kornfeld 1997). Among the top 15 candidate genes,
three (dpl-1, K12D12.1, and mcm-7) encode proteins similar to
mammalian proteins that bind to Rb (Sterner et al. 1998; Bhat et
al. 1999; Ceol and Horvitz 2001). We also used RNAi to show that
two genes (wrm-1 and JC8.6) interact with the genes in the Rb
pathway; neither gene was previously known to do so. JC8.6 acts
along with Rb, whereas wrm-1 acts to antagonize the Rb pathway.
JC8.6 encodes a tesmin-related protein, which is involved in cell
division in Arabidopsis (Hauser et al. 2000; Song et al. 2000). In
summary, RNAi analysis of candidates provided by the gene rec-
ommender identified two new genes that interact with the lin-35
Rb genetic pathway, even though this pathway has previously
undergone considerable genetic analysis. In addition to these
two, the Rb hit list may contain other candidates that interact
with the Rb genetic pathway; these genes might have been
missed because the RNAi experiments did not induce a mutant
phenotype or because they act redundantly (two mutations plus
a class A mutation might be needed to produce a multivulva
phenotype).

wrm-1 encodes a �-catenin that functions to transduce a
Wnt signal in the C. elegans embryo (Rocheleau et al. 1999).
Previous work has focused on the roles of wrm-1 and lin-35 in
separate tissues and had not revealed any functional interaction
between them; wrm-1 is involved in a Wnt signaling pathway in
the early embryo, and lin-35 Rb is involved in regulating vulval
cell fates in the second larval stage (Lu and Horvitz 1998; Roch-

Table 5. The Gene Recommender Is More Precise Than the Gene Expression Topomap

Query Na

Size Precisione

Gen. Rec.b Topomapc Randd Gen. Recall Topomap Random

Retinoblastoma 5 6 138 160 50% 2% 2%
Recombination/Repairf 6 57 1271 85 5% 0% 4%
Synap complex 6 4 246 85 75% 1% 4%
MSP 43 32 225 4017 69% 10% 1%

aNumber of genes in the query.
bNumber of genes found by the gene recommender at 50% recall.
cNumber of genes found by the gene expression topomap at 50% recall.
dNumber of genes found by the gene recommender from a set of random genes at 50% recall.
ePercent of genes in the list at 50% recall that are from the query list.
fThis group is known to be comprised of two distinct subgroups, and hence resulted in a hit list with lower precision.
MSP, major sperm protein.

Owen et al.

1834 Genome Research
www.genome.org



eleau et al. 1999). It is interesting that the gene recommender
found a strong correlation between these two genes based on
microarray data involving RNA extracted from entire worms.
Correlation using RNA from whole worms indicates that the ex-
pression of these two genes are correlated in multiple tissues
throughout development, suggesting that both these genes have
interrelated functions that are widespread throughout develop-
ment.

Neither WRM-1 activity nor Rb activity are thought to be
directly controlled by transcriptional regulation: WRM-1 is a ho-
molog of �-catenin, which is released into the nucleus as a result
of Wnt signaling (Willert and Nusse 1998), and Rb is regulated by
phosphorylation during the cell cycle (Dyson 1998). Neverthe-
less, the gene recommender found them to be coexpressed based
on gene expression data. The coexpression of WRM-1 and Rb
indicates that the Wnt and Rb pathways are both present at simi-
lar developmental times and tissues in order to enable these path-
ways to regulate each other.

There are examples of other Wnt signaling pathways that
are known to antagonize the Rb pathway. In mouse breast can-
cers, Wnt acts as an oncogene by turning on a pathway involving
�-catenin, whereas Rb is a tumor suppressor, indicating that
these two genes act oppositely to regulate cancer growth (Nusse
et al. 1984; Dyson 1998). In worms, another �-catenin homolog
(bar-1) acts to induce vulval cell fates, whereas lin-35 Rb acts in
the synMuvB pathway to repress these fates (along with the syn-
MuvA pathway; Eisenmann et al. 1998; Lu and Horvitz 1998).
These observations are further evidence that Rb and Wnt signal-
ing are coupled, each acting to counteract the other to jointly
regulate cell division.

METHODS

Algorithm
Within the basic outline of our algorithm there is scope for varia-
tion. The choices we made were influenced by several factors.
First, we wanted our method to be usable even with a large
amount of missing data. Second, we put greater priority on pre-
cision than recall. Third, we put greater priority on finding cas-
sette members not in the query list than on identifying possibly
incorrect members of the query list. Some other choices were
made for statistical simplicity and computational efficiency. For
example, some of the simple statistics we use have distributions
that are easily analyzed in ideal settings, giving a rough guide to,
and a benchmark for, their behavior on real data. We think that
the choices we made are appropriate, but we do not claim that
any set of choices is compelling.

Normalization
We begin with an n by p matrix of real values Yij in which missing
values are identified. Each row corresponds to a gene and each
column to an experiment.

The data are normalized by taking their ranks within rows.
Let pi be the number of non-missing values among Yij for j=1, . . .,
p. Let Rij be the rank of Yij among the non-missing values in Yi1,
. . . ,Yip. That is, Rij=1 for the smallest non-missing value, 2 for the
second smallest, and so on. The transformed values are

Y�ij =
Rij − �pi + 1��2

pi�2

that have very nearly the uniform distribution on the interval
(�1,1). Our data set has very few tied values. For data with many
ties, we recommend first averaging the ranks of tied values. If the
9�th, 10�th and 11�th smallest values are equal, they should all
get rank 10.

To simplify notation, we now suppose that Yij are them-
selves the rank transformed values previously denoted by Y�ij.
Rank transformation has several advantages. First, it diminishes

the effects of outliers. Second, the data values for each gene have
mean zero and variance 1/3. As a consequence, the correlation
between the (ranked) expression levels of genes i and i� is linearly
related to the sum �j YijYi�j, as is the Euclidean distance between
the vectors of expression levels.

The non-missing data in each row could be replaced by
quantiles for distributions other than U(�1,1). For example, nor-
mal scores ��1 (Rij/[pi+1]) would space out the extreme ranks
more than uniform scores.

Experiment Scoring
We use Q to designate the set of genes in the query. The biologi-
cal factors underlying coexpression of the query genes might
only be applicable within a subset of the experiments in a data
set. If the values Yij for i ∈ Q are similar, then experiment j is likely
to be informative regarding the joint behavior of these genes. On
the other hand, if the query values Yij for i∈ Q vary by about the
same amount as the non-query values, then including experi-
ment j in gene scoring may add unwanted noise.

For the j�th experiment, let YQ,j be the average of the non-
missing values among Yij for i ∈ Q and let �VQ,j be the sample vari-
ance of those values. Then the score for experiment j is

ZE � j� = �kj
YQ ,j

�V̂Q ,j +
1

3p2

(1)

where kj is the number of non-missing values among Yij for fixed
j and all i ∈ Q. The score itself is taken to be missing if kj is too
small. The minimum value of kj is usually 5, but when the num-
ber |Q| of genes in Q is below 5, then |Q| becomes the lower limit
on kj.

The informative experiments are considered to be those
with ZE(j) far from zero. This score combines a preference for
experiments with extreme expression levels (very large or very
small YQ,j) with a preference for tight clustering of expression
levels (small �VQ,j). There is a small possibility that �VQ,j = 0. If we
consider rank r out of p to represent a rank uniformly distributed
between r�1/2 and r+1/2, then we could reasonably add a vari-
ance of 1/12 to any rank. In scaling ranks to the interval (�1,1),
this variance changes to 1/(3p2), which appears in the denomi-
nator of ZE(j).

As a rough guide, if experiment j is completely irrelevant to
Q, then we would expect the values Yij to be a random sample of
k values without replacement from the uniform distribution on
(�1 and 1). The distribution of ZE(j) is then very nearly Student’s
t on k�1 degrees of freedom (assuming k�n), which in turn is
close to N(0,1) unless k is very small.

Gene Scoring
Let � be a set of experiments deemed relevant to the query genes
Q. Then the score for gene i is SG(i), the mean of YQ,j �Yij, over
experiments j∈ Q for which both YQ,j and Yij are not missing. If
too few such j are available, then SG(i) is itself missing. All of the
Yij and YQ,j are between �1 and 1, and so therefore is SG(i).

There is some randomness in whether Yij will cluster near
�1 or 1, due to “sign noise” in the original expression data. If
two experimenters make different choices for which sample goes
in the red versus green channels, then those experimenters’ ex-
pression measurements will tend to have the same magnitude
but opposite signs. This sign noise can have a severe effect on
correlations but tends to have less effect on the uncentered cor-
relation.

The score SG(i) is our measure of the extent to which gene i
matches the query Q. We also compute a Z score

ZG �i � =
�
j
YQ ,jYij

�1
3 �

j
YQ ,j

2

(2)
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The sums in (2) are over experiments j∈ � for which neither YQ,j
nor Yij are missing. For nonquery genes, i ∉ Q, if Yij are randomly
assigned independently of YQ,j, then ZG(i) has approximately an
N(0,1) distribution.

We use SG as our guide to biological significance and ZG as
a rough guide to statistical significance. In the absence of missing
data, the ratio ZG(i)/SG(i) is the same for all genes i. When there
are many missing values and their number varies from gene to
gene, then |ZG| tends to be much larger for genes with fewer
missing values.

Threshold Selection
An important decision in the search for genes related to Q is the
number of experiments to include in the relevant set �. The gene
score is a sum of contributions from experiments of which some
may be irrelevant to the functioning of the genes in the query Q.

While it is intuitively reasonable that including irrelevant
and noisy experiments can degrade the performance of gene
scoring, there is not a good statistical argument to select a priori
a Z-score above which an experiment will improve the search
performance, and below which an experiment will degrade the
search. The combined effect of several not-quite significant ex-
periments may be informative, because lack of significance is a
lack of proven relevance, and not necessarily a lack of relevance.
Our approach is to explore a small grid of threshold values. We
select the threshold Z to minimize the number of genes i ∉ Q that
score higher than the median score of genes i ∈ Q. Our rationale is
that a good set of experiments should bring the known members
of Q to the top of the list. Our interest in specificity and belief
that there may only be a small number of true unknown Q mem-
bers lead us to prefer a small number of non-Q genes near the top
of the list. Though the threshold was chosen to bring the original
query to the top of the list, we see from Figure 2 that the query
genes get high ranks even in leave-one-out experiments.

Comparing Hit Lists
The result of a targeted clustering produces a ranked list of genes.
The ranked list can then be truncated to produce a hit list. Recall
is the fraction of genes from the cassette included in the list.
Precision is the fraction of the hit list’s genes that also belong to
the cassette. Since we don’t know which genes actually belong to
the cassette, we fix the fraction of query genes captured in the hit
list. If the size of the cassette is comparable to the size of the
query, then the fraction of query genes will be a good approxi-
mation to a measure of recall.

Likelihood Ratios
In addition to ranking the genes by decreasing score, we also
compute a measure indicating the likelihood that the assigned
score came from the query distribution versus the background
distribution. For each gene in the genome i we compute the
log-likelihood ratio:

L�i� = ln
�0

�Q
+

1

2�0
2 �SG(i) − �0�2 −

1

2�Q
2 �SG�i� − �Q�2

where µ0 and �0 are the mean and standard deviation computed
from the SG(i) scores of the background distribution, and µQ and
�Q are the mean and standard deviation computed from the SG(i)
scores of the query genes. We report the likelihood ratio eL(i) for
each gene. We include all nonquery genes into the background
distribution. Because some genes may have been placed errone-
ously into the query set, we only include query genes into the
query distribution if their SG(i) scores in the 90th percentile
among all genes. These ratios should be used with caution, be-
cause the normal approximation makes the likelihood ratios
nonmonotonic with respect to SG(i). Extremely high-scoring
genes can have smaller likelihood ratios than genes with corre-
spondingly smaller scores. However this causes little problem,
because the likelihood ratios are used to find an intuitive cutoff
between the background and query distributions where the ratios
are usually monotonically increasing in SG(i). We also count and

record the number of non-Q genes, if any, scoring higher than all
Q members as well as the number scoring higher than at least one
Q member.

Similar Algorithms
Our method is related to a body of research called feature selec-
tion in which a set of informative features are sought that opti-
mally classify sets of observations. Feature selection has been
applied primarily in cases where at least two classes of observa-
tions (e.g., positive and negative) are known. The problem we
address here is different because only a partial list of related genes
is provided as input, and thus a clear distinction between class
boundaries cannot be assumed. The feature selection task here
seeks experiments that group the given genes together, as op-
posed to those that distinguish some genes from others. Fried-
man and Meulman (2002) define metrics for finding clusters on
preferentially selected sets of attributes. However, the application
for their approach is replacing the distance metric used in a glo-
bal clustering of the data. Our work is also similar to the recent
semisupervised approaches in which pre-established classes of
genes are scored based on several different measures computed
from expression data (Pavlidis et al. 2002). Yeung et al. (2001) use
a variability-based measure on held-out experiments to decide
whether a cluster is real. Mateos et al. (2002) attempted to define
the learnability of a gene class using multilayer neural networks
trained on microarray data. Their goals were to investigate how
well pre-established classes of genes could be distinguished from
the rest of the genes in the genome. These methods assign a score
to a set of genes that reflects how well the group can be distin-
guished from the rest of the genome based on their expression
profiles. Our work differs in that it seeks out new candidates for
inclusion in the given set. Lastly, a recent method developed by
Ihmels et al. (2002) also attempts to find new candidates to a
given query set. Though the details of the algorithms are differ-
ent, the gene recommender and signature algorithms both are
similar to recommender systems and search engines. Both meth-
ods select a set of informative experiments prior to scoring genes.

RNAi Technique
NGM agar with 1mM IPTG and 50 µg/mL ampicillin was inocu-
lated with bacteria for each targeted gene (Fraser et al. 2000).
Three to five L4 worms were placed on each RNAi plate, and F1
progeny were scored for survival and multivulval phenotype.
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