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BACKGROUND

There are three different forms of cartilage in the body: hyaline, 
elastic and fibrous cartilage. Each can be found in specific sites 
and with different properties and functions. Hyaline cartilage 
can be found in the joints, nose, trachea and ribs [1]. In adults, 
its firm yet pliable character provides a shock-absorbent effect 
in the mechanical loading of joints, and a stent-like support to 
the nose and trachea, whilst allowing flexibility and recoil to the 
respiratory system during breathing [2]. Elastic cartilage, as its 
name implies, provides elastic properties to the epiglottis, ex-
ternal acoustic meatus, Eustachian tubes and external ears [3]. 

Fibrous cartilage, characterised by an abundance of matrix col-
lagen type I fibres, is present in intervertebral discs, the menisci 
of the knees, the symphysis pubis, and the intra-articular discs 
of the sternoclavicular and temporomandibular joints [3].

Adult cartilage is predominantly an avascular, aneural and 
alymphatic tissue. It inherently lacks the ability to regenerate 
following loss from disease or degeneration. Significant carti-
lage defects are seen clinically in congenital anomalies such as 
microtia, following facial trauma, excision of tumours of the 
respiratory tract, and in degenerative osteoarthritis. However, 
current reconstructions based on autografts, allografts, implants 
or prostheses can be less than ideal. Autologous donor sites are 
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very limited; allografts are associated with the risks of disease 
transmission and immunosuppression, implants with the risks 
of infection and extrusion, and prostheses with limited func-
tionality. The field of cartilage engineering has emerged in the 
search for a functional cartilage replacement to meet specific 
clinical requirements.

Tissue engineering is a multidisciplinary field that applies the 
knowledge of engineering and biological sciences in the devel-
opment of biological substitutes to restore, maintain or improve 
tissue functionality [4]. That function is influenced by four 
fundamental components: 1) cells, 2) scaffolds, 3) bioactive 
cues, and 4) environmental factors. The production of cartilage 
extracellular matrix (ECM) requires either chondrocytes or 
mesenchymal stem cells. A biocompatible three-dimensional 
(3D) scaffold would provide the foundation for the cells to 
adhere, proliferate and then be delivered for transplantation. 
Bioactive cues such as growth factors and arginine-glycine-as-
partate (RGD) peptide sequences are essential in signalling and 
inducing cells to proliferate and produce the appropriate ECM 
components. Chondrocyte survival and function is largely influ-
enced by environmental conditions such as pH, oxygen tension 
and dynamic mechanical induction [5-7]. 

To date, detailed cartilage regeneration studies of human hya-
line cartilage have been predominantly focused on articular car-
tilage rather than nasoseptal, auricular or costal cartilage. This 
has been driven by the volume of demand related to degenera-
tive osteoarthritis [5,8]. Articular cartilage samples have been 
more widely available to science due to the prevalence of joint 
replacement surgery. Nonetheless, the fundamental principles 
and advances of cartilage regeneration derived from articular 
cartilage studies provide a template for the engineering of head 
and neck cartilage. This article provides a brief overview of na-

tive cartilage composition and structural architecture, as well as 
highlighting the evolution and recent advancements in scaffold 
technology. Emphasis will also be given to state of the art strate-
gies in biomimetic nanotechnology scaffold development for 
cartilage regeneration. 

CARTILAGE EXTRACELLULAR MA-
TRIX STRUCTURE

The cartilage ECM consists of an integrated 3D fibrous network 
of structural macromolecules, which are produced and organ-
ised by chondrocytes bathed in interstitial fluid (Fig. 1). Water 
constitutes up to 80% of the wet weight of cartilage while the 
remainder consists of macromolecules−predominantly collagen 
and proteoglycans [9]. Collagens constitute more than 60% of 
the dry weight of cartilage, while proteoglycans and other non-
collagenous proteins contribute 25% to 35% and 15% to 20%, 
respectively [9]. Collagen types II, VI, IX, X, and XI are all found 
in native cartilage, but type II forms the majority of the structural 
framework, accounting for up to 90% to 95% of collagen content 
[9,10]. Aggrecan is the predominant proteoglycan in cartilage, 
accounting for 35% of its dry weight and consists of multiple gly-
cosaminoglycan (GAG) chains, which are chondroitin sulphate 
and keratin sulphate chains linked to a protein backbone [9,11]. 
Most aggrecans associate non-covalently with hyaluronan to 
form high molecular weight proteoglycan aggregates [12] and fill 
most of the interfibrillar spaces of the collagenous network. As 
these GAG chains are highly hydrophilic and polyanionic, they 
attract water molecules. This leads to a high osmotic and swelling 
pressure within the collagenous network. This provides native 
cartilage the ability to withstand mechanical forces [10,13]. An 
understanding of the composition and structural organisation 

Fig. 1. Human hyaline cartilage extracellular matrix structural architecture

These are scanning electron microscopy (SEM) images of a section of human hyaline cartilage. (A) A lacuna surrounded by a dense collagen 
framework. (B) A high resolution image of cartilage extracellular matrix and collagen fibres. These SEM images of native human hyaline cartilage 
were fixed in 2.5% glutaraldehyde, followed by step-wise dehydration and sputtered gold coating.
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of native cartilage is essential to the design of biomaterials and 
methods of nanofibrous scaffold fabrication for cartilage tissue 
engineering.

APPLICATIONS FOR BIOMATERI-
ALS AND THE EVOLUTION OF SCAF-
FOLD TECHNOLOGY

To date, several natural and synthetic biomaterials have been in-
vestigated as tissue regenerative scaffolds. They include alginates 
[14], chitin [15], collagen [16-18], elastin [16], hyaluronan 
[19], and synthetic polymers such as poly(glycolides) (PGA) 
and poly(lactides) (PLA) [20,21]. Natural polymers have the 
advantage of being biocompatible and contain more bioactive 
cues and signalling molecules to facilitate cell attachment and/
or maintain differentiation [4]. However, many natural materi-
als suffer batch variability, limited large-scale availability [4], 
high cost and potential immunogenicity. Synthetic materials 
can be versatile in their physical and chemical properties, and 
can be tailored to allow precise control over attributes such as 
molecular weight, degradation time, and hydrophobicity [22]. 
The advantages of both natural and synthetic materials can be 

combined within strategies for scaffolds where critical amino 
acid sequences or components from natural polymers are incor-
porated [17,23]. A well-established example of this in plastic and 
reconstructive surgery is the Integra Dermal Regeneration Tem-
plate (Plainsboro, NJ, USA), in which bovine type I collagen and 
chondroitin sulphate has been cross-linked to a poly(dimethyl-
siloxane) (PDMS) membrane to form a bilaminar silastic con-
struct for the treatment of burns and scars (Fig. 2A, B) [24,25]. 
The PDMS layer acts as an epidermal barrier analogue to control 
fluid loss and prevent pathogen invasion, while the co-cell type 
I collagen-chondroitin sulphate layer serves as an intermediate 
matrix for soft tissue and vascular integration.

Traditionally, many engineered biomaterial scaffolds were 
designed and produced to support cell culture and to match the 
properties of the desired native tissue at a macroscopic level. 
For example, in the 1980s, the type I collagen-chondroitin sul-
phate component of Integra was produced by a freeze-drying 
technique [26] to achieve a highly porous scaffold architecture 
considered to be microporous (Fig. 2B). In 1997, in pioneering 
work by Cao et al. [27], bovine articular chondrocytes seeded 
on a PLA-coated PGA fibrous scaffold moulded into the shape 
of a human auricle were evaluated using an in vivo mouse model. 

A

Fig. 2. Pioneering tissue engineered skin and cartilage constructs

(A) Gross appearance of Integra, (B) Scanning electron microscopy image of the type I collagen-chondroitin sulphate scaffold component of 
Integra (Permission granted by Integra LifeSciences Corp., Plainsboro, NJ, USA). (C) Human ear-shaped PLA-coated PGA scaffold seeded with bovine 
articular chondrocytes and implanted into the dorsum of an athymic nude mouse (BBC Photo Library), (D) Scanning electron microscopy of the 
cell-scaffold construct prior to implantation. Note the micron-sized PGA fibres. Scale bar=50 µm (Reprinted from Cao et al. Plast Reconstr Surg 
1997;100:297-302, with permission from Lippincott Williams and Wilkins [27]). (E) Pre-implanted segment of tissue-engineered allogeneic airway, 
which was decellularised and reseeded with the recipient’s bronchial epithelial cells and mesenchymal stem cell-derived chondrocytes (Reprinted 
from Macchiarini et al. Lancet 2008:372;2023-30, with permission from Elsevier [29]). 
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The fibre diameter of the PGA scaffold was 15 µm, which was 
almost equivalent to the size of a cell (10−20 µm), and two 
orders of magnitude larger than a natural ECM fibril (Fig. 2C, 
D). Because the majority of native ECM (cartilage included) 
consists of a 3D complex nanoscaled fibrillar network of not 
only structurally but also functionally integrated nanoscaled 
structures, the current trend in engineering tissue scaffolds is 
to mimic the nanofibrous architecture of ECM proteins [5,28]. 
This is the key difference from preceding strategies that lacked 
the nanoscaled features of native ECM. The tissue-engineered 
allogeneic airway transplantation reported by Macchiarini et 
al. [29] in 2008, further emphasises this argument. The donor 
airway was decellularized, leaving behind the ECM “skeleton” 
for subsequent recolonisation with recipient cells (Fig. 2E). This 
ECM “skeleton” may have provided the recipient cells with a 
near ready-made environment for cell survival, as indicated by 
the successful immediate clinical outcome. 

THE IMPORTANCE OF NANOSCALE 
ARCHITECTURE TO SCAFFOLDS

The scaffold architecture governs how cells spread and bind, 
leading to changes in intracellular signalling pathways, which 
ultimately result in a modification of gene expression and cell 
behaviour (Fig. 3) [30]. Cells seeded on microporous or fibrous 
scaffolds, which are tens of microns in diameter, tend to attach 

and flatten as though they were cultured on a flat two-dimen-
sional surface. This culture condition leads to imbalanced recep-
tor attachment and unnatural activation of intracellular signal-
ling [31]. It clearly differs from the natural 3D environment of 
the ECM, which controls cell behaviour and function [30,32]. 
Nanoscaled fibrous scaffolds, on the other hand, are one to two 
orders of magnitude smaller than cells, and more closely simu-
late the natural nanofibrous matrix for cartilage cells, increasing 
cell binding sites and directing cell behaviour and functionality. 
Scaffolds with nanoscale architecture also have a higher surface 
area to volume ratio for the adsorption of proteins and binding 
of ligands. This means that a higher number of binding sites and 
guidance cues are presented to cell receptors and has important 
implications for the biomimicking of the functions of native 
ECM in scaffold production. Thus, nanoscale fibrous scaffold 
architecture is crucial in promoting and maintaining chondro-
genic differentiation [33-35].

CURRENT TECHNIQUES FOR THE 
FABRICATION OF A NANOSCALED 
FIBROUS SCAFFOLD

Currently, three well-established techniques are used to fabri-
cate nanoscale fibrous scaffolds: self-assembly, phase separation 
and electrospinning [30,36]. 

Scaffold architecture influences cell binding, 
hence also cell behaviour and function. This 
figure illustrates the way in which nanoscaled 
fibrous scaffolds provide an environment 
for cells which better resemble the fibrous 
extracellular matrix of cartilage (Reprinted from 
Stevens and George. Science 2005;310:1135-8, 
with permission from AAAS [30]).

Fig. 3. Impact of scaffold architecture on cell behaviour
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Self-assembly
Self-assembly is a process of autonomous self-organisation 
of molecules into patterns and structures without human in-
tervention [37]. It occurs commonly throughout nature and 
technology, mediated by non-covalent interactions such as van 
der Waals, electrostatic and hydrophobic interactions, as well as 
hydrogen and coordination bonds [37]. For instance, amphi-
philic molecules possessing both hydrophilic and hydrophobic 
segments, may self-assemble into well-ordered structures when 
dispersed in aqueous solvents [38]. A naturally occurring exam-
ple and commonly used biomaterial for tissue culture scaffolds 
is collagen. Its propeptides self-assemble into procollagen and 
ultimately nanoscaled fibrils under such intermolecular forces.

Synthetic polypeptide based systems are capable of fabricating 
nanoscale scaffolds with a fibre diameter typically around 10 
nm [39,40], and these have been shown to support the growth 
of various cell types as well as chondrocytes [41-45]. In cell 
culture, these scaffolds physically behave like hydrogel systems 
engulfing the cells in a 3D manner [41-43]. This technique 

produces fibres with diameters typically smaller than those 
of native ECM (Fig. 4). An advantage of using peptide self-
assembly is that the scaffold has the potential to carry many 
more biologically compatible motifs on its surface compared to 
other synthetic polymeric biomaterials such as polyesters which 
lack functional chemical groups. However, the low yield and the 
complexity of the fabrication procedure make it prohibitive for 
larger scale tissue engineering [36].

Phase separation
Phase separation is a technique for the separation of a polymer 
solution into polymer-rich and solvent-rich domains, either in-
duced thermally or by the addition of a non-solvent of the poly-
mer to form a gel. This is followed by a cooling process to fix the 
morphology, and a freeze drying process to remove the solvent. 
This technique produces a 3D fibrous network with fibre diam-
eters ranging between 50 nm and 500 nm, and with a porosity 
as high as 98% (Fig. 5) [46]. These scaffolds have been shown 
to favour cell attachment, exhibit higher adsorption of proteins 

This is an example of a self-assembled peptide 
used in a study of wound healing. A single 
peptide, approximately 6 nanometres, is shown. 
Thousands of peptides self-assemble to form a 
single nanofibre; trillions of peptides or billions 
of nanofibres form the scaffold (scale bars=0.5 
μm) (Reprinted from Schneider et al. PLoS One 
2008;3:e1410 [43]).

Fig. 4. Self-assembly of peptides to form nanofibres

One peptide Self-assembly
of peptides

Self-assembled
peptide scaffold

Peptide
fibre

Scanning electron microscopy images of poly(L-lactide) (PLLA) scaffolds produced using the phase-separation technique. (A) 500× , (B) 20,000×  
magnification (scale bars are 50 µm and 1 µm, respectively) (Reprinted from Ma and Zhang. J Biomed Mater Res 1999;46:60-72, with permission 
from John Wiley & Sons, Inc. [46]).

Fig. 5. Formation of PLLA scaffolds with phase-separation
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such as fibronectin and vitronectin, and promote differentiation 
when compared to solid walled porous scaffolds with equal po-
rosity [47,48]. Scaffolds fabricated from synthetic and natural 
polymers using phase separation have been shown to support 
chondrocyte proliferation and enhance cartilage phenotypic 
expression [49-51]. Phase separation offers the ability to con-
trol the fibre diameter and the porosity of the scaffold, as well as 
tailor its mechanical properties by manipulating the processing 
parameters [36,46]. In addition, since this process of scaffold 
fabrication takes the shape of its moulds, it enables the scaffolds 
to be fashioned to any desired anatomical shape [52]. Batch-
to-batch consistency can be achieved with this technique, but it 
requires experience. Although scaffold production with phase 
separation requires specialised equipment, it lacks the ability to 
align fibres provided by electrospinning. 

Electrospinning
Electrospinning is an electrostatic technique which produces 
non-woven polymer fibres with controlled diameters ranging 
from a few microns down to a few nanometres. The technique 
employs an electrical field gradient generated between a spin-
neret and grounded target collector (Fig. 6). When an electrical 
field applied across a polymer solution reaches the point where 
the self-repulsive charges overcome the forces of surface tension 
of the polymer solution, an accelerating jet of charged polymer 
solution travels toward the opposing or zero-charged ground 
target. As the jet travels in mid-air, the solvent evaporates, leav-
ing behind a charged polymer fibre which continues to elongate 
to the collecting target. Such a technique has numerous and 
diverse applications because of its ability to produce nanoscaled 
fibres, technical simplicity and cost effectiveness [36,53]. Since 
the first patent by Formhals in 1934, electrospinning has found 
widespread application in the textile industry, air filtration and 

biomedical applications including wound dressings and drug 
delivery [53]. It has also become a powerful tool in producing 
non-woven nanofibrous biomaterial scaffolds in tissue engineer-
ing applications [16,20,54].

This technique has an advantage over self-assembly and phase 
separation methods because it has the ability to produce fibres 
which are either randomly orientated or aligned in parallel. This 
can be achieved by rotating the grounded target collector at dif-
ferent speeds [55]. Aligned natural and synthetic electrospun 
fibres, such as collagen and polyesters, have been shown to 
provide topographical guidance to cell attachment, orientating 
cells along the direction of the fibres [54,56]. One of the great 
strengths of electrospinning is in mimicking the natural structur-
al architecture of many tissue types such as neural, musculoskel-
etal, dermal and vascular tissues, where the direction of tissue 
growth is crucial in determining the appropriate physiological 
function of the organ. As an example, our group has successfully 
electrospun a nanoscale fibrous poly(L-lactide) (PLLA) scaf-
fold that appears to resemble the structural architecture seen in 
the native human hyaline cartilage (Fig. 7).

AN OVERVIEW OF TISSUE SCAF-
FOLD BIOFUNCTIONALISATION

In engineering biomimetic scaffold design, apart from fabricat-
ing the scaffold’s physical structure with physical and chemical 
properties to match the desired native tissue, it is also essential 
to design for functionality. This process has been referred to as 
the biofunctionalisation of scaffolds, in particular, those scaf-
folds that may lack the functional surface chemical properties for 
cellular interaction. Biofunctionalisation often involves scaffold 
surface modification followed by physical and/or chemical link-
age with biologically active compounds. Scaffold surface modifi-

The polymer solution is delivered, at a constant rate, 
to the tip of the charged spinneret. Electrospinning 
is initiated from the Taylor cone (depicted top right) 
when the charge overcomes the forces of surface 
tension. The electrospun fibres are then collected 
on the grounded targe (Image courtesy of Dr. Julian 
George, Imperial College London). 

Fig. 6. Schematic representation of a typical electrospinning system
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cation techniques commonly involve the use of either plasma or 
chemical treatments [57]. These surface modification techniques 
introduce reactive chemical groups such as amine, hydroxyl or 
carboxyl groups, which are recognisable by cells and form a plat-
form for subsequent crosslinking with natural ECM components 
and bioactive compounds. These bioactive compounds include 
several native ECM components such as RGD peptide sequenc-
es for cell attachment, collagen and chondroitin sulphate, as well 
as growth factors, e.g., transforming growth factor-β1 (TGF-β1) 
and basic fibroblast growth factor [23,58,59].

Growth factors play a vital role in the induction, promotion 
and maintenance of differentiation and the function of cells, 
particularly chondrocytes, which inherently lack the capacity to 
regenerate. However, incorporating growth factors in vitro has 
been challenging. The short half-lives of growth factors such 
as TGF-β1 ( < 30 min) and insulin-like growth factors (10−12 
min) as well as their dose-related adverse effects have persuaded 
researchers to incorporate growth factors into scaffold designs 
[60]. The controlled release of growth factors can also be tailored 
into biomimetic scaffold design [61]. Several methods have been 
described [60]: 1) by direct blending or emulsion of the growth 
factors with the biomaterial during the scaffold synthesis and 
fabrication stage, 2) by physical adsorption through the immer-
sion of the scaffold in a growth factor solution, and 3) by pre-
chemical linkage to or encapsulation by a carrier prior to step 1). 
For example, poly(ether-ester) copolymer emulsion containing 
TGF-β1 has been used to coat porous PEG-based scaffolds [62]. 
This system was seeded with goat bone marrow-derived mesen-
chymal stem cells and shown to produce glycosaminoglycans, 
indicating the induction of the stem cells towards a cartilage 
lineage. The release of the growth factors is typically governed by 

the degradation rate of the scaffold material. Elisseeff et al. [63], 
encapsulated Insulin-like growth factor-I and TGF-β1 within 
PLGA polymer microspheres using a double emulsion tech-
nique. Together with bovine chondrocytes, these microspheres 
were then blended within PEG-based hydrogel scaffolds. The 
chondrocytes were shown to proliferate and increase matrix 
glycosaminoglycan production in response to the cues received 
from the biofunctionalised scaffolds [63]. These examples of bio-
functionalised scaffold systems have demonstrated that growth 
factors were released from the scaffolds and induced changes in 
cell behaviour. 

CONCLUSIONS

Tissue engineering has advanced over the past two decades and 
continues to evolve in search of optimal tissue replacements 
alongside nanotechnology. The concept and results of mimick-
ing the structure and function of the natural ECM form the 
current direction of travel for the fabrication of an optimal tissue 
regenerative scaffold.

Although the results of current studies have been encouraging, 
further refinements need to be made. As active growth factors 
used in current studies are inevitably subjected to contact with 
organic solvents or time-consuming procedures during process-
ing and scaffold fabrication, it is likely that the majority of the 
growth factors are denatured. Uncompromised delivery of any 
growth factor at an optimal concentration with precise release 
kinetics is ideally required to translate growth factor delivery 
from an in vitro to in vivo level for tissue regeneration. A system 
of cell-mediated activation of available bioactive molecules may 
provide a breakthrough. This might be achieved by incorporat-

This is a comparison between the structural architecture of native human hyaline cartilage (A) and electrospun poly(L-lactide) (PLLA) scaffold (B). 
The fibrous PLLA scaffold was electrospun at a concentration of 3.0% w/w, 10 kV, at a rate of polymer solution delivery of 0.4 mL/hr and target 
distance of 10 cm.

Fig. 7. The ability to mimic nature with electrospinning
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ing the latent form of the desired protein into the scaffold de-
sign. The incorporation of nanotechnology and bioactive cues 
into tissue scaffold design should prove increasingly promising 
in cartilage engineering. 

Many research studies in cartilage tissue engineering often 
focus on specific areas of interest with encouraging results, but 
these studies often lack the holistic requirements to produce a 
successful tissue replacement. Thus, a multidisciplinary collab-
orative approach which includes specialised stem cell culture, 
nanotechnology and bioactive cues, materials science, environ-
mental and mechanical stimulation, and bioreactor culture as 
well as vascular tissue engineering may offer a breakthrough in 
functional cartilage regeneration. 
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