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Although mRNA decay rates are a key determinant of the steady-state concentration for any given mRNA species,
relatively little is known, on a population level, about what factors influence turnover rates and how these rates are
integrated into cellular decisions. We decided to measure mRNA decay rates in two human cell lines with
high-density oligonucleotide arrays that enable the measurement of decay rates simultaneously for thousands of
mRNA species. Using existing annotation and the Gene Ontology hierarchy of biological processes, we assign
mRNAs to functional classes at various levels of resolution and compare the decay rate statistics between these
classes. The results show statistically significant organizational principles in the variation of decay rates among
functional classes. In particular, transcription factor mRNAs have increased average decay rates compared with other
transcripts and are enriched in “fast-decaying” mRNAs with half-lives <2 h. In contrast, we find that mRNAs for
biosynthetic proteins have decreased average decay rates and are deficient in fast-decaying mRNAs. Our analysis of
data from a previously published study of Saccharomyces cerevisiae mRNA decay shows the same functional
organization of decay rates, implying that it is a general organizational scheme for eukaryotes. Additionally, we
investigated the dependence of decay rates on sequence composition, that is, the presence or absence of short
mRNA motifs in various regions of the mRNA transcript. Our analysis recovers the positive correlation of mRNA
decay with known AU-rich mRNA motifs, but we also uncover further short mRNA motifs that show statistically
significant correlation with decay. However, we also note that none of these motifs are strong predictors of mRNA
decay rate, indicating that the regulation of mRNA decay is more complex and may involve the cooperative binding
of several RNA-binding proteins at different sites.

[Supplemental material is available online at www.genome.org, and also at http://genomes.rockefeller.edu/∼yange.]

In a living cell, mRNA is synthesized by polymerases and de-
stroyed by nucleases. When these two events occur at a constant
rate, they give rise to a steady-state mRNA population for each
unique transcript (Ross 1995; Wilusz et al. 2001). Although varia-
tions in mRNA transcription rates are generally recognized for
their central importance in regulating gene expression, the regu-
latory role of variations in mRNA decay rates has been left rela-
tively unexplored, in particular on a genome-wide scale. Most
gene array experiments have focused on measuring the fluctua-
tions in steady-state mRNA concentrations, from which the sepa-
rate contributions of synthesis and decay cannot be disen-
tangled. More recently, however, measurements of mRNA decay
for the entire set of expressed mRNAs (the “transcriptome”) have
been carried out in Saccharomyces cerevisiae and Escherichia coli
(Holstege et al. 1998; Bernstein et al. 2002; Wang et al. 2002).
These studies found some evidence that mRNA decay rates may
differ by functional group or membership in certain protein com-
plexes, implying that variations in mRNA decay rate, indeed,
play a functional and possibly regulatory role. As mentioned in
the Discussion, there have also been some recent efforts to collect

mRNA decay data in human cells (Lam et al. 2001; Raghavan et
al. 2002; Frevel et al. 2003). However, a comprehensive, func-
tional analysis of decaying mRNA transcripts has not yet been
performed.

In this work, we sought to examine several facets of mRNA
degradation in human cells. First, we created a database of decay
rates of individual mRNA transcripts in human cells that have
significantly increased doubling times (24–48 h) in comparison
to yeast and bacteria. Using 2–3 h of Actinomycin D treatment, a
compound documented to quantitatively halt RNA polymerases
in human cells (Scherrer et al. 1963), we measured decreases in
mRNA levels with oligonucleotide arrays for the hepatocellular
carcinoma cell line HepG2 and the primary fibroblast cell line
Bud8.

Secondly, we systematically investigated the functional or-
ganization of decay rates and compared this organization be-
tween eukaryotes at opposite ends of the spectrum of biological
complexity, that is, yeast and humans. Using available annota-
tion of human and yeast genes, and the Gene Ontology (GO)
hierarchy of biological processes, we assigned our transcripts to
functional classes at various levels of resolution and compared
the average decay rates and fractions of fast-decaying transcripts
between these classes. As described below, we found clear statis-
tical evidence for a functional organization in mRNA decay rates
that is reproduced between yeast and humans. Third, we wanted
to investigate and quantify the dependence of decay rates on
mRNA sequence composition, in particular the presence and ab-
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sence of short mRNA sequence motifs in the 3�-UTR, the coding
sequence, and the 5�-UTR of the sequence.

Our addition of rigorous statistical methodology and auto-
mated annotation methodology enables a definitive, high-
resolution evaluation of the connection between mRNA tran-
script function and decay rate. As described below, these statis-
tical inference procedures led to an intriguing observation about
the connection of mRNA decay to the regulation of gene expres-
sion. We also make full use of the available sequence information
to analyze the impact of existing and new mRNA decay motifs
when located in different segments of the mRNA transcript. To-
gether, these results provide information essential for a global
understanding of mRNA decay in human cells.

RESULTS
Overall Features of mRNA Turnover in Cultured
Human Cells
To study the rates of mRNA degradation (“decay”) in human
cells, we measured changes in mRNA levels following application
of the RNA polymerase inhibitor Actinomycin D with Affymetrix
U95Av2 high-density oligonucleotide arrays. We collected RNA
from cells after 2–3 h of inhibition and used the Affymetrix Mi-
croarray Suite (MAS) 5.0 to analyze the changes from the un-
treated state. Four experiments (i.e., eight hybridizations) were
performed in HepG2 cells, and we conducted an additional ex-
periment in Bud8 primary cells to exclude the possibility of can-
cer-cell-specific artifacts. We estimated the average decay rate for
each unique GenBank accession expressed (p < 0.04) at both the
baseline and experimental time point in the HepG2 experiments
by combining all probe sets i for each gene (including replicate
probe sets on a single chip and across the four replicate decay
experiments). In this way, we obtained decay rate estimates for
5245 accessions, which we collected in a database that is avail-
able at www.genome.org and http://genomes.rockefeller.edu/
∼yange/ as Supplemental Table 9. Combining the decay rate for
all probe sets present in the initial and final conditions, we find
that the median half-life in both cell types was ∼10 h (Supple-
mental Table 9; E. van Nimwegen and E. Yang, unpubl.). It
should be noted, however, that, in contrast to the relative decay
rates of different transcripts (discussed below), the absolute decay
rates that we infer are sensitive to the overall normalization of
the arrays. With our normalization based on �-actin expression,
we find roughly 10% variation of the average overall absolute
decay rate between the replicates. We thus believe that our 10-h
median half-life figure is accurate to within 10%. Comparing this
median half-life with the median half-lives of transcripts in yeast
and bacteria, it appears that the half-life of the mRNA pool of a
cell scales roughly in proportion to the length of the cell cycle:
cell cycle lengths of 20, 90, and 3000 min correspond to median
half-lives of 5, 21, and 600 min, respectively, for E. coli, S. cerevi-
siae, and human HepG2/Bud8 cells (Bernstein et al. 2002; Wang
et al. 2002). The reverse cumulative distribution of decay rates for
the HepG2 cells is shown in Figure 1C. As indicated in the cu-
mulative distribution plot, a small percentage (∼5%) of expressed
transcripts have “fast” decay rates (which we define as r > 0.5 h�1

or a half-life < 2 h). A similar percentage of rapidly decaying
genes was observed when we re-ran an HepG2 experiment with
U95B arrays, which are predominantly expressed sequence tags
(E. van Nimwegen and E. Yang, unpubl.). The percent of fast-
decaying mRNAs also agrees with data obtained from studies of
human lymphoma cells (Lam et al. 2001). Although total length
of cDNA did not correlate with decay rate, we did find evidence
that mRNAs with 3�-UTR sequence >1 kb decayed at a signifi-
cantly faster rate than shorter 3�-UTRs (E. van Nimwegen and E.
Yang, unpubl.).

Correlation of Gene Function With Decay Rate
To determine whether the function of a gene product influenced
the rate of decay, we coupled all probe sets in our experiments to
Gene Ontology (GO) codes (see Methods). GO codes provide a
standardized, hierarchical classification for describing gene prod-
ucts agreed to by the public genome sequencing projects. For
reference, we provide the list of gene products associated with
the GO process codes for “transcription” and “biosynthesis” in
Supplemental Tables 7 and 8. We then determined the decay rate
r (h�1) and percentage of “fast-decaying” transcripts for each GO
category containing more than 25 probe sets. Each GO category
was then analyzed for average decay rate (decay rate inference,
DRI) or over/underrepresentation of fast turnover transcripts
among the probe sets in the category (percentage fast decay in-
ference, PFDI). Thus, an unbiased search for statistically signifi-
cant changes in mRNA decay rate was possible for hundreds of
functional categories at various levels of detail. A graphical sum-
mary of the results for selected GO categories is provided as Fig-
ure 1, A and B, for HepG2 and Bud8, respectively. The results for
all GO categories analyzed are provided as Supplemental Tables 1
and 2.

For both Bud8 and HepG2 data sets, we observed several GO
categories with significant increases or decreases in average decay
rate (see Supplemental Tables 1 and 2). In particular, we noted a
marked increase of average decay rate for transcription-related
transcripts (HepG2: 0.221 h�1 vs. 0.127 h�1 for nontranscrip-
tional transcripts, p < 10�20). This trend for the GO transcrip-
tion category matched results obtained from a “manual” classi-
fication method (see Methods). Notably, other regulatory func-
tional groups (e.g., signal transduction, mRNA processing) were
not significantly altered compared with other transcripts. We
also observed a significant decrease in the decay rate of biosyn-
thesis-related transcripts (HepG2: 0.085 h�1 vs. 0.137 h�1 for
nonbiosynthesis transcripts; p < 10�13). Similar decreases in av-
erage decay rate were observed for other “housekeeping” catego-
ries such as catabolism and carbohydrate metabolism. These
changes are mirrored by the changes in percentage of transcripts
that turn over rapidly (i.e., half-life < 2 h, PFDI) for these groups.
In the case of the HepG2 experiment (Fig. 1A), the percent of all
probe sets with fast decay was ∼5%, but 13.1% of the transcrip-
tional transcripts are fast decaying (i.e., overrepresentation;
p < 10�20). Similarly, only 1.9% of the biosynthetic transcripts
are rapidly decaying (i.e., underrepresentation; p < 10�20). We
also noted increased decay of transcription-related transcripts
and decreased decay of metabolic genes in a previously published
yeast data set, indicating a general organizing principle for eu-
karyotic cells (see Supplemental Table 3). Thus, transcript func-
tion is associated with differences in the mean decay rate as well
as the proportion of transcripts with fast turnover. These features
are illustrated in Figure 1C; for “transcription” and “biosynthe-
sis,” the decay rate distribution has the same general shape but is
shifted away from the distribution for probe sets over a wide
range of decay rates.

Correlation of RNA Motifs With Decay Rate
Mammalian mRNA stability is regulated, in part, by RNA motifs
that correlate with rapid transcript destruction (Wilusz et al.
2001). However, the impact of these motifs on the decay behav-
ior of large, heterogeneous populations of transcripts is not well
understood. In analogy to our functional analysis, we matched
probe sets on our microarray to sequences corresponding to their
3�-UTR, 5�-UTR, open reading frame (ORF), or whole cDNA.
These sequences were subjected to quality control procedures
and had poly(A)s removed from the 3�-UTR and whole cDNA
sequences (see Methods). Using previously described AU-rich
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motif variants and novel motifs detected in the course of this
study (see Methods), we accumulated a list of several RNA motifs
that we had reason to believe correlated with changes in RNA
decay rate. We then determined the average decay rate r (h�1)
and percentage of “fast-decaying” transcripts for each combina-
tion of motif and sequence position. After discarding combina-
tions represented by <26 probe sets, the same two statistical pro-
cedures used above (i.e., DRI and PFDI) were performed for these
motifs. The number of probe sets contributing to calculations for
each motif–location combination is shown in Supplemental
Table 4. Average decay rates and percentages of fast decayers are
summarized in Supplemental Tables 5 and 6 for HepG2 and
Bud8, respectively.

Figures 2, A and B, show the results of our analysis of the
correlation between decay rate and the occurrence of particular
sequence motifs at different positions in the transcript. Signifi-
cant correlations are indicated with their p-values, and the en-
tries corresponding to motif–location combinations that are not
significant are left blank. Several of the motifs examined (both
previously described and new motifs) correlate significantly with
increased average rates of decay and overrepresentation in the
fast-decaying mRNA population: motifs 1, 2E, MEG, B1-4, and
H1-3. However, contrary to conventional wisdom (Shaw and Ka-
men 1986; Ross 1995), transcripts bearing these decay motifs
were far from guaranteed to decay rapidly: in the case of HepG2,
at most 10%–15% of transcripts with AU-rich motifs decayed

Figure 1 (Continued on next page)
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with a half-life <2 h (vs. ∼5% for motifless transcripts; see Supple-
mental Table 5D). This association between AU-rich motifs and
mRNA decay has also been observed in the previously mentioned
studies (Lam et al. 2001; Raghavan et al. 2002; Frevel et al. 2003).
Although these shifts toward greater average decay rates were
most strongly associated with presence in the 3�-UTR sequence,
there was also evidence for an ability of motifs to alter decay rates
when located in the ORF or even 5�-UTR of a sequence (e.g.,
motifs 1 and H2). We also found that a few motifs were associ-
ated with reduced average decay rates in both HepG2 and Bud8
experiments (e.g., H-1, B-1), but some of these “stabilization”
motifs had inconsistent behaviors when located in different parts
of the cDNA (e.g., H-2, B-2) and in the different cell types. In
particular, the H-2 motif correlates with enhanced decay when

located in the ORF, and reduced decay when located in the 3�-
UTR.

Although PFDI (percentage of fast decayers) picked up more
high-probability changes than DRI, the reverse cumulative plot
(Fig. 2C) shows that the motif-associated decay rate increases
occur over nearly all decay rates. In other words, there is no
evidence for a bimodal distribution of decay rates for AU-rich
motif-associated transcripts. Together, these observations show
that the examined RNA motifs correlate with shifts in the distri-
bution of decay rates, but that they do not reliably predict turn-
over behavior. It thus seems that the regulation of mRNA decay
is more complicated and might involve combinatorial interac-
tions, that is, cooperative binding between different RNA-
binding proteins that bind at different sites in the mRNA. This
might also explain why the effect on decay rate is context-
dependent for certain motifs (such as H-2).

DISCUSSION
The relevance of mRNA stability to steady-state mRNA concen-
tration has long been appreciated (Darnell Jr. 1982; Ross 1995;
Wilusz et al. 2001). Indeed, the proposal of messenger RNA as
an entity led to speculation about regulation at the level of tran-
script stability (Jacob and Monod 1961). The earliest attempts
to understand the population characteristics of decaying tran-
scripts predated the availability of modern molecular genetic
techniques and generally came to the conclusion that the aver-
age mRNA half-life in mammalian cells is on the order of several
hours (Singer and Penman 1973; Harpold et al. 1981). It was
also appreciated that rapidly destroyed mRNAs (half-life <2 h)
existed and may yield insights into the organizing principles be-
hind RNA metabolism (e.g., half-life as an indicator of transcript
function; Puckett et al. 1975; Harpold et al. 1981). Yet accurate
measurements of mRNA decay for large numbers of genes and
correlation with biological function were not possible until the
advent of microarray technology and biological annotation da-
tabases.

After performing the experiments and analysis presented in
this paper, we became aware of a preliminary study in this direc-
tion using human cells and the cyclin-dependent kinases inhibi-
tor flavopiridol (Lam et al. 2001). On the basis of small, manually
curated lists of functional groups, this study found some evi-
dence of differences in decay rate for mRNAs belonging to dif-
ferent functional groups. Although the flavopiridol study did
check for correlations with AU-rich motifs, it did not mine the
data set for position-specific effects (e.g., 3�-UTR vs. ORF) or new
decay motifs. Like other recent microarray studies of several hun-
dred sequences bearing AU-rich motifs (Raghavan et al. 2002;
Frevel et al. 2003), this study notes that such motifs do not nec-
essarily predict fast mRNA turnover.

In our series of experiments, we determined thousands of
decay rates for transcripts in human cells. Our estimated median
mRNA half-life in human cells is 10 h, a number that scales
linearly relative to division time when compared with bacteria
and yeast (Bernstein et al. 2002; Wang et al. 2002). And, we
found that the number of transcripts with short half-lives (i.e.,
<2 h) is ∼5% in both a cancer cell line (HepG2) and a primary cell
line (Bud8).

Having determined these decay rates, we then devised a
scheme that uses the global decay rate data for automated infer-
ence of decay rate for any set of functionally related genes. We
used Gene Ontology (GO) terminology to define classes of func-
tionally related genes and obtained results consistent with a
more conservative method that “manually” searches gene prod-
uct descriptions for keywords. Using this automated functional
assignment, we showed that the mRNA decay rate distribution

Figure 1 Functional analysis of decaying transcripts in human cells.
(A,B) Probe sets from the HepG2 experiments (A) or the Bud8 experiment
(B) were grouped by functional (i.e., Gene Ontology, GO) category, and
both decay rate and the percentage of fast decayers were inferred using
procedures we call DRI and PFDI (see Methods: Statistical Analysis and
Decay Rate Calculations). For DRI, the average decay rates were calcu-
lated (error bars denote 99% posterior probability interval (PPI)) for
probe sets corresponding to the functional category listed in the center
(Group, blue). If the GO category in question was separated from the rest
of the probe sets (Nongroup, purple) with >99% probability (see p-values
to left), the distribution was described as “FASTER” or “SLOWER” as
appropriate. Otherwise, the GO distribution was said to be “NO SIG”
(not significantly) different from the other probe sets. For PFDI, the per-
centage of probe sets (error bars again denote 99% PPI) decaying with a
rate >0.5 h�1 (2 h half-life) were calculated for probe sets inside of the
stated GO category (Group) or outside the category (Nongroup). If the
GO category’s probe sets were enriched/depleted in the rapid turnover
pool with at least 99% probability (see p-values to the right), the category
was said to be “OVER” (overrepresented) or “UNDER” (underrepre-
sented), respectively. Otherwise, the category was listed as “NO SIG” (no
significant) enrichment. For comparison, the same analysis (“MANUAL”)
was performed using a set of probe sets corresponding to SWISS-PROT
entries annotated as transcription-related (see Methods). (C) Reverse cu-
mulative distribution of decay rates for probe sets in different functional
classes (HepG2 experiments). Decay rate r is shown horizontally, while
vertically the fraction of probe sets with decay rates higher than r is
plotted on a logarithmic scale. The pairs of lines show the 98% posterior
probability intervals for the fraction at each value of r. (Red) GO process
transcription; (black) all probe sets; (green) biosynthesis. The gray line indi-
cates the decay rate r = 0.5 h�1, which is our cutoff for fast decay in PFDI.
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for several functional groups is shifted
relative to the decay rate distribution
of all other transcripts. All functional
groups that show a significant shift
in the HepG2 cell line show the same
qualitative behavior in the Bud8 cell
line. However, because only one experi-
ment was performed with the Bud8 cell
line, not all of these changes are statisti-
cally significant. The most notable func-
tional organization evident in our hu-
man data is that transcripts associated
with transcription regulation decay
faster and those associated with biosyn-
thesis decay slower. This organization is
also found in a previously published
yeast data set.

The transcriptome of a single cell
contains thousands of individual mRNA
species. Clearly, efficient production
and use of these transcripts requires
some basic organizing principles. Previ-
ous analysis of a yeast data set (Wang et
al. 2002) revealed that transcripts in-
volved in the same pathway (e.g., phero-
mone signaling) or multiprotein com-
plex decay at similar rates. Our reanaly-
sis of their data along with our own data
uncovers a second organizing principle
of transcriptomes: rapid turnover of
gene-regulatory transcripts and reduced
turnover of transcripts related to biosyn-
thesis or metabolism.

These observations can be partially
explained by the relationship of decay
rate to changes in steady-state mRNA
concentration after a transcriptional
stimulus (see Methods: Simulation of
Steady State mRNA Dynamics, below).
As shown in Figure 3, transcripts that are
destroyed rapidly are also induced more
rapidly. If the time to reach steady state
exceeds the time of the RNA synthesis
increase (e.g., k = 0.001, k = 0.003), tran-
scripts with a higher decay rate will also
experience a larger fold induction. To-
gether, these properties enable a rapidly
destroyed transcript’s concentration to
be changed more quickly and dramati-
cally than a slowly destroyed transcript.
Thus, it appears that both yeast cells and
human cells are evolved to allow rapid
changes in the levels of transcription
regulatory factors, a property that makes
sense given the primacy of transcrip-
tional regulation in the control of gene
expression (Lodish et al. 1995). Simi-
larly, the relatively long half-lives of bio-
synthesis transcripts circumvent the
self-defeating process of continuously
destroying transcripts needed only at
relatively constant levels. Additionally,
it damps the response to noise fluctua-
tions in the induction level of these
genes.

Although the mechanistic basis for

Figure 2 Motif analysis of decaying transcripts in human cells. (A,B) The probe sets from the four HepG2
experiments (A) or the Bud8 experiment (B) were analyzed for the relationship between transcript decay
and the presence of particular sequence motifs. The results of DRI and PFDI (same procedures used in Fig.
1) are summarized in A and B. For the motif analysis, we performed separate inferences for portions of the
sequence (3�-UTR, 5�-UTR, ORF) and the cDNA sequence considered as a whole. For DRI, we compared the
average decay rate of the probe sets from genes containing the motif in a specified location with rates of
all other probe sets: significant (99% probability or greater) increases are shown in bold and significant
decreases in italics. For PFDI, motifs that are overrepresented in the rapidly decaying transcript pool (r > 0.5
h�1) when located in a given position are shown in bold; underrepresented transcripts are shown in italics
(again, 99% probability cutoff for both). Motif–location combinations without statistically significant
changes are shown as blank, and combinations with too few probe pairs for inference (�25 probe pairs)
are indicated with “n.a.” For more details on the motif analysis (e.g., extent of shift in average decay rate,
percent enrichment), see Supplemental Tables 4–6. (C) Reverse cumulative distribution of decay rates for
probe sets from genes that contain particular sequence motifs in their 3�-UTR (HepG2 experiment). Decay
rate r is shown horizontally, while vertically the fraction of probe sets with decay rates higher than r is
plotted on a logarithmic scale. The pairs of lines show the 98% posterior probability intervals for the
fraction at each value of r. (Red) Motif 1; (blue) motif MEGSHORT; (green) Motif 2E; (light green)Motif H1;
(black) all probe sets. “Described” AU-rich decay motifs (1–2E, MEG, MEGSHORT) and “undescribed”
motifs were derived from the sources mentioned in Methods.
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targeted destruction of certain transcripts bearing AU-rich motifs
by the exosome has been established biochemically (Chen et al.
2001; Mukherjee et al. 2002), many major questions remain
unanswered about this critical biological process. Work with
synthetic decay motifs (Zubiaga et al. 1995) and bioinformatic
comparisons (Bakheet et al. 2001) have focused attention on
several common UUAUUUAUU-type motifs, and, as mentioned
earlier, a collection of sequences bearing these motifs has been
examined with microarray studies (Frevel et al. 2003). In our
studies, we were able to combine our large quantity of decay
data with sequence information and showed that certain AU-rich
motifs are associated with an increased average decay rate, espe-
cially when found in the 3�-UTR of a gene. These motifs include
both the known motifs as well as a set of newly uncovered mo-
tifs. Our findings also confirm that nonamer-based motifs are not
sufficient on their own to direct transcript destruction because
many transcripts with decay motifs do not decay at a rapid rate.
Vice versa, many transcripts without these motifs do decay at a
high rate. Additionally, the new decay motifs we have detected
(i.e., H-series, B-series) resemble known AU-rich motifs and sug-
gest that they may be recognized by a common protein. SELEX
(serial enrichment of ligands exponentially) could be performed
to better characterize the sequence preferences of AU-binding
proteins and other proteins associated with rapid mRNA decay.
We further suspect that mRNA decay regulation cannot be accu-
rately described in terms of single motifs and might involve co-
operative binding at multiple sites by different RNA-binding pro-
teins. This might also explain the intriguing observation that
three of our novel motifs (H-2, B-1, B-2) appeared to slow or
hasten mRNA decay depending on sequence context. In this re-
spect, our data set will greatly facilitate future experiments that
examine the relationship of sequence composition to mRNA
turnover.

Finally, it is important to consider the
importance of mRNA dynamics to global
studies of gene regulation. Microarray ex-
periments generate gene expression clusters
that presumably contain genes coregulated
at the transcriptional level (Roth et al. 1998;
Pilpel et al. 2001). However, such clusters
may contain fluctuations with a posttran-
scriptional component or that differ vastly
in terms of RNA synthesis rates. Clearly
the differences in half-lives for groups of
coregulated mRNAs remain a major poten-
tial variable in the interpretation of such
experiments. Ideally, one would compare
only genes that have quantitatively simi-
lar rates of RNA synthesis (i.e., genes with
identical enhanceosome composition
might be expected to have identical rates of
synthesis). Theoretically, one could obtain
steady-state measurements of transcription
rates through the comparison of mRNA de-
cay rates (as performed here) and quantita-
tive measurements of RNA concentration.
However, the cost of doing such an experi-
ment is presently limiting for an individual
laboratory, even though methodologies ex-
ist to perform such measurements (Dudley
et al. 2002). Perhaps the ultimate solution
to this problem will require adaptation of
the nuclear run-on assay to the microar-
ray format, something that has already
been attempted in prototype form (Fan et
al. 2002).

METHODS

Data Acquisition

HepG2 Decay Measurements
HepG2 cells (ATCC) were seeded at 5–7 � 106 cells per 10-cm
dish and allowed to recover in 10% FCS, Modified Eagle’s Me-
dium for 24 h. Following overnight serum starvation (0.2% FCS,
MEM), Actinomycin D treatments (5 µg/mL) were performed for
2–3 h either without IL-6 treatment or after 30 min of IL-6 (2.5
ng/mL) treatment (exact times of treatment were recorded and
used for calculations). Thus, four decay data sets were accumu-
lated for HepG2: two with and two without IL-6 treatment. Treat-
ments were quenched by addition of Trizol (GIBCO/Life Tech-
nologies) RNA harvesting agent. Total RNA was then carried
through the standard Affymetrix labeling protocol, which uses a
T7-oligo(dT) reverse transcription primer. Following verification
of high-quality reverse transcription and biotinylated cRNA syn-
thesis by RT-PCR and Test Chip hybridization, the fragmented
biotinylated cRNA was applied to human U95Av2 Affymetrix
chips that contain 12,625 probe sets, mostly of characterized
genes. In one case, sample was reapplied to the U95B Affymetrix
chip, which contains mostly expressed sequence tags (ESTs).
Scanning and data processing were performed on an Affymetrix
scanner post-PMT adjustment running Affymetrix Microarray
Suite (MAS) 5.0 (core facilities of Weill Medical College of Cornell
University and The Rockefeller University). Decay experiments
were normalized using three probe sets of the �-actin gene,
whose transcript is known to decay extremely slowly compared
with the timescale of our experiments (Reuner et al. 1995).

Bud8 Decay Measurements
The primary, diploid human fibroblast line Bud8 (ATCC) was
grown to confluence in four 15-cm tissue culture plates in 10%
FCS Dulbecco’s Modified Eagle’s Medium. Two plates of Bud8
were left untreated, and two plates were treated with Actinomy-

Figure 3 Simulation of the effect of decay rate on gene induction. Equation 6 (Methods) was
solved for a step function RNA synthesis impulse: the synthesis rate was increased from 1 copy/
(min · cell) to 100 copies/(min · cell) from 50–550 min. Using the indicated first-order decay con-
stant (in units of 1/minute), the steady-state concentration of RNA was calculated and divided by
initial concentration to determine the fold induction.
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cin D for ∼2 h. Samples were then harvested and analyzed as for
HepG2 cells.

Yeast Decay Data
Published data regarding yeast transcriptome stability were ob-
tained from the Web site of the Pat Brown group (http://genome-
www.stanford.edu/turnover). This data set contains cDNA micro-
array data generated using exponentially growing S. cerevisiae
and monitored with spotted cDNA microarrays containing 6184
open reading frames. The yeast strain used, Y262, contains a
temperature-sensitive mutation in the major RNA polymerase II
subunit RPB1 that stops mRNA synthesis upon a shift to 37°C.
The data set consists of three independent nine-point time
courses (0, 5, 10, 15, 20, 30, 40, 50, and 60 min after the switch
to the nonpermissive temperature; Wang et al. 2002).

Functional Assignment
To determine decay rate statistics for collections of transcripts
belonging to different functional groups, automated analysis of
gene function was required. Functional assignments of the genes
on the human and yeast chips were obtained by the following
methods.

Gene Ontology (GO)
Before actually assigning genes to different functional classes, we
first have to define the functional classes that we want to con-
sider. For this, we used the Gene Ontology (GO) hierarchy. The
GO Consortium (http://www.geneontology.org) is composed of
all the major genome projects and seeks to create a hierarchical
classification of genes by function, process, or subcellular local-
ization. In this paper, we only used the classes that are defined
under the biological process hierarchy. The Saccharomyces Ge-
nome Project GO resource is fairly complete in that assignments
to GO classes exist for almost all annotated genes. We used this
resource directly as downloaded: the GO codes were simply
matched to the gene names of the cDNAs on the array. For hu-
man genes, the assignment of genes to GO classes is less complete
and relies heavily on proprietary computational methods from
the Compugen corporation. Version 0.3.1 of the Compugen hu-
man GO resource (∼144,000 GO assignments) was used to match
the Affymetrix-supplied GenBank accession numbers to GO pro-
cess codes. In cases in which an accession matched both Cura-
gen’s GenBank-based GO list and Curagen’s SWISS-PROT-based
GO list, we used the SWISS-PROT-based assignment.

Because the GO is a hierarchical structure, the collection Ag
of all accessions belonging to a GO category g consists of all
accessions that are directly mapped to g together with all acces-
sions that are mapped to any of the GO categories g� that occur
below category g in the GO hierarchy. We only analyzed decay
rate statistics for GO categories that contain >25 probe sets. For
reference, the lists of genes grouped under “transcription” and
the lists of genes grouped under “biosynthesis” are provided as
Supplemental Tables 7 and 8, respectively.

Manual
We also “manually” collected a set of genes for the functional
class “transcription.” For both yeast and human analyses, the
manually curated SWISS-PROT (version 39) database was
searched for all accessions of the correct species with keyword or
function referencing “transc” or “RNA Pol” word fragments. En-
tries that were cross-referenced to the TRANSFAC transcription
factor database were also flagged. Because this method occasion-
ally picked up alternatively spliced gene products, genes with
keyword “alternative splicing” were removed from the list of ac-
cessions “manually” associated with the process of transcription:
the group of remaining accessions is referred to as “Swissprot
transcription.” For the yeast genes, this keyword search was
also performed on the description line from the Saccharomyces
Genome Database (http://genome-www.stanford.edu/
Saccharomyces) to derive a second list of manual transcription
assignments: this group of accessions is referred to as “Descrip-
tion Line Transcription.”

Decay Motifs
RNA motif searches were performed on microarray sequences
derived from two sources: Affymetrix “exemplar” sequences from
http://www.affymetrix.com/analysis/index.affx and a list of
10,995 sequences downloaded from the Sequence Retrieval Sys-
tem (SRS) based on the accession numbers provided by Af-
fymetrix. The latter set was screened to remove large genomic
sequences or redundant accession numbers and therefore con-
tains fewer sequences than the 12,625 probes on the U95Av2
microarray. For each of the 10,995 nonredundant accessions, the
sequence containing the longest ORF corresponding to a given
accession number (between the “exemplar” and SRS sequences)
was used for analysis. The sequence was then further subdivided
into 5�-UTR, ORF, or 3�-UTR sections for analysis in addition to
the whole cDNA sequence. The sequences used for analysis omit-
ted any sequence with one or more of the following deficits: UTR
sequence <8 bp, ORF <90 bp, or sequence containing >10% Ns.
Finally, poly(A) stretches were removed from the 3�-end of the
whole sequence and 3�-UTR sequence. If only one component
(e.g., 3�-UTR) failed a quality control test, the other parts of the
sequence are still retained for analysis (provided they pass their
tests). Therefore, there are different numbers of total entries for
5�-UTR, ORF, 3�-UTR, and whole sequences in the “sequence
sets” used to search for motifs: 10,059, 9913, 10,085, and 10,603
sequences, respectively.

The sequence sets were then searched for various motifs to
generate lists of accessions bearing particular motifs in their 5�-
UTR, ORF, 3�-UTR, and so on. The known AU-rich motifs were
extracted from published wet lab (MEG, MEGSHORT; Zubiaga et
al. 1995) and bioinformatic studies (class 1–2E; Bakheet et al.
2001). New motifs were derived as described in the following. We
collect sets of accessions containing the known or new motifs in
their 5�-UTR, ORF, or 3�-UTR for analysis of decay rate statistics as
described in Methods: Statistical Analysis and Decay Rate Calcu-
lations (below).

To uncover novel/unknown motifs that correlate with decay
rate, we used a program that was originally designed to compare
two genomes for enrichment of oligonucleotides of specified
length (N. Rajewsky and E.D. Siggia, in prep.). We collected the
3�-UTR sequences of all genes with a half-life of <2 h (determined
by MAS 4.0) in each of four HepG2 experiments or the single
Bud8 experiment. This collection of sequences was then com-
pared with a “background” sequence set that consists of all “pre-
sent” genes expressed in each of the four HepG2 experiments or
the one Bud8 experiment. In particular, the algorithm searches
for 5–9-nt nucleotides such that the number of occurrences of
the 5–9-nt nucleotide and its single-mismatch neighbors is sig-
nificantly over- or underrepresented in the “fast-decaying” se-
quence population. This search identified a number of motifs
enriched (H1, H2, etc.) or underrepresented (H[-1], H[-2], etc.) in
the HepG2 (H-series) or Bud8 (B-series) experiments (Fig. 2). We
further validate the significance of both the known as well as the
new motifs by independently, for each motif, comparing the
decay rate statistics of those transcripts containing the motif, and
those not containing the motif as described in the next section.

Statistical Analysis and Decay Rate Calculations

Overview
Our objective is to use the data from the microarray experiments
to infer transcriptome-wide decay rates of mRNAs and to use
these rates to determine (1) whether the average decay rate of a
particular group of transcripts differs significantly from the tran-
scripts outside this group (decay rate inference, or DRI) and (2)
whether there is an overrepresentation of transcripts with a half-
life of <2 h for a particular group of transcripts (percentage fast
decay inference, or PFDI). These groups of transcripts are either
transcripts of genes from a common functional category, or tran-
scripts that all contain a particular sequence motif in a specified
location (e.g., 3�-UTR, 5�-UTR, ORF, or the whole cDNA se-
quence).

First, we use the data provided by the Affymetrix MAS 5.0
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software to infer, for each probe set i, a posterior distribution
P(ri|Di) for its decay rate ri given the data Di for this probe set. We
use this distribution to calculate, for each probe set i, the prob-
ability qi that the half-life of its transcript is <2 h. We refer to this
probability qi as the probability that i is a “fast decayer.” Then, to
estimate the average decay rate of all the probe sets for a given
category (i.e., having a particular function or motif) of acces-
sions, we assume that the posterior distribution for this average
can be approximated by a Gaussian. We then simply add the
means and variances of the posterior distributions P(ri|Di) for all
probe sets i in the category to obtain the mean and variance of
this Gaussian. We similarly calculate the posterior distribution of
the average decay rate of all probe sets representing genes outside
the category. Finally, by considering the distribution of the dif-
ference between these two average decay rates, we can assess if
probe sets in a particular category decay at a significantly faster or
slower rate than all other probe sets (i.e., DRI). We perform analo-
gous computations for the percentage of probe sets in a category
that are fast decayers (i.e., PFDI).

We also provide reverse-cumulative distributions of the de-
cay rates of all probe sets for a few selected GO categories and
motifs. As described below, obtaining these distributions in-
volves the calculation of a large number of definite integrals of
the posterior distributions P(ri|Di) for all the probe sets in each
selected functional category.

Finally, we also determine the average decay rate for each
unique GenBank accession expressed (p < 0.04) at both the base-
line and experimental time point in the HepG2 experiments.
These rates were determined by gathering all probe sets i for each
gene (including replicate probe sets on a single chip and across
the four replicate decay experiments) and combining them in the
same way that we combine other groups of probe sets.

Inferring the Decay Rate of a Probe Set
To infer decay rates of mRNA, transcriptome-wide expression lev-
els of “baseline” experiments (i.e., resting, untreated cells) were
compared with expression levels after transcription had been
turned off for a certain time t (“experimental” condition). If a
transcript is decaying at a rate r, then after t hours, the expression
level should be lower by a factor8 of 2�rt.

When comparing an experimental condition against a base-
line condition, the Affymetrix MAS 5.0 software reports several
statistics based on comparing the expression levels on a probe-
by-probe basis. For each probe, the logarithm of the ratio of in-
tensities in experimental and baseline conditions is calculated. If,
for a probe set i, the log ratio is xi, then the decay rate of probe
set i is

ri = −
xi
ti
,

with ti the amount of time that transcription was halted. The
half-life of probe set i is 1/ri. The Affymetrix software reports the
mean log ratio 〈 xi〉 over all probes in a probe set, along with a
confidence interval [ 〈 xi〉 � wi, 〈 xi〉 + wi] for this log ratio. This
confidence interval is based on the assumption that the mea-
sured log ratios for the different probes in the probe set each
differ from the “real” log ratio by Gaussian noise of unknown
variance. Integrating out the unknown variance, one obtains a
Student-t distribution for the posterior. Formally, let 〈 xi 〉 be
the observed average log ratio of the probes, and let (�i)

2 be the
observed variance of the log ratio among the ni probes in the
probe set.9 The posterior density for the log ratio is then:

P�xi�Di� =
�1 +

�xi − �xi��
2

�i
2 �−ni�2

�−�

+��1 +
�x − �xi��

2

�i
2 �−ni�2

dx

( 1 )

The 95% confidence interval that the Affymetrix software
reports is given by the symmetric interval around the mean 〈 xi〉
that contains 95% of the posterior probability. Thus, using the
confidence interval that Affymetrix reports, we may calculate �i
by inverting the cumulative distribution.10 We then convert the
distribution over xi into a distribution over the decay rate ri. Let
µi = � 〈 xi〉 /ti and � = �i/ti. We then have for the posterior of the
decay rate:

P�ri�Di� =
�1 +

�ri − �i�
2

�i
2 �−ni�2

��1 +
�x − �i�

2

�i
2 �−ni�2

dx

. ( 2 )

The expected value of ri is 〈 ri〉 = µi, and the variance of this
posterior is given by var(ri) = �i

2ni/(ni � 3). Below, we also require
the probabilities pi(c) that the transcript of probe set i is decaying
at a rate that is larger than c. This is simply given by

pi�c� = �c

�

P�ri�Di�dri. ( 3 )

We consider transcripts that decay with a half-life of <2 h to
be fast decayers. Thus, the probability qi of probe set i being a fast
decayer is given by qi = pi(1⁄2).

Presence Statistics
For many probe sets on the chip, the corresponding transcript
may not be present in the cells, and these probe sets will only be
recording background noise. We want to exclude such absent
transcripts from our analysis as much as possible.

For each probe set, the Affymetrix software reports a p-value
for the absence/presence of the transcript. Here, we interpret this
p-value as giving the probability that the transcript is absent. In
all the analyses that we report, we only included probe sets that
were present with a probability >0.96 in both conditions (i.e.,
before and after halting the polymerase with Actinomycin D). In
principle, this may result in excluding transcripts that decay to
undetectable levels on the timescale of our experiment (2–3 h).
However, we have found that relaxing this presence condition
does not significantly alter our results.

Estimating Decay Rates of Individual GenBank Accessions
Let Sa be the set of all probe sets i (both from single chips as well
as over all replicates) that belong to GenBank accession a, and let
ra denote the average decay rate of accession a. Formally, we have

ra = �
i ∈ Sa

ri
�Sa�

,

where |Sa| is the number of probe sets in the set Sa. The posterior
distribution for ra has a mean

�ra� = �
i ∈ Sa

�ri�
�Sa�

,

and variance

var�ra� = �
i ∈ Sa

var�ri�

�Sa�
2 .

8The Affymetrix MAS 5.0 software reports logarithms base 2. We follow this
convention, which also simplifies the relation between decay rate and half-life.
That is, half-life is just the inverse of decay rate.
9Affymetrix calculates this mean and variance using a procedure that down-
weighs the contribution of “outliers” to the average, but we ignore this tech-
nical complication here.

10The cumulative of the above Student-t distribution can be expressed in
terms of a so-called regularized �-function. We invert the regularized �-func-
tion numerically for each probe set to obtain the �i.
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We report for each accession the mean 〈 ra 〉 and the standard
deviation

�a = 	var�ra�.

Note that ra is the average decay rate of accession a; there is
no guarantee that accession a decayed at roughly equal rates in
all replicates. We therefore checked, for each accession a, if the
measured values ri for all probe sets i ∈ Sa are consistent with a
single decay rate for all probe sets. For each i ∈ Sa, we calculate
the 0.999 posterior probability interval Ii. We then take the in-
tersection of all intervals Ii. If this intersection is empty, we char-
acterize the probe sets for accession a as “inconsistent” with a
single decay rate for all probe sets. These calculations are sum-
marized in Supplemental Table 9 for the HepG2 experiment.

Statistics for Sets of Accessions
In complete analogy to the estimation of the average decay rate
ra of all probe sets belonging to accession a, we can estimate the
average decay rate of all probe sets for a group of accessions. For
example, let Sg denote the set of all probe sets that belong to
accessions that match functional category g in the GO hierarchy,
and let S� g denote all other probe sets (i.e., those not matching
functional category g). In complete analogy with the previous
section, we calculate 〈 rg 〉 , var(rg), 〈 r� g〉 , and var(r� g). We report the
99% probability intervals given by


�rg� − 2.58	var�rg�, �rg� + 2.58	var�rg��
and similarly for r� g.

We then calculate the probability P(rg > r� g) that rg is larger
than r� g. Because we assume that the distributions for rg and r� g
take on an approximately Gaussian form, the normalized differ-
ence

z =
rg − r� g

	var�rg� + var�r�g�
,

will also be distributed normally with mean ( 〈 rg 〉 � 〈 r� g〉 ) and vari-
ance 1. The probability P(rg > r� g) is thus given by

P�rg � r�g� =
1
2�1 + erf� ��rg� − �r� g��

	2
var�rg� + var�r� g��
��, ( 4 )

with erf(x) the error function. When P(rg > r� g) > 0.99, we classify
g as decaying significantly faster than the set of accessions out-
side of g, and when P(rg > r� g) < 0.01, we classify g as decaying
significantly slower. In between these limits, we do not consider
the difference between rg and r� g as significant, and we classify g
as “NO SIG.” In the text and figures, we refer to these procedures
as “DRI” for decay rate inference.

Apart from these statistics, we also report the fraction fg of
probe sets in class g that are decaying “fast” (half-life < 2 h). Let
ng be the number of probe sets in Sg that are decaying fast (de-
fined as half-life < 2 h). Obviously, we have fg = ng/|Sg|. Because
each probe set i ∈ Sg has a probability qi to be a fast decayer, we
find for the expected fraction

�fg� = �
i ∈ Sg

qi
�Sg�

and the variance of this fraction is given by

var�fg� = �
i ∈ Sg

qi�1 − qi�

�Sg�
2 .

We then report 〈 fg 〉 , 〈 f� g〉 , the probability P(fg > f� g), and make
a call when this probability is >0.99 or <0.01 (overrepresented or
underrepresented for class g, respectively). These comparisons are
referred to as “PFDI” for percent fast decay inference.

We calculate the same statistics for a set of motifs m in
complete analogy with the above procedures. In the case of mo-
tifs, the set Sm includes all probe sets for accessions that contain
motif m in their “sequence.” The sequence is the 3�-UTR of a

gene, the 5�-UTR of a gene, the ORF, or the whole sequence. We
thus have four sets of statistics for each motif m.

Cumulative Distributions
For a few selected functional groups g and motifs m, we plot the
reversed cumulative distribution of decay rates. That is, we plot
as a function of c, the proportion pg(c) of probe sets in the set Sg
(or pm(c) of probe sets in Sm) that has a decay rate larger than c.
Using equation 3, and in analogy with the results for fg above, the
expected proportion 〈 pg(c) 〉 is

�pg�c�� = �
i ∈ Sg

pi�c�
�Sg�

,

and its variance is

var�pg�c�� = �
i ∈ Sg

pi�c��1 − pi�c��
�Sg�

.

With 98% probability, the real value of pg(c) lies in the in-
terval


�pg�c�� − 2.33	var�pg�c��, �pg�c�� + 2.33	var�pg�c���,
which is the interval that we show in the figures of the reverse
cumulative distributions (Figs. 1C and 2C).

Simulation of Steady-State mRNA Dynamics
Assuming a time scale on which cell growth rates are negligible,
a time-varying RNA production rate P(t), and the well-known
first-order decay rate for an mRNA species (Ross 1995; Wang et al.
2002) with rate k (where k = 1/�), one arrives at the relationship:

d
RNA�

dt
= −k
RNA� + P�t�, ( 5 )

with solution:


RNA� = 
RNA�0e
−kt + �0

t
ek�t�−t�P�t��dt� ( 6)

Equation 6 allows for determination of the RNA concentra-
tion at any given time for a known decay constant k and pro-
duction curve P(t). Note that the rate constant k in equation 6 is
related to the rate constant r described above by r = k/ln 2. At
steady state, the production rate equals the degradation rate, and
the RNA concentration equals the production rate divided by the
decay rate k. Using equation 6, the induction curves for different
degradation rates (r = 0.001, 0.003, 0.01, and 0.1 min�1) were
calculated for a square wave transcriptional impulse going from
1 to 100 and back to 1 copy/(min · cell) over a 500-min period
(Fig. 3).
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