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A new measure for gene prediction in eukaryotes is presented. The measure is based on the Discrete Fourier
Transform (DFT) phase at a frequency of 1/3, computed for the four binary sequences for A, T, C, and G. Analysis
of all the experimental genes of S. cerevisiae revealed distribution of the phase in a bell-like curve around a central
value, in all four nucleotides, whereas the distribution of the phase in the noncoding regions was found to be close
to uniform. Similar findings were obtained for other organisms. Several measures based on the phase property are
proposed. The measures are computed by clockwise rotation of the vectors, obtained by DFT for each analysis
frame, by an angle equal to the corresponding central value. In protein coding regions, this rotation is assumed to
closely align all vectors in the complex plane, thereby amplifying the magnitude of the vector sum. In noncoding
regions, this operation does not significantly change this magnitude. Computing the measures with one chromosome
and applying them on sequences of others reveals improved performance compared with other algorithms that use
the 1/3 frequency feature, especially in short exons. The phase property is also used to find the reading frame of the
sequence.

Gene prediction analysis, and specifically, the computational
methods for finding the location of protein-coding regions in
uncharacterized genomic DNA sequences, is one of the central
issues in bioinformatics (Fickett 1996; Salzberg et al. 1998). For a
given DNA sequence of an organism, in which the genes and
other functional structures are not already known, it is very im-
portant to have an accurate and reliable tool for automatic an-
notation of the sequence: the number and location of genes, the
location of exons and introns (in eukaryotes), and their exact
boundaries (Claverie 1997). Therefore, along with standard mo-
lecular methods, many new methods for finding distinctive fea-
tures of protein-coding regions have been proposed in the past
two decades (see reviews by Fickett 1996; Claverie 1997; Mathé et
al. 2002). These methods are based on different measures for
discriminating between protein-coding regions and noncoding
regions. Some of the measures are based on statistical regularities
in genes or exons, which are not present in introns and inter-
genic sections, such as, for example, differences in codon usage
(Staden and McLachlan 1982), hexamer counts (Claverie and
Bouguelerat 1986; Farber et al. 1992; Fickett and Tung 1992),
codon position asymmetry (Fickett 1982), different periodicities
(Fickett 1982; Silverman and Linsker 1986; Chechetkin and
Turygin 1995; Tiwari et al. 1997; Herzel et al. 1999; Trifonov
1998; Anastassiou 2000), autocorrelations, nucleotide frequen-
cies (Shulman et al. 1981; Fickett 1982; Borodovsky et al. 1986,
1994), entropy measures (Almagor 1985), and many others.
Other measures are based on signals of the gene expression ma-
chinery (reviewed in Mathé et al. 2002). Sophisticated algorithms
for gene prediction based on both types of measures have been
proposed. These algorithms use, for instance, artificial neural net-
works (Lapedes et al. 1990; Uberbacher and Mural 1991; Farber et
al. 1992; Xu et al. 1994; Snyder and Stormo 1995), Hidden
Markov Models (Krogh et al. 1994; Baldi and Brunak 2001), and

linguistic methods (Searls 1992; Dong and Searls 1994; Mantegna
et al. 1994).

Despite the extensive research in the area of gene predic-
tion, current predictors do not provide a complete solution to the
problem of gene identification. Short exons are difficult to locate,
because discriminative statistical characteristics are less likely to
appear in short strands. Furthermore, some genes do not possess
the characteristic features that identify most genes, and hence it
is not possible to track them using gene predictors that rely on
these features.

In this paper a new discriminating feature for gene predic-
tion is proposed. This measure is based on the arguments of the
Discrete Fourier Transform (DFT), and is shown to be a potential
candidate for locating short genes and exons. The paper is orga-
nized as follows: In the Methods section, the first part deals with
the frequency analysis of DNA sequence; the second part details
the Fourier analysis at a frequency of 1/3, and discusses the rela-
tionship between spectral arguments and the position frequen-
cies. The first part of the Results section introduces the distribu-
tion of the arguments of the Fourier spectra; the last two parts
describe the applications for gene prediction.

METHODS

Periodicities in DNA Sequences and DFT Analysis
The importance of measuring different periodicities for a given
DNA in order to determine the locations of protein-coding re-
gions has already been addressed by Fickett (1992), and these
periodicities have been used as discriminant features in several
studies of gene prediction (Silverman and Linsker 1986; Fickett
and Tung 1992; Chechetkin and Turygin 1995; Tiwari et al. 1997;
Herzel et al. 1999; Anastassiou 2000). The Discrete Fourier Trans-
form (DFT) is a powerful tool for studying periodicities.

The DFT of a given numeric sequence x(n) of length N is
defined by

X�k� = DFT�x�n��n=0
N−1 = �

n=0

N−1

x�n�e−i
2�

N
nk 0 � k � N − 1 ( 2.1 )
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(Oppenheim and Schafer 1999), where n is the sequence index,
and k corresponds to a period of N/k samples, or discrete fre-
quency of (2�/N)k.

Because the DNA sequence is a character string, numerical
values must be assigned to each character: A, T, C, and G. One
possible way of performing this conversion is to assign a binary
sequence to each of the four bases (Voss 1992). This binary se-
quence will take a value of 1 or 0 at location n of the sequence,
depending on the existence or absence of that base. Thus we have
four binary sequences, one for each base, denoted by uA(n), uT(n),
uC(n), and uG(n), respectively (Voss 1992; Anastassiou 2000). Ap-
plying the DFT to each of these sequences produces four spectral
representations, denoted as UA(k), UT(k), UC(k), and UG(k), respec-
tively. That is, for a base b (b = A,T,C, or G), the DFT of the binary
sequence ub(n) of length N is

Ub�k� = �
n=0

N−1

ub�n�e−i
2�

N
nk 0 � k � N − 1 ( 2.2 )

The total frequency spectrum of the given DNA character string
is defined as:

S�k� = |UA�k�|2 + |UT�k�|2 + |UC�k�|2 + |UG�k�|2 ( 2.3 )

(Silverman and Linsker 1986; Tiwari et al. 1997).
A distinctive feature of protein-coding regions in DNA is the

existence of short-range correlations in the nucleotide arrange-
ment, especially a 1/3-periodicity (Fickett 1982), arising from the
fact that coding DNA consists of triplets (codons). As a conse-
quence, the total Fourier spectrum of protein coding DNA (equa-
tion 2.3) typically has a peak at the frequency k = N/3, whereas
the total Fourier spectrum of noncoding DNA generally does not
have any significant peaks (Tsonis et al. 1991; Voss 1992;
Chechetkin and Turygin 1995). Tiwari et al. (1997) used the mea-
sure in equation 2.3 with k = N/3, known as the Spectral Content
measure, to construct a gene predictor. It can be shown that this
measure is the same (up to a 3/2 multiplicative factor) as the sum
of the four Position Asymmetry measures (Fickett and Tung 1992),
namely

S�N3 � = �32��asymm�A� + asymm�T� + asymm�C� + asymm�G��

( 2.4 )

Where, for a base b (b = A,T,C, or G) asymm (b) = ∑ 3
i=1[f (b,i) �

�(b)]2, �(b) = (1/3) ∑ 3
i=1 f (b,i), and f (b,i) is the frequency of b in

the codon position i, i = 1,2,3.

Anastassiou (2000) introduced the Optimized Spectral Content
measure:

|W|2 = |aUA�N3 � + tUT�N3 � + cUC �N3 � + gUG�N3 �|2 ( 2.5 )

In this measure, the coefficients a, t, c, and g are calculated using
an optimization technique applied to the known genes of a given
organism. The measure in equation 2.5 shows significant im-
provement over the measure presented by Tiwari et al. (1997) in
predicting genes in S. cerevisiae (Anastassiou 2000).

In the following sections we show how signal processing
measures for gene prediction can be improved by considering a
new feature of protein-coding DNA regions, which can be mea-
sured by DFT, namely, the arguments of the Fourier spectra at
N/3. We show that the arguments of the Fourier spectra in coding
regions are narrowly distributed around corresponding central
values.

Figure 1 Computing Ub(N/3) in the case fminf(b,1).

Figure 2 Argument distributions for all experimental genes in all chro-
mosomes in S. cerevisiae.

Figure 3 Argument distribution for noncoding regions in all chromo-
somes in S. cerevisiae.
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Relationship Between Spectral Arguments
and Position Frequencies
As evident from equation 2.4, the peak of the total Fourier spec-
trum at k = N/3 in protein-coding DNA sequences is directly re-
lated to the asymmetric distribution of each of the four bases
among the three codon positions. This asymmetry is strongly
related to the codon usage of the particular organism. For any
given organism, most genes have similar codon usage; therefore,
in most protein-coding regions, the ratios between each pair of
the counters {f(b,i)}3i=1 for each base b can be expected to be close
to some constant values. These ratios determine the value of arg
[Ub(N/3)]. To demonstrate, let s be a DNA sequence. The (N/3)th
element of the DFT of the binary sequence ub(n) of length N
associated with the base b (b = A, T, C, or G) is obtained by
substituting k = N/3 in equation 2.2:

Ub�N3 � = �
n=0

N−1

ub�n�e�i
2�

3
n ( 3.1 )

Since ub(n) = 0 or 1, there are three distinct possible nonzero
terms in the sum in equation 3.1, namely 1, e�i(2�/3), and ei(2�/3),
and equation 3.1 takes the form:

Ub�N3 � = f �b,1� � 1 + f �b,2� � e−i
2�

3 + f �b,3� � ei
2�

3 ( 3.2 )

Since, 1 + e�i(2�/3) + ei(2�/3) = 0 equation 3.2 can be expressed as
follows

Figure 4 (A) Argument distribution for all experimental genes in all
chromosomes of S. cerevisiae. (B) Argument distribution for all genes in
chromosomes 2 and 3 of S. pombe. (C) Argument distribution for all
genes in chromosome 1 of Guillardia theta.

Figure 5 (A) Rotation and alignment of the vectors G(s) and T(s), when
arg(T[s]) ≈ µT and arg(G[s]) ≈ µG. (B) Rotation and alignment of the
vectors G(s) and T(s), when arg(T[s]) and arg(G[s]) are any random val-
ues.
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Ub�N3 � = �f �b,1� − fmin� � 1 + �f �b,2� − fmin� � e−i
2�

3 + �f �b,3�

− fmin� � ei
2�

3 ( 3.3 )

where fmin = min {f(b,i)}3i=1. If all f(b,i), i = 1,2,3, are equal, then
Ub(N/3) = 0. Figure 1 illustrates the case where fmin = f(b,1). A
simple trigonometric computation yields:

arg�Ub�N3 �� = arc cot � 2� f1
fmin

− 1�
�3� f2

fmin
− 1� −

1

�3� + � ( 3.4 )

where f1 and f2 are the other two counters, numbered in counter-
clockwise direction from the vector corresponding to fmin, and �
is the argument of the vector corresponding to f1(0, 2�/3, or
�2�/3).

It can be seen that arg[Ub(N/3)] will shift by �2�/3 or 2�/3
for reading frames 2 and 3, respectively.

Since it was assumed above that the ratios between each pair
of the counters {f(b,i)}3i=1 in most coding regions are close to some
constant values, the same holds for Ub (N�3), where b is one of
the bases A, T, C, or G.

RESULTS

The Distribution of the Arguments
of the Fourier Spectra
Let s be a DNA strand, and for each base b, denote b(s) = Ub(N/3).
We calculated the values of arg(A[s]), arg(T[s]), arg(C[s]), and
arg(G[s]) in coding and noncoding regions, for different organ-

isms. The histograms describing these distributions for all experi-
mental genes in the 16 chromosomes of S. cerevisiae (multiple-
exon genes were concatenated to single strands; GenBank acc.
nos. NC001133–NC001148, at http://www.ncbi.nlm.nih.gov)
are shown in Figure 2. (Because the arguments are originally in
principal values [between �� and �], a 2� shift was applied to
part of the data so that the histograms are plotted around the
angular mean.) As the figure reveals, in all four nucleotides the
distributions of the arguments taper around a central value, with
the distributions of arg(G[s]) and arg(T[s]) being much narrower
than the other two. Similar results, in both shape and statistics,
were obtained for each of the 16 chromosomes of S. cerevisiae.

The corresponding histograms for noncoding regions (inter-
genic spacers and introns in all genes [experimental and not ex-
perimental]) in the 16 chromosomes appear in Figure 3. The dis-
tributions for noncoding regions seem to be close to uniform,
and very different from the distributions that were obtained for
coding regions. A similar pattern was observed for each separate
chromosome.

To make sure that the former results are not unique for S.
cerevisiae, the same analysis was performed on other organisms.
The resulting histograms (Fig. 4A,B,C) show the argument distri-
butions for S. cerevisiae, S. pombe, (chromosomes 2 and 3; acc.
nos. NC003423 and NC003421, respectively), and Guillardia
theta (chromosome I; acc. no. AF165818), respectively. It is
readily evident that the three histograms greatly resemble each
other, although the exact statistical values differ somewhat. In
particular, the central value of arg(G), in all three organisms, is
located somewhere in the vicinity of 0. This means that the base
G appears in the first codon position much more often than in
the second and third positions. This is consistent with the find-
ings of Trifonov (1987).

In the following section we show how the difference be-
tween coding and noncoding regions in terms of argument dis-
tribution can be applied to gene prediction.

Rotational Measures for Gene Prediction
Several measures were constructed using the argument distribu-
tion described above. These measures are based on the notion of
spectral rotation and alignment.

Assume we have an organism for which arg(A[s]), arg(T[s]),
arg(C[s]), and arg(G[s]) are distributed in a similar manner to that
observed in the organisms described above (i.e., bell-shaped in
coding regions, and close to uniform in noncoding regions). Let
µA, µT, µC, and µG, be the approximated average values, in coding
regions, of arg(A[s]), arg(T[s]), arg(C[s]), and arg(G[s]), respec-
tively. Since for a typical coding sequence s it is expected that
arg(A[s]) ≈ µA, arg(T[s]) ≈ µT, arg(C[s]) ≈ µC, and arg(G[s]) ≈ µG,
rotating the vectors A(s), T(s), C(s), and G(s) clockwise, each by
the corresponding argument µA, µT, µC, and µG (multiplication
by e�iµA, e�iµT, e�iµC, and e�iµG respectively) will yield four vectors
pointing roughly in the same direction: towards the positive real

Table 1. Performance of Fourier Spectrum Measures on All Experimental Exons and All Noncoding Strands
of Length Greater Than 50 bp in S. cerevisiae, Using Different Window Sizes

Measure

% of exons detected for 10% false positive

90 bp 120 bp 180 bp 240 bp 300 bp 351 bp

Spectral Rotation 84.5 88.0 90.8 91.9 92.7 93.0
Optimized spectral content (Anastassiou 2000) 82.1 86.0 89.3 91.0 91.7 92.2
Spectral content (Tiwari et al. 1997) 76.0 79.4 86.3 89.4 90.0 90.4
G Rotation 83.3 86.2 89.6 90.4 90.8 90.7

Figure 6 Probability density functions for Spectral Rotation (bold) and
Spectral Content (fine) measures (solid lines represent exons and dashed
lines represent noncoding regions).
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axis for reading frame 1, and at �2�/3 and 2�/3 for reading
frames 2 and 3, respectively. Hence the vector sum

e−i�AA�s� + e−i�TT�s� + e−i�CC�s� + e−i�GG�s� ( 5.1 )

will be of large magnitude compared to the case where the vec-
tors point in different directions, as is most likely the case for a
noncoding sequence. Figure 5A,B illustrates this idea for the sum
of two vectors e�iµTT(s) + e�iµGG(s).

Dividing each term in equation 5.1 by the corresponding
angular deviation (�A, �T, �C, and �G of A[s], T[s], C[s], and G[s],
and respectively) will give more weight to narrower distributions,
yielding the measure

|V|2 = |e−i�A

�A
A�s� +

e−i�T

�T
T�s� +

e−i�C

�C
C�s� +

e−i�G

�G
G�s�|2 ( 5.2 )

which we call a Spectral Rotation (or SR) measure. This resembles
the Optimized Spectral Content measure of Anastassiou (2000)
given in equation 2.5.

Table 1 compares the performance of four measures: two
introduced here, namely the SR measure and the G Rotation mea-
sure (described below), and two known measures based on Fou-
rier spectrum: the Spectral Content measure (Tiwari et al. 1997),
and Optimized Spectral Content measure (Anastassiou 2000). All
measures were tested on all experimental exons, and noncoding
strands (intergenic spacers and introns) from the first 15 chro-
mosomes of S. cerevisiae (because the measures were calculated
using chromosome 16 of S. cerevisiae, their performance was
tested on the remaining 15 chromosomes) of a length greater
than 50 bp. The results were obtained by sliding windows of sizes
90, 120, 180, 240, 300, and 351 bp (an analysis frame of 351 bp
is used by Anastassiou [2000] and by Tiwari et. al. [1997]. The
choice of this size of frame is explained in the latter), with gaps
of size 30, 40, 60, 60, 75, and 99 bp, respectively. The threshold
in each case was chosen so that the percentage of introns falsely
detected as exons (false positives) is 10%. As Table 1 indicates, the
SR measure shows better performance, especially in smaller
analysis frames.

Figure 6 compares the probability density functions of the
Spectral Content measure and the SR measure. The values of the
Spectral Content measure were scaled so that intersection points
of the two curves of each color are vertically aligned. The better
performance of the SR measure is illustrated by the fact that the
distance between the bold curves is greater than the distance
between the fine curves.

Detection of short exons may be rendered more effective by
using one statistical parameter that is narrowly distributed when
calculated over short strands. As shown in Figure 7, the distribu-
tion of arg(G[s]) in the genes of S. cerevisiae is narrow when cal-
culated over coding strands of length 120 bp.

The following measure uses only arg(G[s]). Since only the
vector G(s) is rotated in this measure, we need a fixed reference
vector to maximize the vector sum. Suppose R is a real number.
If s belongs to a coding region, and is in reading frame 1, the
vector G(s), rotated clockwise by the approximated average argu-
ment µG will most likely be directed towards the positive real
axis, that is, in the same direction as the vector R. On the other
hand, if s does not belong to a coding region, the rotated vector
may point in any direction. The vector sum of R and the rotated
G(s) will discriminate best between coding and noncoding re-
gions, when R is of the same order of magnitude as |G(s)|. Thus,
we choose |G(s)| as the reference vector. In order to identify genes
in all three reading frames, we define the G Rotation measure as

|VG|2 = |e−i�̃GG�s� + |G�s�||2 ( 5.3 )

where µ̃G is chosen from the set {µG, µG + (2�/3), µG � (2�/3)}, so
that the value of the measure in equation 5.3 is maximal. Table
1 compares the performance of the G Rotation measure with that
of other measures, on the experimental genes and exons of S.
cerevisiae.

When using a measure calculated from data of one organism
to predict genes in another organism, it may be preferable to use
a subset of the vectors A(s), T(s), C(s), and G(s). For example, the
vectors T(s) and G(s), which have narrowly distributed argu-
ments, can be aligned to yield the TG-Rotation measure |VTG|2 =
|(e�iµT/�T)T(s) + (e�iµG/�G)G(s)|2. This measure is determined by
|µG � µT|. Hence, where this value happens to be similar in two
organisms (e.g., S. cerevisiae and S. pombe; see Fig. 4A,B), it is

Figure 7 Argument distribution of coding DNA strands of length 120
bp in S. cerevisiae.

Figure 8 Graphs of gene prediction applied on the gene SPBC582.08 in
chromosome 2 of S. pombe, using a sliding window of 180 bp: (A) TG-
Rotation measure; (B) Codon Usage measure. The horizontal segments
represent the actual location of the three exons. To get the actual base
location in the chromosome, add 300,000 bp to the numbers on the
horizontal axis.
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possible to predict genes in one organism by using the param-
eters of another.

Figure 8A shows the curve of the TG-Rotation measure, con-
structed from data in chromosome 16 of S. cerevisiae, on a typical
split gene of S. pombe (gene SPBC582.08 in chromosome 2). For
comparison, Figure 8B shows the graph of the Codon Usage mea-
sure on the same gene. The horizontal lines represent the actual
location of the three exons. Note the short intron between the
second and third exons. In general, one should be wary about
using data from one organism to predict genes in another organ-
ism, because the respective central argument values in different
organisms may not be similar. For example, note that in Figure
4A,B,C the central values of arg(A) and arg(C) are very different in
the three organisms.

Table 2 summarizes the data on gene SPBC582.08.

Complementary Sequences and Reading
Frame Identification
Genes on the complementary strand can be detected using the
following transformation from Anastassiou (2000):

If V = aA(s) + tT(s) + cC(s) + gG(s), then the predictor for the
complementary strand is Ṽ = ãA(s) + t̃ T(s) + c̃C(s) + g̃G(s), where
ã = e�i(2�/3)t�, t̃ = e�i(2�/3)a�, c̃ = e�i(2�/3)g�, and g̃ = e�i(2�/3)c�, and
a�, t�, c�, and g�, are the complex conjugates of a, t, c, and g,
respectively.

An nonannotated strand is examined using both measures
|V|2 and |Ṽ|2. A detected gene will be considered complementary
if |V|2 > |Ṽ|2.

As mentioned in the Methods section, arg[Ub(N/3)] will shift
by �2�/3 or 2�/3, relative to its value for reading frame 1, if the
actual reading frames are 2 and 3, respectively (see Anastassiou
2000). As explained in the previous section, the rotational mea-
sures identify exons, regardless of their reading frame. To identify
the reading frame, for the SR measure, we look at arg(V). For a
coding sequence in reading frame 1, the rotated vectors will be
aligned close to the positive real axis, and thus arg(V) should be
close to zero. For reading frames 2 and 3, arg(V) will be in the
vicinity of �2�/3 and 2�/3, respectively. This is illustrated by the
following two examples.

Figure 9A depicts the graph of the SR measure on the gene
SPBC1685.08 in chromosome 2 of S. pombe (acc. no. NC003423).
The measure’s parameters were calculated from the genes in the
smaller chromosome 3 (acc. no. NC003421). Figure 9B depicts
the graph of arg(V). The graphs were obtained by calculating the
measure with a sliding window of 351 bp, using a step of 3 bp.
The gene has three exons, in reading frames 1, 3, and 2 respec-
tively. Table 3 summarizes the data on the gene. Note the short
intron between the second and third exons.

Figure 9 illustrates how the curve of arg(V) can be used to
identify the exact boundaries of an exon. It is expected that along
an exon the value of arg(V) will remain in the vicinity of one of
the values 0, �2�/3, or 2�/3, while outside the exon, the value of
arg(V) will change to some “random” value.

Figure 10A depicts the graphs of the SR measure on the gene
SPBC1709.08 in chromosome 2 of S. pombe (acc. no. NC003423).
The measure’s parameters were calculated as in the previous ex-
ample. Figure 10B depicts the graph of arg(V). In this example,
the gene has one exon, between nucleotides 1033037 and

1037362, in reading frame 2. The fact that the curve of arg(V) is
constant at around the value of �2�/3 along the whole gene
indicates that the gene consists of one exon, and not of multiple
exons, as might be incorrectly deduced by looking only at the
curve of Figure 10A. This procedure can therefore assist in differ-
entiating between multiple exons and single exons.

DISCUSSION
In this paper a new method for gene prediction is proposed,
based on several measures of protein coding regions. The mea-
sures are derived from a regularity of the spectral phase within
coding regions. In this study we found that the phase of the DFT
at a frequency of 1/3 is distributed with a bell-shaped curve
around a central value in coding regions, whereas in noncoding
regions, the distribution was close to uniform. This behavior was
shown to exist in all chromosomes of S. cerevisiae, and also in two
other organisms, S. pombe andGuillardia theta. This regularity was
used for the construction of measures for discriminating between
coding and noncoding regions in a given nonannotated DNA
sequence. The measures are constructed by clockwise rotation of
the vectors, which are the values obtained by DFT analysis for the
four binary sequences of each nucleotide, with the correspond-
ing central values. After such rotation, the four vectors in coding
regions tend to be aligned close to each other, whereas the ar-
rangement of vectors in noncoding regions is random. Earlier
studies described proposed measures for gene prediction based
on Fourier transform at a frequency of 1/3 or at other frequencies
(Trifonov and Sussman 1980; Fickett 1982; Silverman and Lin-
sker 1986; Fickett and Tung 1992; Tiwari et al. 1997; Anastassiou
2000). In most of these studies, the information was derived from

Table 2. Gene SPBC582.08 in Chromosome 2 of S. pombe

Exon Start base End base Length

1 352249 352711 463
2 352903 353702 800
3 353756 354010 255

Table 3. Gene SPBC1685.08 in Chromosome 2 of S. pombe

Exon Start base End base Length Reading frame

1 433915 434252 338 1
2 434423 434626 204 3
3 434671 435403 733 2

Figure 9 Graphs of the SR measure on the gene SPBC1685.08 in chro-
mosome 2 of S. pombe, using a sliding window of 351 bp. (A) The
measure; (B) arg(V). The horizontal segments represent the actual loca-
tion of the exons. To get the actual base location in the chromosome, add
400,000 bp to the numbers on the horizontal axis.
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the magnitude of the DFT, whereas the information of the phase
component was not explicitly used. Tiwari et al. (1997) used the
magnitude to construct the so-called Spectral Content measure
(see equation 2.3). Anastassiou (2000) improved on the former
measure by proposing the Optimized Spectral Contentmeasure (see
equation 2.5), which is based on an optimization technique. In
this measure, the Fourier component for each nucleotide was
multiplied by a coefficient in order to maximize an optimization
criterion for discrimination between coding regions and random
DNA sequence. However, this technique was not justified ana-
lytically in order to explain why it yields better performance than
the measure of Tiwari et al. (1997), and its optimization criterion,
which discerns between introns (and intergenic spacers) and ex-
ons, is based on random DNA. Because introns and intergenic
spacers might reveal nonrandom characteristics, it is assumed
that better results could be achieved if introns or sequences from
intergenic spacers were used in the optimization. However, in the
construction of the measures proposed in the present work, there
is no need for random DNA or for introns, because the rotation
parameters are the central values of the spectral phases in coding
regions.

The attempt to use parameters derived from one organism
to recognize genes in another organism is based on an implicit
assumption of the universality of genes, at least with regard to
the structure that elicits the above spectral features. However, as
this study (and also previous ones) show, the peak at a frequency
of 1/3 is attributed to position asymmetry of the nucleotide
within the three possible locations in the codon. This asymmetry
was shown to be the result of codon usage (Tsonis et al. 1991) and
codon bias. Because different organisms exhibit different codon
usage, it is expected that such prediction will not be optimal for
use in organisms with different codon usage. Using the Spectral
Rotation measure presented here, better performance was
achieved than in both studies mentioned above (Tiwari et al.
1997 and Anastassiou 2000; see Table 1). As described, the mea-
sures proposed in the current study yielded improved results
even in short analysis frames (120 bp and even 90 bp). This was
notably true for the measure based only on G. Assuming a narrow
distribution of arg(G), as is the case for the organisms studied, the

relative simplicity of computing the DFT for only one nucleotide
makes the G Rotation measure a fitting candidate to serve for
identification of short genes and exons. Indeed, in this work it
was shown that this measure outperforms other knownmeasures
(Table 1). For other organisms, if the existing gene data enable
identification of the base b (b = A, T, C, or G) for which arg(b) is
most narrowly distributed, it is possible to construct a b Rotation
measure accordingly.

Considering the argument distributions obtained in this
study, it was predicted that wherever an analysis frame slides
within a protein-coding region, the value of arg(V) (the vector
sum of the rotated spectra) will be close to one of three possible
values ( 0, �2�/3, or 2�/3, according to the reading frame), and
random in introns or between genes. Furthermore, the slope of
the curve will be close to zero in sections corresponding to pro-
tein-coding regions, and will have a noisy unpredicted appear-
ance elsewhere. Therefore the plot of arg(V) can be a tool for
finding the reading frame. Moreover, as shown in the third part
of the Results, plotting the graph of the SR measure, along with
arg(V) can help to distinguish between one long exon and mul-
tiple exons spaced by short introns. Whereas the angle’s slope
will tend to be close to zero in the former case, it will have a noisy
structure in the intron sections in the latter. This feature was also
shown to help in the exact demarcation of the exon-intron
boundaries.

Last, a comment about the length of the analysis frame. A
short analysis frame (less than 180 bp) may detect short exons
and short introns, whereas frames of over 300 bp may miss them.
However, there is a tradeoff, because the use of shorter analysis
frames causes more statistical flunctuations, resulting in more
false negatives and false positives. Hence, it is important to have
a measure that still performs reasonably with short frames.

In summary, we suggest that considering the arguments of
the Fourier spectra at k=N/3 yields more information about a
DNA sequence than the corresponding magnitudes alone. How-
ever, it should be noted that these two values (namely, the mag-
nitude and the argument) are not independent. A large magni-
tude of a Fourier spectrum at k=N/3 is a result of a sharp position
asymmetry in the corresponding base. If a sharp position asym-
metry is characteristic of the coding regions of an organism, then
the value of arg[Ub(N/3)] will be more stable; that is, its distribu-
tion over the genes of the organism will have low variance. How-
ever, as shown in this work, incorporating data about the distri-
bution of the arguments of the Fourier spectra at k=N/3, along
with their magnitudes, into a measure, yields a measure that is
more sensitive to exon-intron transition than a measure that uses
the magnitudes alone.
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