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There is a growing body of evidence suggesting that the relationships between gene variability and common disease
are more complex than initially thought and require the exploration of the whole polymorphism of candidate genes
as well as several genes belonging to biological pathways. When the number of polymorphisms is relatively large and
the structure of the relationships among them complex, the use of data mining tools to extract the relevant
information is a necessity. Here, we propose an automated method for the detection of informative combined effects
(DICE) among several polymorphisms (and nongenetic covariates) within the framework of association studies. The
algorithm combines the advantages of the regressive approaches with those of data exploration tools. Importantly,
DICE considers the problem of interaction between polymorphisms as an effect of interest and not as a nuisance
effect. We illustrate the method with three applications on the relationship between (1) the P-selectin gene and
myocardial infarction, (2) the cholesteryl ester transfer protein gene and plasma high-density-lipoprotein cholesterol
concentration, and (3) genes of the renin-angiotensin-aldosterone system and myocardial infarction. The applications
demonstrated that the method was able to recover results already found using other approaches, but in addition
detected biologically sensible effects not previously described.

[Additional applications on different candidate genes for myocardial infarction are available at our Web site
GeneCanvas: http://genecanvas.idf.inserm.fr/.]

Unlike Mendelian disease, the genetic deciphering of which has
known an extraordinary success in the past decades, advances in
the genetics of complex diseases have been much more tenuous,
and strategies aimed at identifying genes underlying these dis-
eases must be reconsidered (Botstein and Risch 2003). Approach-
ing complex diseases by studying one or a few genetic polymor-
phisms has shown its limitations. It is now increasingly recog-
nized that understanding the genetic basis of complex
phenotypes requires not only the investigation of all polymor-
phisms located in functional regions of candidate genes (Corbex
et al. 2000; Stengard et al. 2002; Tregouet et al. 2002), but also the
integration of information about the network of genes involved
in biological systems of major physiological importance, such as
lipid metabolism, cellular adhesion, inflammation, etc. “Systems
biology”, aimed at describing the structure, function, and control
of biological processes in health and disease, is emerging as one
of the major challenges of the post-genome era (Stoll et al. 2001;
Patterson and Aebersold 2003). From a genetics perspective, this
approach implies characterizing the different genes involved in
biological pathways, their functional polymorphisms, and their
interactions with other genes and/or environmental factors.

This multidimensional approach requires the development
of statistical methods able to handle multiple variable loci, pos-
sibly in several genes, and the detection, among all measured
polymorphisms, of those which, alone or in combination, may
influence the phenotype. Indeed, there is increasing evidence
that even in the absence of significant marginal effects, polymor-

phisms may exhibit epistatic effects on complex traits that are
detectable only by a multilocus approach (Templeton 2000).

Neural networks have been recently proposed for investigat-
ing the relationship between complex phenotypes and multilo-
cus genotypes (Curtis et al. 2001; Sherriff and Ott 2001). These
methods, aimed at revealing hidden patterns of relationships be-
tween variables, are theoretically well suited for analyzing data
with high-order interactions. However, the results of these meth-
ods, expressed as weights associated with predictors, are difficult
to interpret and do not clearly identify the interacting predictors.
Moreover, the results are sensitive to small changes in the data
and depend on various tuning parameters such as the number of
hidden units and hidden layers.

Recursive partitioning methods, that is, classification and
regression trees (Breiman et al. 1984), were recently introduced to
genetics (Zhang and Bonney 2000; Czika et al. 2001; Province et
al. 2001). The principle of this approach is to split the sample in
successive nodes based on genotype dichotomies that maximize
a split function depending on the nature of the response. How-
ever, the partitioning aspect often leads to high-order partial in-
teractions that concern very few individuals and are difficult to
interpret. Moreover, these methods are not well adapted to the
detection of main effects which are no longer identifiable after
several dichotomies. Additionally, results appear quite depen-
dent on the choice of the division variables, and their threshold
values are often unstable (Dannegger 2000).

A combinatorial partitioning method (CPM) was recently
developed to identify multilocus genotypic partitions that pre-
dict quantitative trait variation (Nelson et al. 2001). From a set of
polymorphisms, the method identifies the partitions of two-
locus genotypes which are the most predictive in terms of ex-
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plained phenotypic variability. As for tree-based methods, the
partitions are generally suggestive of interactions between poly-
morphisms, but these interactions are not easily interpretable.
Moreover, the capacity of the method to detect additive effects of
polymorphisms is unclear, and adjustment on covariates must be
done prior to analysis. One current limitation of the method is
that it is restricted to two-locus partitions, and extension to par-
titions of higher dimension may rapidly become prohibitive in
terms of the number of possible partitions to be examined.

Inspired by the CPM for quantitative traits, a multifactor-
dimensionality reduction (MDR) method was proposed for ex-
ploring high-order interactions between polymorphisms in the
framework of case/control studies (Ritchie et al. 2001, 2003). The
principle of the MDR method is to reduce the genotype predic-
tors from n dimensions to one, by pooling genotypes into two
groups at high risk and low risk, respectively. Among all possible
combinations, the method selects the partition that maximizes
the cases:controls ratio of the high-risk group. The MDR method
is not limited to two-locus combinations as is the CPM; however,
as for the CPM, results can be difficult to interpret. Further limi-
tations of the MDR method are that it is currently limited to
balanced case/control studies, and it is not possible to adjust for
covariates.

A stepwise regression procedure was proposed for evaluating
the contribution of several polymorphisms within a small ge-
netic region in a case/control framework (Cordell and Clayton
2002). This classical parametric approach has the advantage that
results are more easily interpretable than those of nonparametric
approaches. However, although interaction terms were poten-
tially included in the series of fitted models, the proposed strat-
egy of hypothesis testing was primarily aimed at detecting main
effects of polymorphisms. More generally, automated selection
procedures are—in their classical use proposed by standard sta-
tistical software—ill-adapted for the systematic investigation of
interactions. Forward and stepwise procedures select only inter-
actions composed by predictors already selected at previous
steps, whereas the backward procedure, starting with a model
including main effects and interactions of different orders, is very
quickly limited by convergence problems.

In this report, we propose a fully automated method for
exploring the effects of several polymorphisms (and other non-
genetic covariates) in the framework of association studies in-
volving any kind of phenotype (quantitative, binary, or cen-
sored). This method, called DICE (Detection of Informative Com-
bined Effects), combines the advantages of the regressive
approaches in terms of modeling and interpretation of effects,
with those of data exploration tools. Importantly, the approach
considers the problem of interaction between polymorphisms as
an effect of interest and not as a nuisance effect. It is therefore
well suited to the exploration of the spectrum of polymorphisms
within candidate genes and more generally, within biological
systems. The forward selection approach is based on the principle
of parsimony, the principle of marginality, and the information
theory paradigm. The algorithm compares at each step a wide
variety of models and chooses the one(s) that provide(s) the best
approximation to the data, while having the least number of
parameters. To avoid difficulties related to the null-hypothesis
testing theory (Goodman 1993; Royall 1997), such as the choice
of a significance level (especially for nonindependent tests), the
selection for the “best” approximating model(s) is based on an
information criterion (IC) to be minimized. The algorithm iden-
tifies a subset of polymorphisms that are, either individually or in
combination, associated with the phenotype.

The method was applied to several real data samples, and
the results are available at our Web site GeneCanvas (http://
genecanvas.idf.inserm.fr/). Here, we detail the results of three

applications. The first one concerns the relationship between
polymorphisms of the P-selectin (SELP) gene and a binary phe-
notype, myocardial infarction (MI). The second application in-
vestigates the association between polymorphisms of the cho-
lesteryl ester transfer protein (CETP) gene and a quantitative trait,
plasma high-density lipoprotein (HDL)-cholesterol concentra-
tion, while taking into account alcohol consumption. The third
application investigates the association between polymorphisms
of several genes belonging to the renin-angiotensin-aldosterone
(RAA) system and MI. We show that the proposed method recov-
ers results already found using other techniques, but can also
detect effects not previously described and that will deserve fur-
ther detailed investigation. In addition, we present the results
obtained in a preliminary stability study of the set of effects iden-
tified in the SELP gene application.

METHODS
The relationship between the phenotype and the covariates,
which can be genotypes as well as nongenetic variables, is mod-
eled using a logistic (binary outcome), linear (quantitative trait),
or Cox (censored response) regression model. The algorithm ex-
plores by a forward procedure a set of competing models for
which an IC is derived. Based on certain modalities developed
below, this exploration leads to the selection of a best approxi-
mating model (or models). The model space is explored in a
systematic way, and the best model(s) can include main effects
and interactions of different orders.

Exploration Phase of the Algorithm
In what follows, we assume that all covariates are genetic poly-
morphisms, for ease of presentation. At step 0, the DICE algo-
rithm calculates the IC value associated with themodel including
the intercept and possibly variables forced into the model, such
as stratification variables (model 0). At step 1, DICE calculates the
IC values for all competing models obtained by the individual
addition of each polymorphism to model 0. At this step, the
main effects of polymorphisms, as well as their interactions with
each variable imposed in model 0, are considered. If a certain
composite condition, which will be developed in a following
section, is verified for one of these models, DICE keeps in
memory the model and continues to step 2. If the composite
condition is not satisfied, DICE explores all two-marker combi-
nations, by comparing all models obtained from model 0 to
which are added any pair of markers, either additively or inter-
actively, and possibly interacting with the variables of model 0. If
the composite condition is still not satisfied, DICE continues to
explore in the same way all three-marker combinations. If, at the
end of the exploration of three-marker combinations, the com-
posite condition has not been satisfied, DICE stops. In this case,
the algorithm has detected no one-, two- or three-locus combi-
nation associated with the phenotype. Higher than three-locus
combinations were not explored in the current applications, be-
cause this would require very large sample sizes, but extension of
the method is straightforward.

If the composite condition has been satisfied at step 1, the
algorithm goes to step 2 and replaces model 0 with the model
retained at step 1. The procedure continues iteratively until there
is no more improvement of the IC value.

Information Criterion (IC)
The implemented IC is the AICc (Hurvich and Tsai 1989) corre-
sponding to Akaike’s information criterion (AIC; Akaike 1974)
corrected for the second-order bias in the case of finite sample
size. The formula is:

AICc = AIC +
2K�K + 1�

n − K − 1
,

where AIC = �2loge[�(�̂/data)]+2K corresponds to an estimator of
the expected relative Kullback-Leibler (K-L) distance. The term

Data Mining in Association Studies

Genome Research 1953
www.genome.org



loge[�(�̂)/data)] yields the value of the maximized log-likelihood
over the unknown parameters (�̂), given the data and the model,
leading to the estimated parameters (�̂). K is the number of pa-
rameters estimated in that approximating model, and n is the
total sample size. The first term in AIC is a lack of fit component
which decreases as more parameters are fitted in the model; the
second term increases as a penalty for adding extra parameters.
Thus, AIC forces a trade-off between bias and variance as the
number of parameters is increased.

Evaluation of the Composite Condition
The general goal of the algorithm is to detect the most parsimo-
nious and informative model that minimizes the IC within each
step, and between the various steps explored. Because the AICc is
on a relative scale, it was proposed to rescale AICc values such
that the model with the minimum AICc has a value of 0 (Burn-
ham and Anderson 2002), that is:

�i = AICci − minAICc ,

where AICci is the IC corresponding to candidate model i, and
minAICc is the minimum AICc value within the considered step,
among the set of competing models noted {gi(data/�),i=1, … , R}.
If we note f, the full reality, with infinite number of parameters,
such differences estimate the relative expected K-L differences
between f and gi(data/�):

�i = E�̂ [Î�f,gi)] − min E�̂ [Î�F,gi�] ,

where E�̂ [Î (f,gi)] is the expected estimated K-L distance between
f and gi(data/�), and min is over the set of models explored.

Following a simple heuristic rule derived by extensive
Monte Carlo simulation (Burnham and Anderson 2002), a model
having a �i � 2 has a substantial level of empirical support and
can be considered equivalent to the minAICc model, whereas a
model with �i � 4 is implausible as the actual K-L best model and
can be considered different from the minAICc model. At each
step, the algorithm calculates the �i for each model, and among
the models having a �i � 2, the algorithm selects the one(s) pre-
senting a ‘substantial’ decrease of AICc relative to the previous
step. The definition of a ‘substantial’ decrease is arbitrary and
depends on the stringency criteria imposed for model selection.
Following the guideline values described above, adapted here to
the inter-step minimization of the IC criterion, a difference was
considered substantial if:

�s = AICc�s−1� − AICc�s� > 4 s = 1,… S

where S is the total number of steps explored.
It may happen that several models fulfill the composite con-

dition, that is �i � 2 and �s > 4. Among these models, the algo-
rithm selects the one(s) having the least number of parameters
(principle of parsimony). When several models are selected at a
given step (due to satisfying both the composite condition and
the same number of parameters), DICE then evolves in parallel
from the various best models identified. This parallel exploration
of ‘tie models’ is a way to accommodate the possible ambivalence
of the data.

Conditional Exclusion Phase
The procedure described above would not be globally optimal if
only a forward, sequential exploration was performed without
re-evaluating at the end of each step the terms included at the
previous steps. To overcome this problem, a conditional exclu-
sion phase was incorporated after the inclusion phase. This phase
is derived from the sequential floating forward search (SFFS) al-
gorithm, extended here not only to main effects, as originally
described (Pudil et al. 1994), but also to interaction terms. After

the selection of the best model at step s, DICE fits all models that
differ from the current model by dropping a single term, while
maintaining the principle of marginality; that is, whenever an
interaction is present in a model, all marginal main effects and
interactions of lower orders must also be present (Fox 1997).
Among all the reduced models j (j=1, … , J) thus obtained, the
algorithm keeps the one with the lowest AICcj value, provided it
is not different from that of the current model (�j � 2) and the
inter-step difference remains substantial (�s > 4). Figure 1
presents a summary of the algorithm.

Coding of Genotypes
In the most general form specifying no particular model of in-
heritance, genotypes at each locus are coded as dummy variables
([m�1] independent variables in the case of m genotypes). How-
ever, with this general coding scheme, results can be difficult to
interpret in particular when the dimensionality of the best model
is relatively high. Moreover, the problem of sparse cells fre-
quently arises. For these reasons, we propose to run the algorithm
with different coding schemes corresponding to specific genetic
models and to retain for further evaluation the polymorphisms
selected in at least one of the configurations.

Algorithm Implementation
DICE was implemented in the R language for the present appli-
cations. We used the generalized linear model function for the
regression modeling, with a Gaussian error distribution for a con-
tinuous outcome and a binomial error distribution for a binary
response. The iteratively reweighed least squares algorithm was
used to fit the models. The convergence criterion value for maxi-
mizing the likelihood was fixed to 1e-08, corresponding to the
default option of most statistical packages. We are currently de-
veloping an optimized version of the algorithm in the C lan-
guage, whichwill bemore efficient to accommodate a large number
of variables. This program will be made available at our Web site.

RESULTS

SELP Gene Polymorphisms and Myocardial Infarction
P-selectin is a cellular adhesion molecule which plays a major
role in the recruitment of inflammatory cells from the circulation
and their transendothelial migration, the critical initial step of
atherosclerosis (Price and Loscalzo 1999). A molecular screening
of the SELP gene had previously led to the identification of sev-
eral polymorphisms (Herrmann et al. 1998). We applied our
method to re-analyze the association between these polymor-
phisms and MI, using the same data set as the one previously
used for a haplotype analysis in the Etude Cas-Témoin de
l’Infarctus du Myocarde (ECTIM; Tregouet et al. 2002). The study
sample included 551 MI cases and 596 control subjects, and full
genotypic information was available for these samples.

Five polymorphisms were identified in the 5� region (C-
2123G, A-1969G, T-1817C, C-1576G, and �485I/D) and eight in
the coding region (P98P, S290N, C557C, N562D, N563N, V599L,
T715P, and T741T; see our Web site for the description of poly-
morphisms, their allele frequencies, and the pairwise linkage dis-
equilibrium [LD] coefficients). Due to their low allele frequency
(<1%), the C-1576G and P98P polymorphisms were not included
in analysis. In addition, because the C557C, N563N, and V599L
polymorphisms were completely concordant, only the V599L,
which had the less missing data, was selected, leaving nine poly-
morphisms for the analysis.

Two different coding schemes for the genotypes were used.
The first one, referred to as ‘dominant’, opposed frequent homo-
zygotes to others (genotype coded as a dichotomous variable 0,
1), whereas the second, referred to as ‘codominant’, assumed for
each marker an additive allele effect on a logistic scale (genotype
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coded as an ordinal variable 0, 1, 2). Because the country of origin
(Northern Ireland/France) was a stratification variable of the
study, this variable was forced in model 0. Table 1 presents the
detailed results obtained with the codominant coding scheme.
For each step, the four best models are reported. Figure 2 sum-
marizes the results obtained with this coding scheme.

At steps 1 and 2, a unique best model was identified, which
is indicated in bold. At step 3, no model met the composite
condition (�i � 2 and �s > 4) when including each marker indi-
vidually in the model selected at step 2. The algorithm then
considered all pairs of markers (step 3bis). Two tie models were
identified, including S290N*N562D and T-1817C*N562D, respec-
tively. Note that S290N and T-1817C are in strong LD
(D� = +0.96) and have allele frequencies of the same order of
magnitude, explaining why the two models were nearly equi-
valent. In parallel, the algorithm then considered the two re-
sulting paths, noted path 1 and path 2, respectively. At step
4/path 1, the model including a three-locus combination:
S290N*N562D*V599L was identified. At step 4/path 2, none of
the models explored with the five remaining markers individu-
ally met the composite condition, and thus the algorithm con-
tinued to explore all remaining pairs of markers. Interestingly,
the same three-locus combination as in path 1 was identified.

Furthermore, after application of the conditional exclusion
phase at the end of this step, the T-1817C main effect and the
T-1817C*N562D interaction term were removed. The final mod-
els obtained at the end of both paths were then the same and
included: country, T715P*T741T, and S290N*N562D*V599L (as
well as all the lower-order interaction terms).

Detailed results of the exploration with the dominant cod-
ing scheme are available at our Web site. Briefly, the dominant
coding scheme led to the same models as the codominant
scheme for the first two steps. At step 3, a final unique best model
was identified including the interaction S290N*N562D. Actu-
ally, the model including the three-locus combination
S290N*N562D*V599L had the minAICc at step 4, but was not
retained due to a �s of 2.63. Results are then fairly consistent
irrespective of the coding scheme used.

CETP Gene Polymorphisms and HDL-Cholesterol Levels
CETP is a key enzyme in reverse cholesterol transport and HDL
metabolism (Tall 1993). For this reason, the CETP gene is a can-
didate gene for coronary heart disease. A molecular screening of
the gene led to the identification of several polymorphisms
which were further investigated in the ECTIM study in relation to
MI and HDL-cholesterol, taking into account alcohol consump-

Figure 1 Diagram summarizing the steps of the DICE algorithm. Am is the set of remaining variables not included in the model[STEP-1] (at STEP=1,
Am is the total number of variables explored). Several models can be identified at each step, leading the algorithm to evolve in parallel the tie models
(Paths 1, … ,K).
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tion, which is known to influence HDL-cholesterol levels (Fum-
eron et al. 1995; Corbex et al. 2000). In the present application,
we re-analyzed the association between HDL-cholesterol levels
(continuous variable) and CETP polymorphisms in the sample of
control subjects of the ECTIM study (n=671), including alcohol
consumption as an environmental variable. Alcohol consump-
tion was stratified in five classes and considered an ordinal vari-
able, as in our previous analysis (Fumeron et al. 1995).

Ten polymorphisms had been previously identified (see our
Web site for detailed information). Because three groups of poly-
morphisms were almost completely concordant (G+279/in1A
and C+8/in7T, A373P and R451Q, I405V and G+524T), we ex-
cluded the marker of each pair having the most missing data,
that is, G+279/in1A, A373P and I405V, respectively. Variables
considered for exploration were therefore the seven remaining
polymorphisms and alcohol consumption. All models were sys-
tematically adjusted for age and center of recruitment. Table 2
and Figure 3 show the results of the exploration using the domi-
nant coding scheme. Results obtained with the codominant cod-
ing scheme are available at our Web site.

At step 1, based on the principle of parsimony, DICE se-
lected the model including alcohol consumption as the main
effect. At step 2, two tie models were selected, having the same
number of parameters and both satisfying the composite condi-
tion: (1) an interaction between alcohol and the C-629A poly-

morphism, and (2) an interaction between alcohol and the C+8/
in7T polymorphism. Note that these two polymorphisms are in
strong LD (D� = +0.95) and have similar allele frequencies. The
algorithm stopped at the following step for both paths evolving
in parallel. With the codominant coding scheme, after inclusion
of alcohol consumption at step 1, the interaction between alco-
hol and the C+8/in7T marker was selected.

Renin-Angiotensin-Aldosterone System Gene
Polymorphisms and Myocardial Infarction
The RAA system plays a critical role in the maintenance of car-
diovascular homeostasis. Polymorphisms of the main genes of
the RAA system—namely, angiotensin-converting enzyme
(ACE), angiotensinogen (AGT), angiotensin II receptor type 1
(AGTR1), and aldosterone synthase (CYP11B2)—were investi-
gated in the ECTIM study in relation to MI (Cambien et al. 1992;
Tiret et al. 1994, 1995; Poirier et al. 1998; Pojoga et al. 1998). In
the present application, we analyzed the association between MI
and the overall set of polymorphisms of the RAA system previ-
ously investigated.

Nine polymorphisms were considered: the I/D polymor-
phism in the ACE gene, the M235T and T174M polymorphisms
in the AGT gene, the T-810A, C-521T, T+55/ex4C, L191L, and
A+39C polymorphisms in the AGTR1 gene (after exclusion of

Table 1. Application of DICE to the Association Between Myocardial Infarction and Nine Polymorphisms of the SELP Gene, Using a
Codominant Coding Scheme

Modela AICci �i
b #parc �s

d

Step 0 y = intercept + country 1590.07 0.00 2 —
Step 1 T715P 1582.73 0.00 3 7.35

country*T715P 1584.16 1.44 4 5.91
country*T-1817C 1589.49 6.76 4 0.58
T741T 1589.98 7.25 3 0.10

Step 2 T715P*T741T 1577.34 0.00 5 5.39
T715P*N562D 1580.28 2.94 5 2.45
T715P*V599L 1580.41 3.07 5 2.32
country*N562D 1580.54 3.20 5 2.19

Step 3e country*N562D 1576.27 0.00 7 1.07
N562D 1576.35 0.08 6 0.99
T741T*T-1817C 1577.34 1.06 7 0.00
T715P*N562D 1577.42 1.14 7 �0.07

Step 3bis f S290N *N562Dg 1570.84 0.00 8 6.50
country*S290N*N562D 1572.13 1.29 11 5.21
T-1817C*N562Dg 1572.52 1.68 8 4.82
T741T*S290N*N562D 1573.39 2.55 11 3.95

Step 4/path1 S290N*N562D*V599L 1563.42 0.00 12 7.42
T-1817C 1571.20 7.78 9 �0.36
country*T-1817C 1571.32 7.90 10 �0.48
N562D*-485I/D 1571.85 8.42 10 �1.01

Step 4/path2e N562D*A-1969G 1572.80 0.00 10 �0.27
N562D*S290N 1573.11 0.31 10 �0.59
N562D*-485I/D 1573.50 0.70 10 �0.98
-485I/D 1573.58 0.78 9 �1.06

Step 4bis/path2f S290N*N562D*V599L 1566.15 0.00 14 6.37
country*C-2123G*S290N 1573.84 7.69 14 �1.32
N562D*-485I/D+N562D*S290N 1574.07 7.92 12 �1.55
country*C-2123G+country*S290N 1574.18 8.03 12 �1.65
Conditional exclusion: deletion of T-1817C*N562D and T-1817C
Stop for both paths

Final model in both paths: y = country + T715P*T741T + S290N*N562D*V599L

n = 1147.
aSymbols are as follows: y is the outcome, “+” means addition of term(s), “*” means interaction (implying that all the terms of lower order are
included in the model according to the principle of marginality). b�i = AICci � minAICc.

cNumber of parameters in the model. d�s = minAICc(s-I) �
minAICc(s).

eNo model satisfying the composite condition. fCombinations of two markers. gTie models.
Each model represents an update of the best approximating model identified at the previous step. The four best models within each step are shown.
In bold are the best model(s) retained at each step.
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redundant polymorphisms), and the T-344C polymorphism in
the CYP11B2 gene (see our Web site for details). All models were
adjusted on country of origin. Table 3 shows the results using the
codominant coding scheme. Results obtained with the dominant
coding scheme are available at our Web site.

At step 1, considering the individual addition of each poly-
morphism and their possible interaction with country, the com-
posite condition was not verified for any of the candidate mod-
els. DICE then considered all two-locus combinations (Step 1bis)
and selected the model including the interaction between
ACEI/D and AGTR1/A+39C previously described (Tiret et al.
1994). The algorithm stopped at the following step. The same
result was obtained with the alternative coding scheme.

Preliminary Study of Stability
It is well known that the choice of variables (and their associated
effects) for inclusion in a regression model varies across repeated
samples. This model selection uncertainty is explained by the

interrelationship and partial redundancy
among the explanatory variables (Draper
1995). This is particularly true for genetic poly-
morphisms which are in strong LD.

To evaluate the stability of the effects
identified by the proposed algorithm, we per-
formed a preliminary stability study by the
bootstrap method (Efron and Gong 1983) on
the SELP data set. In line with the exploratory
nature of the proposed approach, stability re-
fers here to the selection of effects (main ef-
fects or interactions) and not to the prediction
capabilities of the models, as it is generally
done in a context of variable selection for pre-
diction (Altman and Andersen 1989; Sauerbrei
and Schumacher 1992). One hundred boot-
strap samples were generated from the original
SELP data set and analyzed successively with
both coding schemes. For each bootstrap rep-
licate, we counted the number of occurrences
of main effects and interactions which were
selected by the algorithm. When an interac-
tion was selected at a given step, we counted
only this term and not the marginal effects and
interactions of lower order introduced to re-
spect the principle of marginality.

Table 4 presents the results of the stability
study with the codominant coding scheme,

with effects being ranked by frequency of inclusion over the 100
replicates. The main effect of the T715P polymorphism was de-
tected in 61% of replicates and was the first effect selected in 54%
of them. Frequency of inclusion of other main effects varied from
1% to 18%, far behind the T715P. Concerning the first-order
interactions, the two highest frequencies of inclusion (46% and
44%, respectively) corresponded to the interactions detected in
the original data set. The interaction between country and
T-1817C had the third highest frequency (19%). The most fre-
quent selected effect among second-order interactions (52%) was
the one identified in the original data set. Analogous results were
obtained with the dominant coding scheme and are available at
our Web site.

DISCUSSION
The concomitant availability of an increasing amount of genetic
data, large study samples, and computer power offers a new op-

Table 2. Application of DICE to the Association Between HDL-Cholesterol Levels and Seven Polymorphisms
of the CETP Gene, Using a Dominant Coding Scheme

Modela AICci �i
b #parc �s

d

Step 0 y = intercept +
center + age

�657.68 0.00 5 —

Step 1 center*alcohol �679.57 0.00 9 21.90
alcohol �678.61 0.97 6 20.93
age*alcohol �678.22 1.36 7 20.54
C+8/in7T �661.66 17.91 6 3.98

Step 2 alcohol*C-629Ag �688.66 0.00 8 10.05
alcohol*C+8/in7Tg �687.94 0.72 8 9.33
C+8/in7T �682.69 5.97 7 4.08
age*C+8/in7T �680.99 7.67 8 2.38
STOP for both paths

Final model path1: y = center + age + alcohol*C-629A or Final model path2: y = center
+ age + alcohol*C+8/in7T

n = 671. See footnotes of Table 1.

Figure 2 Summary of the results obtained in the application of DICE to the association
between myocardial infarction and nine polymorphisms of the SELP gene, using a codominant
coding scheme (n = 1147). Dashed lines represent tie models. The terms deleted after the
conditional exclusion phase are shown in brackets.
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portunity to assess multilocus associations in a more systematic
fashion than ever before and to build models that may reveal
hidden association structure. Different methods, reviewed above
in the introductory text, have been proposed for the identifica-
tion of multilocus combinations associated with disease risk or
quantitative traits in association studies. Each method has ad-
vantages and drawbacks. However, as stressed in a recent edito-
rial (Spence et al. 2003), there is no “sole true path”, especially in
the domain of complex traits, rather, several complementary ap-
proaches which might cast different lights on the problem under
study. Overall, in the domain of data mining, it is the replication
of results which constitutes the most important step.

The method proposed here combines the advantages of ex-
ploration tools with those of the regressive approach, such as
easily interpretable modeling and the possibility of incorporating
adjustment covariates, while trying to overcome some method-
ological difficulties of parametric methods related to hypothesis
testing. Among other problems of the classical parametric selec-
tion procedures are those of multiple testing correction and the
asymptotic distribution, under the null hypothesis, of the tests
performed for each variable (Derksen and Keselman 1992). Be-
cause the choice of models in DICE is based on an IC, it circum-
vents problems related to the null-hypothesis testing theory
(Johnson 1999). The method respects the particularity of genetic
data by allowing the detection of interactions between markers
in the absence of marginal effect. By alternating exploration and
conditional exclusion phases, it can identify complex relation-

ships between variables that may be missed us-
ing other techniques.

The algorithm is fully automated, making
the tool easy to use without any a priori hy-
pothesis. It could be used in different situa-
tions, such as the exploration of several poly-
morphisms within a gene, as we did in the
SELP and the CETP applications, or the inves-
tigation of several genes belonging to a com-
mon biological system, as we did with the RAA
system. We note that the main purpose of the
method is not to provide estimates of param-
eters and of their variances, nor to make infer-
ences about the sampled population, but to
identify a subset of variables and effects that
would deserve further detailed analysis using
other complementary methods, such as haplo-
type analysis or multivariate analysis, or would
require further investigation in replication
studies. This is a data mining method useful as
an exploratory tool for data reduction and
variable detection.

Several aspects of the method deserve discussion. We based
the model selection procedure on information theory and not on
the classical hypothesis testing theory for several reasons. First, in
a context of data mining and hypothesis generation, the use of
the null-hypothesis testing theory seemed conceptually counter-
intuitive (there is no real null-hypothesis to test), generating
practical difficulties related to multiple testing as mentioned
above. Second, when many models are considered, it may hap-
pen that several of them fit the data almost equally well. By
selecting a single model, the null-hypothesis testing theory ig-
nores model uncertainty and potential ambivalence of the data.
Furthermore, one particularity of genetic data is the correlation
between genetic polymorphisms, through LD, that can lead to
collinearity. Multicollinearity does not affect, in general, the
overall fit of the model, (i.e., the likelihood) nor does it tend to
bias the estimates, but regression coefficients will tend to have
inflated sampling variances, leading to incorrect statistical tests
(Neter et al. 1996). Finally, the IC, unlike the likelihood ratio test,
allows the comparison of non-nested models. Among the numer-
ous IC proposed in the literature, we chose the AICc (Hurvich and
Tsai 1989) because it integrates the popular AIC and a correction
for finite sample size, is easy to implement, and has operational
properties that have been extensively evaluated (Burnham and
Anderson 2002).

Another technical aspect of the algorithm concerns the
thresholds adopted for the �i and �s parameters. The first thresh-
old (�i � 2) is aimed at identifying models that could be consid-

Table 3. Application of DICE to the Association Between Myocardial Infarction and Nine Polymorphisms of
the RAA System, Using a Codominant Coding Scheme

Modela AICci �i
b #parc �s

d

Step 0 y = intercept + country 1561.28 — 2 —
Step 1e ACE I/D 1558.93 0.00 3 2.35

AGTR1/T-810A 1559.87 0.94 3 1.41
AGTR1/A+39C 1560.51 1.57 3 0.78

Step 1bis f ACE I/D*AGTR1/A+39C 1553.67 0.00 5 7.61
ACE I/D + AGTR1/T-810A 1556.90 3.23 4 4.38
ACE I/D*AGT/M235T 1556.92 3.24 5 4.37
STOP
Final model: y = country + ACE I/D*AGTR1/A+39C

n = 1133. See footnotes of Table 1.

Figure 3 Summary of the results obtained in the application of DICE to the association
between HDL-cholesterol and seven polymorphisms of the CETP gene, using a dominant coding
scheme (n = 671). Dashed lines represent tie models.
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ered as almost equivalent in terms of IC, while the second thresh-
old (�s > 4) is aimed at selecting a model which substantially
improved the likelihood between steps. However, these guideline
values must be considered as tuning parameters that can be
modified to make the model selection more or less stringent ac-
cording to the objective to be achieved.

Another important aspect of the algorithm is the principle
of parsimony on which the model selection procedure is based.
This principle, widely used in statistics, states that among two
equivalent models in terms of IC, the one with the fewest pa-
rameters is to be preferred (Forster 2001). Different situations
leading to ‘equivalent’ models exist. One situation, which we
actually encountered in our applications, is the case where an
interaction term slightly improves the likelihood (�i � 2) but
with a penalty of one extra-parameter. In that case, the principle
of parsimony seems quite reasonable. Another situation, how-
ever, is the case where two different models, including com-
pletely different sets (and numbers) of markers, would have
nearly the same AICc. In this case, the principle of parsimony
might be questioned and one might consider the possibility of
letting the tie models evolve in parallel. The practical conse-
quences of relaxing the principle of parsimony will have to be
further assessed. In order not to overload the algorithm with too
many tie models, one may wish to discard, prior to analysis, the
polymorphisms which are in nearly complete association.

Finally, DICE, as other combinatorial methods (Nelson et al.
2001; Ritchie et al. 2001), can be computationally intensive
when a large number of polymorphisms needs to be evaluated.
The exploration of biological systems involving hundreds of
polymorphisms will require robust machine-learning algorithms,
because all possible multilocus combinations (and potential en-
vironmental factors) cannot be exhaustively searched. Further
research is needed to optimize the selection procedure of poly-
morphisms in the context of large-scale explorations.

The three applications described here showed that the algo-
rithm was able to recover the polymorphisms that were previ-
ously identified by haplotype analysis (Tregouet et al. 2002) or
multivariate regression analysis (Tiret et al. 1994; Corbex et al.
2000). Furthermore, it identified other polymorphisms that
might be of interest, such as the V599L and the T741T polymor-
phisms of the SELP gene which were not detected by haplotype
analysis. Applications of the algorithm to other genes are avail-
able at our Web site. Importantly, these applications suggested
that the algorithm had no tendency towards overfitting, since for
several genes, no effect of any polymorphism was detected. In
the application to the RAA system, only the interaction previ-
ously described (Tiret et al. 1994) was identified and no other

multilocus effect was detected, despite the fact that four different
genes of the system were analyzed. Finally, in the preliminary
stability study, the most frequently selected effects were those
identified in the original data set. A simulation study is ongoing
for investigating the properties of the algorithm in different data
configurations in terms of stability of the results obtained, false
negative and false detection rates.

Another important issue requiring further research is the
handling of missing data, because this becomes a critical problem
as the number of investigated polymorphisms increases. Variants
of AIC have been proposed for model selection in the presence of
incomplete data (Cavanaugh and Shumway 1998), which will
have to be further explored. Another further development con-
cerns the possibility of considering a hierarchical strategy of
analysis when there is a mixture of intra-gene polymorphisms
and polymorphisms belonging to different genes.
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