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Abstract

BACKGROUND—With recent advances in high-throughput sequencing technologies, many

prostate cancer risk loci have been identified, including rs10993994, a single nucleotide

polymorphism (SNP) located near the MSMB gene. Variant allele (T) carriers of this SNP produce

less prostate secretory protein 94 (PSP94), the protein product of MSMB, and have an increased

risk of prostate cancer (approximately 25% per T allele), suggesting that PSP94 plays a protective

role in prostate carcinogenesis, although the mechanisms for such protection are unclear.

METHODS—We reviewed the literature on possible mechanisms for PSP94 protection for

prostate cancer.

RESULTS—One possible mechanism is tumor suppression, as PSP94 has been observed to

inhibit cell or tumor growth in in vitro and in vivo models. Another novel mechanism, which we

propose in this review article, is that PSP94 may protect against prostate cancer by preventing or

limiting an intracellular fungal infection in the prostate. This mechanism is based on the recent

discovery of PSP94’s fungicidal activity in low-calcium environments (such as the cytosol of

epithelial cells), and accumulating evidence suggesting a role for inflammation in prostate

carcinogenesis. We provide further details of our proposed mechanism in this review article.

CONCLUSIONS—To explore this mechanism, future studies should consider screening prostate

specimens for fungi using the rapidly expanding number of molecular techniques capable of

identifying infectious agents from the entire tree of life.
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INTRODUCTION

Recent advances in high-throughput sequencing technologies have allowed for the

identification of at least 77 genetic loci associated with prostate cancer risk in genome-wide

association and replication studies [1]. These recent genetic discoveries offer the potential

for risk prediction, targeted prevention and screening, biomarker development, and insight

into prostate cancer etiology. Loci identified to date include, most notably, single nucleotide

polymorphisms (SNPs) in the 8q24 and 17q12 chromosomal regions, and those related to

the HNF1B and MSMB genes [2]. While SNPs in the 8q24 region have received much

attention, our review article focuses on genetic variation related to the MSMB gene and

proposes a novel hypothesis as to how this variation may inform a fungal etiology of

prostate cancer.

MSMB AND PROSTATE CANCER RISK

Two genome-wide association and several replication studies have observed associations

between SNP rs10993994, a SNP located 57 base pairs upstream of the first exon of MSMB

in its proximal promoter region [3], and prostate cancer risk [4–8]. In the largest replication

study, CC homozygotes had the lowest risk of prostate cancer, heterozygotes had an

intermediate risk (odds ratio [OR] = 1.21; 95% CI = 1.11–1.33), and TT homozygotes had

the highest risk of prostate cancer (OR = 1.57; 95% CI = 1.42–1.74) [4]; similar associations

were observed in smaller studies and among men of varying races [7–14]. Results from fine-

mapping studies further indicate that associations between rs10993994 carrier status and

prostate cancer risk were stronger and more significant than those for other local tag SNPs,

which, together with observed promoter activity, suggest that rs10993994 is one of the main

SNPs responsible for observed associations between MSMB-related variation and prostate

cancer risk [3,8]. Finally, although rs10993994 carrier status was also associated with levels

of mRNA for NCOA4 (a gene located within 16 kb telomeric of rs10993994) in one study of

benign prostate tissue [15], no association was observed for NCOA4 protein levels in the

only other study to examine this possible relation [16], suggesting that rs10993994 genetic

associations are likely specific to MSMB.

While the association between rs10993994 carrier status and prostate cancer risk is certainly

strong, reproducible, and likely specific for MSMB, one concern for all genetic association

studies is the possibility of prostate-specific antigen (PSA) detection bias. This bias occurs

when the variant under investigation is associated with prostate cancer detection through its

association with elevated PSA levels and the likelihood of prostate biopsy independent of

the presence of prostate cancer. Although rs10993994 carrier status is associated with PSA

levels [6,12,16–18], we believe that PSA detection bias is unlikely to explain associations

between rs10993994 status and prostate cancer risk because similar associations were

observed for both cancers more and less likely to be detected purely by PSA (e.g., low-

grade, low-stage, and non-palpable disease, and cancers detected after the introduction of

PSA screening vs. high-grade, high-stage, palpable, and pre-PSA era disease) in most

previous studies [4,5,7–9,11,13], and because no association was observed with the

likelihood of a negative prostate biopsy in one further study [18]. African-American men,

who have the highest risk of prostate cancer diagnosis and mortality [19], are also more
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likely to carry the high-risk T allele (60% in African- American controls [7] vs. 40% in their

Caucasian counterparts [5,6]), further arguing against a major influence of detection bias.

Thus together, these findings support a causal role for MSMB-related variation in prostate

carcinogenesis.

PROSTATE SECRETORY PROTEIN 94

MSMB encodes prostate secretory protein 94 (PSP94), a 94-amino acid, 10.7 kDa member

of the immunoglobulin binding factor family and one of the three main proteins secreted by

prostate epithelial cells into seminal plasma [20]. Over the years, this protein has had several

different names and hypothesized functions. It was first identified in semen in the early

1980s and named by two independent groups. One group reported that PSP94 suppressed

the secretion of follicle stimulating hormone (FSH), suggesting a role for PSP94 as an

inhibin, and named it β-inhibin [21]. Shortly thereafter, however, FSH suppression could not

be reproduced [22,23], and the name prostate secretory protein 94 was adopted instead [24].

A second group reported that PSP94 coated the surface of spermatozoa, suggesting a role in

reproduction, and named it β-microseminoprotein (β-MSP, MSP, or MSMB) [25]. This

potential role for PSP94 is still being explored [26].

In addition to its possible involvement in reproduction, recent associations between MSMB-

related variation and prostate cancer risk clearly suggest a role for PSP94 in prostate cancer

development. Based on levels of MSMB expression among men of varying rs10993994

genotype, this role appears to be protective. Low-risk rs10993994 C allele carriers have the

highest levels of promoter activity [3,8] and prostate tissue expression [15,16,27], and the

highest concentrations of PSP94 in their blood [13,17], urine [27], and seminal plasma

[8,17,27], suggesting that high PSP94 expression may be protective for prostate cancer.

Although the protective mechanisms conferred by the rs10993994 C allele are unknown,

two previously hypothesized biological functions of PSP94 could explain this effect: tumor

suppression [28] and pathogen defense [29]. These two hypothesized functions are reviewed

here in detail; a brief review of all hypothesized functions for PSP94 was published by

Lazure et al. [30].

Tumor Suppression

In 1992, Lokeshwar et al. investigated the effects of seminal plasma on prostate cancer cells

and reported strong inhibition of human PC3 and DU145 cells, as well as rat DT cells,

which they attributed to TGF-β1 (for all three cell types [31]) and PSP94 (for DT cells only

[32]). This was the first report, to our knowledge, of PSP94’s tumor suppression properties.

Thereafter, many studies have continued to explore its tumor suppression properties and

those of its derived peptides using in vitro and rodent models [15,28,32–39]. Considering

findings from in vitro studies, generally variable results have been observed across models

and peptides. Three studies examined the effects of human PSP94 on PC3 cells, two of

which reported no growth inhibition [28,37], while a third reported strong inhibition [33].

Another study examined two additional human prostate cancer cell lines, and reported

moderate growth inhibition of LNCaP cells and strong inhibition of WPE1-NB26 cells [37].

Finally, one further study suppressed MSMB expression in immortalized prostate epithelial

cells and found that such suppression promoted anchorage-independent growth [15]. All
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additional studies explored the influence of PSP94 or derived peptides on rat prostate cancer

cells. One study reported strong growth inhibition by human PSP94 and peptides derived

from PSP94 amino acids 31–45, but not amino acids 7–21 and 76–94, on the MLL rat

prostate cancer cell line [34,35]; another observed no inhibition by human PSP94 on the

MLL cell line [28]; and a third study observed strong inhibition by amino acids 85–94 on rat

DT prostate cancer cells [32]. Finally, one further study tested the influence of rat PSP94 on

the PAIII rat cancer cell line and reported strong growth inhibition [36].

In contrast to in vitro findings, those from in vivo rodent models have tended to be more

consistent. All six in vivo studies reported tumor suppression by subcutaneously injected

human PSP94 and derived compounds in rats and mice [28,32–35,38], although only two of

these studies were sufficiently similar to allow for a comparison of the minimum dose

required for tumor suppression. In these two studies, the minimum dose varied from 25 [28]

to 1,000 ng/kg/day [34] for tumor suppression of the MLL rat cancer cell line in male

Copenhagen rats, making it difficult to comment on the minimum required dose.

Finally, in addition to findings from in vitro and rodent models, changes in PSP94

expression in the prostate with the development of malignancy may also inform its tumor

suppression properties. Compared to normal prostate tissue, lower levels of MSMB mRNA

and PSP94 expression have been observed consistently in localized prostate cancer lesions,

although no further differences were observed by Gleason score in most previous studies

[16,40–45]. These findings suggest that high PSP94 expression may influence prostate

cancer development, but not prostate cancer cell differentiation, consistent with observed

null associations with grade in most genetic studies [4,7,8]. Possible mechanisms that have

been proposed to explain all of these findings include suppression of FSH [28,34,46],

inhibition of DNA synthesis [32], failed DNA repair [47], inhibition of angiogenesis [39],

and increased apoptosis of cancer cells by binding to CRISP-3 [48] or laminin receptors

[49].

Beyond tumor development, further observations suggest that PSP94 may also play a role in

inhibiting prostate cancer recurrence or metastasis. This role may be relevant to genetic

findings for rs10993994 if properties related to prostate cancer recurrence/metastasis overlap

with those related to prostate cancer development. Human PSP94 and a peptide derived

from amino acids 31–45 reduced microvessel density and experimental skeletal metastases,

and inhibited matrix metalloproteinase (MMP-9) mediated metastasis in in vitro and rodent

models [34,35,39,50]. Lower expression of MSMB mRNA was also observed in prostate

cancer metastases than in primary prostate tumors in three human tissue-based studies [51–

53], and lower levels of prostatic PSP94 expression were associated with a greater

likelihood of prostate cancer recurrence/metastasis in some studies [40,43], while others

reported the opposite association [42,45]. These findings suggest that, in addition to

suppressing tumor development, PSP94 may also contribute to inhibition of prostate cancer

recurrence and metastasis.

Pathogen Defense

Another possible and novel role for PSP94 is pathogen defense, which has only recently

been explored. In their study of the anti-microbial properties of semen, Hagerwall et al. [29]
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demonstrated potent fungicidal activity against the fungus Candida albicans in post-coital

seminal plasma. This activity was mediated by PSP94 amino acids 66–76 and was limited to

post-coital seminal plasma; PSP94 was not fungicidal in normal seminal plasma, which the

authors attributed to selective inhibition by calcium ions at a neutral pH but not at the acidic

pH of the post-coital milieu. The authors further demonstrated that porcine PSP94, which

shares 51% amino acid sequence identity with human PSP94, was also fungicidal,

suggesting that this may be a retained and fundamental property of PSP94. Finally,

Hagerwall et al. [29] tested the toxicity of PSP94 against common bacterial uropathogens

and human cells, and found it to lack both bactericidal and cytotoxic activity, which they

attributed, at least in part, to its observed selective affinity for fungal plasma membranes. In

liposome experiments, they found that PSP94 disrupted ergosterol-rich liposomes, which

mimic the plasma membranes of most fungi and some protists, but not cholesterol-rich

liposomes, which mimic mammalian plasma membranes.

Although Hagerwall et al.’s findings clearly demonstrate that PSP94 is fungicidal in the

acidic, calcium ion binding-inhibiting environment of post-coital seminal plasma, whether

or not it is also fungicidal in other naturally occurring low-calcium environments is largely

unknown. Within the prostate, the only low-calcium ion environment is the cytosol—where

calcium ions are all but absent. [54] Unfortunately, few studies have examined the

intracellular localization of PSP94 to inform the possibility of cytosolic localization. In their

immunoelectron microscopic study of prostate tissue from older men with benign prostatic

hyperplasia (BPH) or prostate cancer, Ito et al. [55] observed PSP94 protein staining

primarily in the secretory granules, but not the cytosol, of prostate epithelial cells. Similar

granular staining was also observed by Doctor et al. [56] in tissue from men with BPH.

However, when these investigators examined tissue from young men without prostate

disease, they observed diffuse rather than granular PSP94 protein staining throughout the

cytoplasm, providing support for cytosolic localization of PSP94 in the non-diseased

prostate. This finding is particularly intriguing given accumulating evidence for an

inflammatory, and thus possibly an infectious, contribution to prostate cancer [57].

INFLAMMATION AND PROSTATE CANCER

Similar to cancers with known inflammatory or infectious etiologies, inflammation is

extremely common in the prostate [58–60]. Of relevance to prostate cancer causation,

intraprostatic inflammation is also present in young men before the onset of prostate

diseases [59], and is common in the peripheral zone [61], the zone at highest risk of prostate

cancer development. Within this zone, inflammation tends to be observed near areas of

proliferative atrophy (termed “proliferative inflammatory atrophy” lesions), which have

been proposed as signatures of the “field effect” of prostate carcinogenesis (i.e., a field of

cells with genomic alterations believed to predispose to prostate cancer), because a subset of

these lesions share somatic DNA alterations with prostate cancer precursor lesions (high-

grade prostatic intraepithelial neoplasia, HGPIN) and prostate adenocarcinomas, and

because they have been observed at times in close proximity or transitioning into HGPIN

and small adenocarcinomas [57]. This hypothesis is supported by findings from animal

model studies, in which inflammation induced by various means has been shown to lead to

epithelial hyperproliferation and atrophy, and occasionally dysplasia/PIN [57,62,63]. It is
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also supported by findings from a recent observational study, in which a positive association

was observed between intraprostatic inflammation and high-grade prostate cancer among

men without indication for biopsy—thus where the positive association between PSA and

inflammation should not have influenced findings (Gurel et al. [64]). Weaker or null

associations were observed for low-grade prostate cancer in this same study [64] and in

another smaller study [65]. Finally, positive associations were observed between tumor-

associated intraprostatic inflammation (sometimes accompanied by focal atrophy) and

subsequent prostate cancer recurrence or death in most [66–70], but not all [71,72], studies

of prostate cancer patients. Thus together, these findings support a role for intraprostatic

inflammation in prostate carcinogenesis.

Despite this evidence, responsible causes of asymptomatic intraprostatic inflammation have

not been identified, although several possibilities have been proposed. These include urine

reflux, which might induce either chemical or physical trauma; trapped spermatozoa; dietary

factors, such as heterocyclic amines; estrogens; infectious agents, particularly those that

ascend the urethra; or a combination of several of these factors. A break in tolerance to

prostate antigens triggered by any of these factors has also been proposed [57]. However,

irrespective of the type of proposed inflammatory cause(s)—infectious or otherwise— it

must be very common to explain the high prevalence of asymptomatic intraprostatic

inflammation [58–60] and prostate cancer precursor lesions [73].

INFECTIONS AND PROSTATE CANCER

Over the past few decades, many epidemiologic studies have investigated infections in

relation to prostate cancer, focused primarily on sexually transmitted infections (STIs).

Findings from several of these studies have been pooled with combined results suggesting a

positive association between ever having had an STI and prostate cancer (OR = 1.44–1.48

[74,75]). However, as many of these studies were case–control in design with retrospective,

self-reported assessment of STI history, the possibility of recall bias has been raised (i.e.,

prostate cancer cases may have been more likely to respond to STI questions truthfully than

controls). This concern is supported by recent null cohort study findings for several of these

same self-reported STIs [76]. On the other hand, accumulating positive findings for other

STIs that tend to be asymptomatic and are thus better assessed by serology than by self-

report, such as Trichomonas vaginalis and mycoplasma infections [76,77], provide further

sup- port for an infectious contribution to prostate cancer risk. These STIs may also be more

likely to establish persistent prostate infections than those assessed by self-report because of

their frequent lack of symptoms and thus lack of treatment [76]. Recent epidemiologic

and/or animal model-based findings for other infectious agents not typically considered to

be sexually transmitted, such as Escherichia coli and Propionibacterium acnes, are also

intriguing and warrant further study [78]. However, while each of these infectious leads is

promising, none is yet conclusive. It is also possible that no single infectious agent is by

itself responsible for prostate cancer risk, but that many may have the potential to contribute

to prostate carcinogenesis, depending on their propensity to elicit prostatic inflammation and

establish long-term prostate infections.
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Given recently observed associations between MSMB variation and prostate cancer, as well

as the recent discovery of fungicidal activity associated with PSP94 in low-calcium

environments such as the cytosol of epithelial cells, we propose that intracellular fungal

infections may also be good candidate infections for prostate carcinogenesis. An

intracellular infectious etiology is also consistent with the finding of a greater ratio of

cytotoxic/suppressor (CD8+) T cells to helper/inducer (CD4+) T cells in the intraepithelial

compartment of the prostate than in the stroma [79–81], which Bostwick et al. [80] have

proposed may represent the first line of defense against foreign luminal agents. As cytotoxic

T cells are known to aid in clearing intracellular pathogens, such pathogens may be

promising candidate causes of intraprostatic inflammation and prostate cancer. However,

while many studies have examined viral and intracellular bacterial infections [77], very few

studies— only one, to our knowledge [82]—have investigated fungal infections in relation

to prostate cancer. This paucity of mycotic research is likely due to the low documented

occurrence of symptomatic fungal prostate infections. For instance, although Candida

species, Aspergillus species, Cryptococcus neoformans, Coccidioides immitis, Histoplasma

capsulatum, and Blastomyces dermatitidis are possible causes of clinical prostatitis, the

fraction of prostatitis cases caused by such infections is very low [83]. These species are

also readily culturable; therefore, if they were common asymptomatic pathogens, they would

likely have already been identified in at least one large previous study of prostate specimen

culture [84].

While findings from this previous culture study make the possibility of a culturable fungal

etiology unlikely, the possibility of a fastidious fungal candidate remains plausible. For

instance, microsporidia (a phylum of fastidious intracellular fungi) are known to infect

healthy individuals asymptomatically [85], some species have been detected in prostate

specimens [86] and urine [87], and some are suspected of a sexual route of transmission

[85,86,88]. However, no studies, to our knowledge, have investigated microsporidia species

in relation to prostate cancer to date, although DNA primers are available for several of

these species [89]. Therefore, these microsporidia species could be explored in relation to

prostate cancer in future studies.

Beyond microsporidia, it is also possible that an as-yet-undiscovered, fastidious fungal

species may be involved. While not specific to fungi, as early as 12 years ago, Strickler and

Goedert [90] proposed a “yet unrecognized” sexually transmissible infectious etiology for

prostate cancer. This hypothesis was based on the similarity between the low estimates of

association for various STIs with prostate cancer and the low estimates of association for

herpes simplex virus and other STIs with cervical cancer, which was eventually attributed to

their frequent co-acquisition with human papillomaviruses, the actual causal agents of

cervical cancer. While this hypothesis led to many viral and bacterial screens of prostate

specimens [77], no studies, to our knowledge, screened for a broad spectrum of fungi. Such

screens are possible, as demonstrated recently by Ghannoum et al. [91] who used molecular

techniques to identify fungi in the oral cavity of healthy individuals; these authors found 85

fungal genera of which 11 were non-culturable. These same molecular techniques could be

applied to prostate specimens. However, even the consensus primers used by Ghannoum et

al. cannot detect all fungal phyla (for instance, these primers do not detect microsporidia or
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Pneumocystis jiroveci). Therefore, newly developed techniques that can identify infectious

agents from the entire tree of life (viruses, bacteria, protists, and fungi) should also be

considered [92,93].

CONCLUSION

In summary, we propose a second mechanism to explain the consistent association between

variation in MSMB, the gene that encodes PSP94, and prostate cancer risk [2]—in addition

to PSP94’s purported tumor suppression properties. Specifically, we propose that PSP94

may protect against prostate cancer by preventing or limiting an intracellular fungal (or

possibly protistan) infection in the prostate, based on the recent discovery of PSP94’s

fungicidal activity in low-calcium environments, such as the cytosol of epithelial cells [29],

and accumulating evidence suggesting a role for inflammation in prostate carcinogenesis

[57,63]. While we have yet to test for the presence of such infectious agents in prostate

specimens, some support for this idea comes from recent epidemiologic findings from the

King County prostate cancer case–control study. This study observed a positive association

between lifetime number of sexual partners, a marker of cumulative STI exposure, and

prostate cancer among high-risk rs10993994 T allele carriers, but no association among C

allele homozygotes, which produce the greatest amount of PSP94 [94]. Future studies

should consider screening prostate specimens for fungi and protists, particularly fastidious

ones, using the rapidly expanding number of molecular techniques capable of identifying

infectious agents from the entire tree of life. These types of investigations are critical

because the discovery of an infectious etiology of prostate cancer could have tremendous

influence on rates of this common malignancy; such a discovery would offer the potential

for primary prevention strategies using existing or newly developed anti-microbial therapies,

such as pharmaceutical drugs targeting ergosterol.
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