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Comparative sequence analysis has become an essential component of studies aiming to elucidate genome function.
The increasing availability of genomic sequences from multiple vertebrates is creating the need for computational
methods that can detect highly conserved regions in a robust fashion. Towards that end, we are developing
approaches for identifying sequences that are conserved across multiple species; we call these “Multi-species
Conserved Sequences” (or MCSs). Here we report two strategies for MCS identification, demonstrating their ability
to detect virtually all known actively conserved sequences (specifically, coding sequences) but very little neutrally
evolving sequence (specifically, ancestral repeats). Importantly, we find that a substantial fraction of the bases within
MCSs (~70%) resides within non-coding regions; thus, the majority of sequences conserved across multiple
vertebrate species has no known function. Initial characterization of these MCSs has revealed sequences that
correspond to clusters of transcription factor-binding sites, non-coding RNA transcripts, and other candidate
functional elements. Finally, the ability to detect MCSs represents a valuable metric for assessing the relative
contribution of a species’ sequence to identifying genomic regions of interest, and our results indicate that the
currently available genome sequences are insufficient for the comprehensive identification of MCSs in the human

genome.

A key component of genomics research beyond the Human Ge-
nome Project will be the rigorous interpretation of the recently
finished human genome sequence (Collins et al. 2003). Central
to these efforts will be the identification of all functional ele-
ments in the human genome. Recent comparative analyses of the
human and mouse genome sequences suggest that ~5% of the
mammalian genome is under active selection and thus likely
serves a functional role (International Mouse Genome Sequenc-
ing Consortium 2002; Roskin et al. 2003). Within this functional
subset is an estimated 1% to 2% of the genome that encodes
protein (International Mouse Genome Sequencing Consortium
2002). The prospects for comprehensive identification of these
coding sequences are quite good, especially in light of the avail-
ability of data sets that are complementary to the genomic se-
quence (e.g., ESTs [Boguski et al. 1994; also see http://
www.ncbi.nlm.nih.gov/dbEST] and full-length cDNA sequences
[Strausberg et al. 2002; also see http://mgc.nci.nih.gov]) and
ever-improving computational methods for gene prediction
(Kulp et al. 1996; Burge and Karlin 1997; Rogic et al. 2001; So-
lovyev 2001; Flicek et al. 2003). The complete identification and
characterization of the remaining 3% to 4% of the mammalian
genome that likely corresponds to functional non-coding se-
quence will be profoundly more challenging, due to the lack of
complementary data sets, the absence of robust tools for compu-
tational predictions, and the incomplete insight about the nature
of such sequence. In short, the generation of a comprehensive
“parts list” of functional elements in the human genome remains
an immense and important challenge.

The comparison of orthologous genomic sequences has
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emerged as a powerful approach for identifying functional ele-
ments in the genome (Dermitzakis et al. 2002; DeSilva et al.
2002). The premise of this approach is that sequences conserved
across millions of years of evolution are likely to have a func-
tional role (Pennacchio and Rubin 2001). Comparative sequence
analyses have been shown to facilitate the identification of both
coding (Batzoglou et al. 2000; Korf et al. 2001; Pennacchio et al.
2001; Alexandersson et al. 2003; Flicek et al. 2003) and func-
tional non-coding (Stojanovic et al. 1999; Dubchak et al. 2000;
Gottgens et al. 2000; Loots et al. 2000, 2002; Wasserman et al.
2000; Dehal et al. 2001; Elnitski et al. 2003; Kellis et al. 2003)
sequences. Among the latter are elements that regulate the spa-
tial and temporal patterns of gene expression (Hardison 2000).
When the generation of alignments between related sequences is
not possible, motif-finding techniques have also been used to
identify functional sequences, in particular for detecting tran-
scription factor-binding sites (Bailey and Elkan 1995; Roth et al.
1998; Hertz and Stormo 1999; McCue et al. 2001; Blanchette and
Tompa 2002).

Recent efforts have produced whole-genome sequences for
several vertebrates, including human (International Human Ge-
nome Sequencing Consortium 2001), mouse (International
Mouse Genome Sequencing Consortium 2002), rat (http://
genome.ucsc.edu/cgi-bin/hgGateway?org=rat), and pufferfish
(Aparicio et al. 2002), with the sequencing of additional verte-
brate genomes well underway. Increasingly, methods for visual-
izing (Kent et al. 2002; Clamp et al. 2003; Karolchik et al. 2003)
and comparing (Stojanovic et al. 1999; Mayor et al. 2000; Blan-
chette and Tompa 2002; Loots et al. 2002; Giardine et al. 2003;
Schwartz et al. 2003a) genomic sequences from multiple species
are emerging. As a complement to these efforts, we are generating
the sequence of targeted genomic regions in multiple, phyloge-
netically diverse vertebrates (Thomas et al. 2003) and developing
computational approaches for identifying the subset of se-
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quences that confers function. In particular, we have focused on
developing algorithms for detecting sequences that are highly
conserved across multiple species, which we call Multi-species
Conserved Sequences (or MCSs); such sequences represent can-
didates for being functionally important. Here we report the de-
velopment and testing of methods for MCS detection, including
analyses of MCSs identified using a recently generated set of or-
thologous sequences from 11 non-human vertebrates (Thomas et
al. 2003).

RESULTS

Development of Approaches for Detecting MCSs

The detection of MCSs requires analytical approaches for identi-
fying conserved regions across multiple orthologous sequences
in a fashion that takes into account: (1) the phylogenetic diver-
sity of the originating species and thus the general variation in
sequence conservation; (2) the varying neutral substitution rate
for different genomic regions; and (3) the characteristics of the
generated genomic multi-sequence alignment. Since none of the
previously described approaches (Stojanovic et al. 1999; Pennac-
chio and Rubin 2001; Loots et al. 2002; Alexandersson et al.
2003; Elnitski et al. 2003) completely satisfies these require-
ments, we developed and tested two independent methods for
identifying MCSs from large sequence data

sets derived from multiple species. Both

methods utilize genomic multi-sequence

Binomial

Tompa 2002). A P-value associated with the derived parsimony
score is then calculated under a continuous-time Markov model
of neutral evolution. This P-value is subsequently converted into
a conservation score, with more highly conserved columns as-
signed higher scores. This approach is related to the method of
Boffelli et al. (2003), who computed log-likelihood ratios for the
bases observed in each column under a model of slow versus
neutral evolution. However, our parsimony-based method does
not require a model of functional sequence evolution (which is
associated with inaccuracies due to the non-uniform evolution-
ary rates of functional regions), as it simply measures deviation
from the null model.

Both the binomial- and parsimony-based methods calculate
a conservation score for overlapping 25-base windows (incre-
mented by one base). Therefore, a conservation score is calcu-
lated 25 times for each base (once for each of the overlapping
25-base windows), with the highest calculated score then as-
signed to that base. The two methods also have some fundamen-
tal differences. First, the binomial-based method only requires
knowledge of the major lineages represented by the species under
study, while the parsimony-based method requires a complete
phylogenetic tree topology. Second, while the binomial-based
method measures conservation with respect to one reference se-
quence (e.g., the human sequence), the parsimony-based

Parsimony

alignments generated with the algorithms 8.1
employed by MultiPipMaker (Schwartz et ’ -
al. 2003a). To date, we have focused on the
identification of highly conserved se-
quences in the human genome; thus, we
generated human-referenced pair-wise
alignments with each species’ sequence.
However, our methods can be readily
adapted such that any species’ sequence can
serve as the reference. Details about each
MCS-detection method are given in Meth-
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degenerate positions (the third position of
codons for which any base codes for the
same amino acid).

In the parsimony-based method, the
amount of conservation within each col-
umn of the multi-sequence alignment is
measured using a phylogenetic parsimony
score (Fitch 1971). Such a score reflects the
minimal number of substitutions needed
along the branches of an established phylo-
genetic tree to account for the observed
bases (Stojanovic et al. 1999; Blanchette and
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Figure 1 Discrimination of different types of sequence using conservation scores calculated by
the binomial- (left) and parsimony- (right) based methods. The top two histograms depict the
distribution of conservation scores calculated for coding (blue outlined in yellow) and non-coding
(white outlined in red) sequence by each method. Note that the distributions are represented as a
fraction of the total sequence in each annotated category and that only 1.1% of the sequence in
the analyzed region represents coding sequence. The vertical lines indicate the conservation score
thresholds used for defining MCSs (see text). The bottom two graphs show the detection of
different types of sequence at increasing conservation score thresholds. The fraction of sequence in
each annotated category (coding, ARs, and total) that exceeded the indicated conservation score
threshold is plotted. The vertical bars (shaded in grey) reflect the small range of conservation score
thresholds that optimally results in the detection of nearly all coding sequence along with a
minimum amount of the total sequence (4% to 7%).
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method treats all sequences symmetrically (although the relative
contribution of each species’ sequence is then weighted based on
its phylogenetic position). Thus, results with the two methods
will markedly differ for regions that are only conserved among
non-human species; in such cases, only the parsimony-based
method would be capable of producing a higher conservation
score. Finally, while both methods compare the observed conser-
vation with that expected under neutral evolution, the binomial-
based method more directly measures the significance of conser-
vation levels below the neutral substitution rate (which can lead
to a negative value for the conservation score; in principle, such
scores could represent regions under positive selection). The de-
velopment and testing of two independent methods based on
distinct fundamental algorithms provided the opportunity to
study the similarities and differences of the MCSs detected by
each approach.

General Features of Detected MCSs
Both methods for detecting MCSs were used to analyze a set of
sequences orthologous to a 1.8-Mb interval on human chromo-
some 7q31 that were generated from 11 non-human vertebrates
(chimpanzee, baboon, cat, dog, cow, pig, rat, mouse, chicken,
fugu, and tetraodon; Thomas et al. 2003). This genomic region
contains 10 known genes, including the gene mutated in cystic
fibrosis (CFTR; see OMIM 219700, http://www.ncbi.nlm.nih.
gov/Omim). The entire data set, including individual sequences,
alignments, and results of the analyses described below, is avail-
able at http://www.nisc.nih.gov/data and can be viewed at
http://genome.ucsc.edu.

For both methods, the distribution of conservation scores

A Binomial
Conservation Score Threshold 0.8961
Total Number of Detected MCS Bases 93,861
Total Number of Detected MCSs 1,533

Average MCS Length (bp) 61
B 1.0

calculated for individual bases was reasonably effective at distin-
guishing between known protein-coding sequence (typically ac-
tively conserved) and non-coding sequence (Fig. 1, top). More
detailed analyses (Fig. 1, bottom) revealed a small range of con-
servation score thresholds that allow detection of almost all
(>90%) known coding sequence, virtually no (<1.5%) ancestral
repeats (ARs; ancient relics of transposons inserted prior to the
eutherian radiation and presumed to not be under selection), and
a small percentage of additional non-coding sequence. We pre-
sumed that the latter contains highly conserved sequences rep-
resenting candidate functional elements. Given that the use of
threshold values within this small range results in the detection
of 4% to 7% of the total human sequence and that ~5% of the
mammalian genome is thought to be under active selection (In-
ternational Mouse Genome Sequencing Consortium 2002;
Roskin et al. 2003), we selected a conservation score threshold for
each method such that the detected MCSs would contain 5% of
the human reference sequence (see Methods for further details).
Note that each MCS is simply defined as a segment of contiguous
sequence where each base exceeds the conservation score thresh-
old, with the minimum length of an MCS being 25 bases (see
Methods).

Using the established conservation score thresholds, the bi-
nomial- and parsimony-based methods identify 1533 and 1178
MCSs, respectively, within the 1.8-Mb target region (Fig. 2A). The
positions of these MCSs relative to annotated genomic features in
the target region can be seen at http://genome.ucsc.edu, with a
representative example shown in Figure 3. For both methods, the
detected MCSs at least partially overlap >97% of the 128 known
exons and >76% of the 22 known UTRs in the region; these
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Figure 2 Characteristics of MCSs detected by different methods. The “Binomial” and “Parsimony” columns provide a summary of the MCSs generated
by each respective method. The “Intersecting” column provides a summary of the MCSs derived by intersecting the results of the binomial- and
parsimony-based methods (see Methods and Fig. 4). The general features of the detected MCSs are provided in A. The thresholds used for the binomial-
and parsimony-based methods result in a virtually identical number of MCS bases; however, the total number of detected MCSs (and correspondingly
their average length) varied between the two methods. Also, the greater number of intersecting MCSs compared to those detected by the parsimony-
based method reflects the fact that some MCSs were fragmented by the intersection process. The bar graphs in B depict the fraction of coding, UTR,
and AR bases in the target region that overlaps the indicated set of MCSs. For the fraction of AR bases, the exact values are also provided. The pie charts
in C depict the percentage of MCS bases that corresponds to coding (yellow), UTR (blue), AR (grey), and other (green) sequence.
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Figure 3 Positions of MCSs relative to other annotated genomic features. A complete representation of the positions of MCSs within the ~1.8-Mb
targeted region is available at a customized version of the UCSC Genome Browser (see http://genome.ucsc.edu). A view depicting a ~100-kb interval
encompassing the intergenic region between MET and CAPZAZ is shown. The thick vertical boxes in the “Curated Gene Annotations” track correspond
to exons. The positions of MCSs identified by the binomial- (red) and parsimony- (purple) based methods are shown in separate tracks, as are the
underlying conservation scores calculated by each method (depicted as bar graphs). Also shown are the positions of the intersecting set of MCSs (green;

see text and Fig. 2).

overlaps account for >93% and >30% of all coding and UTR
bases, respectively (Fig. 2B). Just over 20% of the total MCS bases
reside within coding sequence and an additional ~4% to 5%
within UTRs (Fig. 2C). Of note, MCSs containing exonic se-
quence are, on average, larger than those containing non-coding
sequence (~120 versus ~45 bp, respectively). This relative size
difference can be seen even when MCSs separated by short dis-
tances (e.g., 10, 20, or 50 bp) are merged together (data not
shown). Only ~3% of MCS bases are within ARs, even though ARs
account for >19% (363,432 bp) of the human reference sequence.
Since this class of repeats is generally evolving in a neutral fash-
ion (International Mouse Genome Sequencing Consortium 2002)
and assuming that the amount of sequence conservation observed
with ARs is representative of neutrally evolving regions, these re-
sults indicate that the detection of sequences not likely to be under
active selection is low. It should be noted that the chicken and fish
sequences do not have alignable ARs (at least by the alignment
methods used here). Remarkably, for both methods, >70% of the
MCS bases (residing in ~83% of the MCSs) correspond to non-
annotated sequence whose function is, at present, unknown (Fig.
20).

Comparison of the MCSs detected by the two methods re-
vealed excellent concordance. This is evident from both qualita-
tive examination of the positions of the MCSs within the target
region (Fig. 3) and more quantitative analyses (Fig. 4). Indeed,
74.4% (69,812) of the MCS bases detected by either method were
common to both (Fig. 4A). In addition, there is a strong correla-
tion between the base-by-base conservation scores calculated by
each method (Fig. 4B), with the tightest relationships seen for
bases within coding regions and ARs. In the case of MCSs
uniquely detected by one method, the conservation scores cal-
culated by the other method for that sequence were typically just
below the defining threshold.

We examined more closely the sequence found to be con-
served by both methods. The resulting intersecting set of 69,812
MCS bases coalesce into 1194 MCSs (defined as segments of con-
tiguous sequence where each base exceeds the conservation score
thresholds of both methods) and are associated with similar de-
mographics as the individual data sets (Fig. 2; also see Fig. 3).
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These results further indicate that each method identifies a simi-
lar set of MCSs. Nonetheless, the presence of a slightly smaller
fraction of AR bases within the intersecting set of MCSs makes
this data set potentially more enriched for functionally impor-
tant sequences. For these reasons, we chose to perform all sub-
sequent analyses on the intersecting set of MCSs, which contains
3.7% of the human reference sequence in the region.

Uniqueness of MCSs in the Human Genome

We investigated the uniqueness of the detected MCSs within the
human genome, particularly focusing on the 83% that do not
overlap coding regions and that contain virtually no (<5%) re-
petitive sequence. Comparison of these MCSs to the human
genome sequence (November 2002 assembly; http://
genome.ucsc.edu) using MegaBlast (Zhang et al. 2000) revealed
that 99.6% had no other significant match. The remaining MCSs
matched only one additional location in the genome, over
lengths of 24-292 bp (see http://www.nisc.nih.gov/data). De-
tailed inspection of these non-unique MCSs suggested that they
likely reside in segmental duplications, in most cases specific to
the primate lineage (data not shown). These analyses indicate
that virtually all of the MCSs detected in this study that contain
non-coding sequence are unique in the genome (at least by the
homology search methods employed here), with the functional
relevance of the small number of non-unique MCSs being un-
clear. Similar conclusions were reached by comparing the MCSs
to the entire GenBank NR database with BLAST (Altschul et al.
1990; data not shown).

Correlating MCSs With Functional Elements

Conserved RNA Structures

Non-coding RNA genes are notoriously difficult to identify (Eddy
2002). While no non-coding RNA genes are known to reside in
the genomic region examined here, we analyzed the detected
MCSs using the QRNA program (Rivas and Eddy 2001). Although
QRNA was designed to identify RNA genes, it also detects regions
of pre-mRNA and mRNA predicted to have a conserved second-
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Figure 4 Concordance of the binomial- and parsimony-based methods
for MCS detection. (A) Venn diagram showing the relationship of MCS
bases detected by the binomial- (yellow circle) and parsimony- (purple
circle) based methods, with the bases detected by both methods shown
in brown. Also indicated is the total number of MCS bases in each cat-
egory. (B) Scatter plots showing the relationship of the conservation
scores calculated by each method for bases residing in different types of
sequence. Each point represents a base that falls within coding sequence
(orange), ARs (green), UTRs (light blue), or non-coding sequence (dark
blue), with its position on the x- and y-axes reflecting the conservation
score calculated by the binomial- and parsimony-based methods, respec-
tively. The boundaries of each rectangular area (color coded to match the
Venn diagram in A) correspond to the established conservation score
threshold for each method (see Figs. 1, 2). The indicated percentages
reflect the fraction of bases of the indicated type of sequence falling
within that area. For visual clarity, every tenth base is plotted; however,
the indicated percentages reflect all bases.

ary structure, which may be involved in splicing, translational
regulation, or mRNA localization or degradation.

A total of 29 MCSs were found to contain sequences that are
candidates for RNA structural elements (see http://www.nisc.
nih.gov/data). Strikingly, seven and five of these MCSs are lo-
cated within 5’ and 3’ UTRs (or within 2 kb upstream thereof),
respectively. This represents a seven- and four-fold enrichment of
MCSs in these positions, respectively (assuming a uniform distri-
bution). These results are reassuring, especially since UTRs are
known to contain structural elements involved in the regulation
of translation (van der Velden and Thomas 1999) and mRNA
localization (Etkin and Lipshitz 1999). Note that none of the

UTRs studied here has previously been shown to contain a struc-
tural element. Finally, all but one of these 29 MCSs reside within
known transcribed sequences, or within 2 kb thereof; we thus
suspect that some of these MCS sequences may be involved in
the regulation of mRNA splicing (Akker et al. 2001).

The predicted RNA secondary structures for sequences
within two of these MCSs are shown in Figure 5. Both reside
within introns of the ST7 gene, with each forming a long, highly
conserved hairpin. The structure in Figure 5A was found to be
associated with a number of base substitutions that were accom-
panied by a compensatory change at the partnering base (data
not shown), thus adding credibility to the predicted structure.
The structure in Figure 5B reflects a remarkably conserved se-
quence (a 206-base region with only one substitution among the
nine mammals examined); this region is part of a transcript (Gen-
Bank AF400044) that contains some of the ST7 coding exons
(Vincent et al. 2002). Both structures in Figure 5 appear to be
good candidates for microRNAs (Lim et al. 2003).

Transcription Factor-Binding Sites

We searched the detected MCS sequences for potential binding
sites of transcription factors cataloged in TRANSFAC 5.0 (Matys
et al. 2003). Because the detection of small, individual sites is
associated with false-positive predictions, we specifically looked
for cases where an MCS contained multiple, clustered sites. Par-
ticularly interesting results were encountered with several MCSs
(see http://www.nisc.nih.gov/data). One of these (Fig. 6) is lo-
cated 4 kb downstream of the first coding exon of the MET proto-
oncogene (encoding the hepatocyte growth factor receptor) and
contains six predicted binding sites for transcription factors of
the hepatocyte nuclear factor family as well as one for hepatic
nuclear factor HNF4. Interestingly, HNF4 has been shown to be
involved in the regulation of the murine Met gene (Spagnoli et al.
2000).

Contribution of Different Species” Sequences to the
Detection of MCSs

We investigated how different species’ sequences contributed to
the detection of MCSs. Specifically, we systematically recom-
puted the binomial-based conservation score for all possible
combinations of species, and then examined the relative perfor-
mance of each in detecting the intersecting MCSs identified us-
ing the sequences from all 11 non-human species. To avoid prob-
lems created by the absence of sequence for certain species, we
limited these analyses to a “reference set” of 561 MCSs (contain-
ing 33,322 bp) residing within a ~560-kb interval for which se-
quence data were available in all species (see Methods).

These studies required an understanding of the relationship
between sensitivity (fraction of reference MCS bases detected)
and specificity (fraction of detected MCS bases that corresponds
to reference MCS bases) over a range of conservation score
thresholds. This relationship is shown for individual species in
Figure 7A. Note that since all results are compared to a set of
intersecting MCSs (and not just the MCSs detected by the bino-
mial-based method), in no case is 100% sensitivity and specificity
achieved (even when all species’ sequences are used). Impor-
tantly, the general trends seen for the various species are consis-
tent across the entire range of sensitivity and specificity values.

Analyses using individual species’ sequences revealed differ-
ences in the types of sequence within the detected MCSs (Fig.
7B). For these comparisons, we used a conservation score thresh-
old that yielded a specificity of 65%, except for chicken (81%),
tetraodon (99%), and fugu (99%; sequences from these species
are incapable of yielding lower specificities; see Fig. 7A). These
results demonstrated that: (1) rodent sequences detect the great-
est number of MCS bases as well as the largest fraction of non-
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Figure 5 Representative RNA secondary structures predicted for sequences within two MCSs. The
minimal free energy structures for the human sequences are depicted, as produced by the Vienna
Package (Hofacker et al. 1994). (A) Hairpin structure within an MCS in intron 1 of 77 (log-odds = 26.3,
position of sequence displayed: 855569-855698). (B) Hairpin structure within an MCS in intron 11 of
ST7 (log-odds = 46.7, position of sequence displayed: 1019625-1019879).

coding sequence; (2) chicken sequence detects slightly fewer
MCS bases than rodents, but with a considerably higher specific-
ity (see Fig. 7A) and with the largest amount (indeed, 99.8%) of
coding MCS bases; (3) the MCSs detected with fish sequences
almost exclusively contain coding sequence, although this only
accounts for 13% of the reference MCS bases; (4) non-human
primate sequences are not useful for MCS detection by the meth-
ods described here; and (5) none of the individual species’ se-
quence alone came close to identifying all of the reference MCS
bases (consistent with a previous analysis performed with mouse
sequence alone; Thomas et al. 2003).

Analyses using different combinations of multiple species’
sequences revealed additional important findings. First, the top
10 combinations of two species’ sequences (used in conjunction
with the human sequence) are virtually indistinguishable from
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one another, with the results obtained
with mouse and cow sequences shown
in Figure 8. All of these two-species com-
binations contain a rodent sequence
(mouse or rat) along with one additional
non-primate mammal (cat, cow, dog, or
pig) or chicken. Similarly, the most ef-
fective subsets of three to five species’
sequences are consistently those con-
taining different combinations of mam-
mals plus chicken (Fig. 8). The ability to
detect reference MCS bases increases
with additional species’ sequences until
there are about six species represented,
both in terms of sensitivity/specificity
characteristics (Fig. 8A) and total MCS
bases detected (Fig. 8B). Beyond six spe-
cies, the addition of non-human primate
and/or fish sequences do not contribute
significantly to the detection of the ref-
erence MCS bases. Finally, note that the
ability to detect MCSs overlapping cod-
ing sequence plateaus with fewer species
compared to detecting MCSs that over-
lap non-coding sequence.

DISCUSSION

The identification and characterization
of all genomic elements that confer
function will be central to gaining a glo-
bal understanding of biological systems.
With the generation of complete ge-
nome sequences from multiple verte-
brates (Green 2001; International Hu-
man Genome Sequencing Consortium
2001; Aparicio et al. 2002; International
Mouse Genome Sequencing Consortium
2002), the focus is rapidly shifting to the
development of strategies for establish-
ing comprehensive catalogs of func-
tional sequences. One powertul route for
this involves performing comparative
analyses that distinguish between those
sequences that are and are not highly
conserved across large evolutionary dis-
tances. The premise of such efforts is
that highly conserved sequences are
more likely to reflect regions under ac-
tive selection due to the presence of an
element(s) that confers biological function.

Initial comparisons of the sequences of whole mammalian
genomes (e.g., those of human and mouse; International Mouse
Genome Sequencing Consortium 2002) have revealed strikingly
high levels of similarity. For example, 40% of the human genome
sequence forms alignments with the mouse genome sequence
(International Mouse Genome Sequencing Consortium 2002;
Schwartz et al. 2003b), and this figure is even higher for many
other mammalian sequences (Thomas et al. 2003). These num-
bers are roughly an order of magnitude greater than the amount
of the mammalian genome estimated to be under active selection
(~5%; International Mouse Genome Sequencing Consortium
2002; Roskin et al. 2003). These early glimpses thus suggest that
pair-wise sequence comparisons will not be sufficient for pre-
cisely identifying the small fraction of the mammalian genome
that is functionally important.
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Figure 6 A 600-bp region within MET intron 2 with clustered putative binding sites for the
indicated transcription factors. The orange bar depicts the position of a detected MCS; note that
this MCS is flanked by 4.6 kb and 26 kb of intronic sequence, respectively. Two of the binding sites
for HFH (hepatocyte nuclear factor homolog) transcription factors overlap, and there are thus only

six independent occurrences.

To extend comparative sequence analyses beyond simple
pair-wise studies, we sought to develop approaches for identify-
ing MCSs, discrete regions of DNA that are conserved across mul-
tiple species. Here we report the development of two indepen-
dent methods for MCS detection and describe their relative per-
formance in analyzing a recently generated data set of
orthologous sequences derived from the same 1.8-Mb genomic
region in 11 non-human vertebrates (Thomas et al. 2003). The
strong concordance found between the two methods suggests
that the identified MCSs indeed reflect the most evolutionarily
conserved sequences in the studied genomic region. In addition,
the detected MCSs were found to overlap virtually all known
coding exons as well as some non-coding regions already shown
to be functionally relevant (Thomas et al. 2003).

There are several important factors to consider about detect-
ing MCSs by the methods described here. First, the total branch
length of the phylogenetic tree consisting of the species being
studied must be sufficiently large, ensuring that enough evolu-
tionary time has elapsed so that non-functional regions have
sufficiently diverged. This can be accomplished by utilizing ei-
ther a small number of highly diverged species (such as that
performed here) or a larger number of more closely related spe-
cies (Boffelli et al. 2003; see below). Second, the reliable identi-
fication of smaller functional elements within MCSs will require
a greater total branch length compared to the identification of
larger functional elements (Cooper et al. 2003). Since coding ex-
ons and non-coding RNA genes are generally conserved over
larger stretches of DNA, these elements can often be detected
using a small set of species’ sequences; however, the reliable de-
tection of smaller functional regions, such as individual tran-
scription factor-binding sites, is likely to require larger (and per-
haps different) sets of species’ sequences. The two methods for
detecting MCSs described here utilize calculations performed
with 25-base windows, which are much larger than most indi-
vidual transcription factor-binding sites; despite this, these
methods do appear to detect MCSs that contain such sites (see
Fig. 6; Thomas et al. 2003). It should certainly be pointed out that
the analyses performed in this study focused on a single region of
the human genome. Additional work with larger sets of species
and additional genomic regions is needed to establish how best
to reliably identify smaller functional elements (Loots et al.
2002). Eventually, it will be of interest to know what sets of
species are required to determine if an individual human base is
conserved under various degrees of selection (Cooper et al. 2003).

It should also be noted that our methods are biased towards
the identification of sequences that are conserved in most species
(as opposed to only a subset of species), and thus they work best
to find sequences that are predominantly under purifying selec-
tion (including several sequences previously characterized as
ARs; see http://www.nisc.nih.gov/data). Genomic regions whose
function (and thus sequence) has changed significantly in cer-
tain lineages may remain undetected. These include sequences

scale genomic comparisons that model
richer, more complex modes of molecular
evolution remains a significant challenge
(Blanchette and Tompa 2002). Such issues
have a significant bearing on the choice of
species for performing such sequence com-
parisons—as the set of species being studied
becomes very diverse, it becomes increas-
ingly necessary to deal effectively with varied modes of evolu-
tion.

Algorithms that utilize diverse sets of species, such as those
described here, also depend on the ability to align multiple or-
thologous sequences in a robust and accurate fashion. Imperfec-
tions in the multi-sequence alignments can result in the failure
to detect an MCS (false negative) or the inappropriate prediction
of an MCS (false positive). The development of newer-generation
strategies for generating genomic multi-sequence alignments
(Brudno et al. 2003; Bray and Pachter 2003; and W. Miller, pers.
comm.) will be important for capturing the full power of com-
parative sequence analyses, especially using sequences generated
from more divergent species.

As an alternative to searching for sequences shared over
large evolutionary distances, some comparative analyses involve
cataloging sequence differences among closely related species,
with regions lacking such differences then presumed to be func-
tionally important. Such a strategy was recently implemented for
identifying functional regions (mainly coding exons and regula-
tory elements) using multiple primate sequences (Boffelli et al.
2003). This approach should be particularly effective at detecting
primate lineage-specific functional elements, although se-
quences from numerous species will likely be needed to identify
all such elements. Nonetheless, investigating the full potential of
this strategy, especially within the primate lineage, is highly de-
sirable.

The ability to enhance the detection of highly conserved
genomic elements is one of many criteria being considered in
choosing additional species for whole-genome sequencing. Our
analyses thus included investigating the relative contribution of
different species’ sequences to the identification of MCSs using
our targeted genomic region as a model. These studies revealed
that the small number of vertebrate genomes whose sequence is
at or near completion (human [International Human Genome
Sequencing Consortium 2001], mouse [International Mouse Ge-
nome Sequencing Consortium 2002], fugu [Aparicio et al. 2002],
and rat [http://genome.ucsc.edu/cgi-bin/hgGateway?org=rat])
will not be sufficient for detecting MCSs in a comprehensive
fashion, especially those residing within non-coding regions.
However, the addition of sequences from even one or two more
mammals would likely improve MCS detection significantly.

The results obtained with chicken sequence deserve special
comment. Most human-chicken sequence alignments fall within
a detected MCS, and virtually all coding sequences are included
in those alignments. This is in sharp contrast to human-mouse
alignments, the vast majority of which do not fall within a de-
tected MCS, and human-fish alignments, which are almost ex-
clusively restricted to coding regions (but do not include all cod-
ing sequences). However, the virtue of the high sensitivity and
relatively high specificity for identifying coding sequence that is
provided by human-chicken alignments should be balanced
against its relatively poor sensitivity for detecting conserved non-

Genome Research 2513
www.genome.org



Margulies et al.

A

ALL
Tetraodon
Fugu
Chicken
Rat
Mouse
Cow

Pig

Cat

Dog
Baboon
Chimpanzee

Specificity
o
=)

Il

2
~

SRR RER R RS

0.2
A EECE,

DA A A DI I I e eI I I DBl e e DI T

T T
0.0 0.2 0.4 0.6 0.8 1.0

Sensitivity
B
[ Coding
mm UTRs
30,000 -| T ARs .
I Non-Coding

20,000

Reference Set of MCS Bases

10,000

0 T T T T

W S vy B N O N o
R ?*O‘\\c, (A G\@o <«

Figure 7 Ability of individual species’ sequences to detect MCSs. (A)
Using the indicated species’ sequences, MCSs were identified by the
binomial-based method over a range of conservation score thresholds.
Shown is the resulting relationship between sensitivity (fraction of refer-
ence MCS bases detected; see Methods) and specificity (fraction of de-
tected MCS bases that corresponds to reference MCS bases). Also indi-
cated are the results using the sequences from all 11 non-human species
(ALL). Note that the limited amount of alignable sequence from chicken
and fish impedes the ability to obtain the full range of sensitivity/
specificity values. (B) Detection of reference MCS bases, indicated for
each type of sequence (coding, UTRs, ARs, and non-coding). This is
shown for each species’ sequence using the data obtained with a speci-
ficity of 65% (horizontal grey line in A), except for chicken and fish. For
the latter species, data obtained with specificities of 81% and 99%, re-
spectively, were used (since lower specificities cannot be achieved with
these sequences; see A). ALL represents the entire set of reference MCS
bases (which is detected by the binomial-based method with a 75%
specificity when the sequences from all 11 non-human species are used).
Data with non-human primate sequences were not included in B because
of their inability to achieve a specificity of 65% (see A). Note that a
specificity of 65% was chosen since it allowed the inclusion of most
species’ sequences. The underlying data associated with these analyses
are available at http://www.nisc.nih.gov/data.

coding sequences. Given the striking differences between the
ability of sequences from non-primate mammals versus chicken
to detect MCSs (especially those within non-coding regions), it is
of great interest to investigate the use of sequences from species
whose evolutionary position relative to human resides between
the placental mammals and birds, such as marsupials (Chapman
et al. 2003) and monotremes.

The studies reported here and elsewhere (Thomas et al.
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2003) provide tantalizing evidence that many MCSs are indeed
biologically important. Provided appropriate sequence data sets,
our methods can be readily used to prioritize genomic regions for
functional testing. Critical next steps include correlating specific
biological functions with individual MCSs, especially for the
~70% of MCS bases that do not appear to encode protein. A
major hardship for establishing such correlations is the paucity
of existing information about non-coding functional elements in
the human genome. While the MCSs described here overlap the
majority of experimentally validated regulatory elements in the
1.8-Mb target region (Thomas et al. 2003), this accounts for only
a small fraction (~2%) of the detected MCSs (and inevitably the
inventory of known regulatory elements in the region is far from
complete). Efforts to test directly for the presence of regulatory
sequences (e.g., enhancers and repressors) within the detected
MCSs are ongoing. Similar studies will likely be performed under
the auspices of the recently launched ENCODE project (see
http://genome.gov/ENCODE), which aims to compile a compre-
hensive encyclopedia of functional elements in a selected 1% of
the human genome. These and other studies should begin to
solidify our understanding of the relationships between highly
conserved sequences and the biological functions they confer.

METHODS

Multi-Species Genomic Sequence Data Set

The multi-species sequences analyzed in this study, which were
generated by the NISC Comparative Sequencing Program (see
http://www.nisc.nih.gov), are orthologous to a 1.8-Mb region on
human chromosome 7q31 (Thomas et al. 2003). The specific data
set utilized here (available at http://www.nisc.nih.gov/data) in-
cludes sequences from 11 non-human species: two primates
(chimpanzee and baboon), two carnivores (cat and dog), two
artiodactyls (cow and pig), two rodents (mouse and rat), one bird
(chicken), and two fish (fugu and tetraodon).

Sequence Alignments and Annotations

Pair-wise sequence alignments were generated with repeat-
masked sequences using blastz (Schwartz et al. 2000; 06/26/2002
build, available at bio.cse.psu.edu/dist) and the following param-
eters: B=0C=2K=2500Y = 3400 T = 0. When a position in the
human reference sequence aligned with multiple positions in the
second species’ sequence, the highest scoring alignment was cho-
sen. A human-referenced Multiple Pair-wise Alignment (MPA)
file was then generated using all of the pair-wise alignments. To
keep each species’ sequence alignments on the same coordinate
system, insertions were removed from the human reference se-
quence in each pair-wise alignment prior to building the MPA
file. Note that we have also used the optimized alignment gen-
erated from the Web-based MultiPipMaker program and found
that the MCSs detected with the two alignment strategies were
~95% concordant (data not shown). Also, aligning fish and
chicken sequences to the human sequence is notoriously diffi-
cult; it should therefore be noted that our currently available
strategies might not be aligning the maximum amount of se-
quence from these species. Nevertheless, in support of the valid-
ity of the multi-sequence alignment used here, we found that
99% of the conserved regions identified by the motif-finding
program FootPrinter (Blanchette and Tompa 2002), which does
not rely on a multi-sequence alignment, were correctly aligned
by MultiPipMaker (data not shown).

The above multi-species sequence data set was systemati-
cally annotated for known coding exons and UTRs (Thomas et al.
2003). In addition, ARs (Hardison et al. 2003) were identified
from the output of RepeatMasker (run in sensitive mode; A.F.A.
Smit and P. Green, unpubl.; http://repeatmasker.genome.
washington.edu) using an algorithm developed elsewhere (Inter-
national Mouse Genome Sequencing Consortium 2002), kindly
provided by S. Schwartz, and implemented with a Perl script
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Figure 8 Ability of combinations of different species’ sequences to de-
tect MCSs. Sequences from every combination of the 11 non-human
species were analyzed by the binomial-based method, and the subset of
each possible number of species (from 1 to 10, in addition to human)
yielding the highest sensitivity at 75% specificity was identified. Note that
the ranking of the subsets remains essentially the same for a wide range
of specificity thresholds. (A) The resulting relationship between sensitivity
and specificity is shown for each subset (see Fig. 7A for details). (B)
Detection of reference MCS bases (see Fig. 7B for details), shown for each
best-performing subset of species using data obtained with a specificity of
75% (horizontal grey line in A). Note that the far-left bar represents the
entire set of reference MCS bases (see Fig. 7B). The underlying data
associated with these analyses are available at http://www.nisc.nih.gov/
data.

available at http://www.nisc.nih.gov/data. These annotations
can be viewed at http://genome.ucsc.edu.

Binomial-Based Method for MCS Detection

In the binomial-based method, a conservation score is calculated
for each 25-base window of a multi-sequence alignment based on
the probability of detecting the observed amount of conservation
between the human and each other species’ sequence, assuming
neutral substitution rates. For each species, the neutral substitu-
tion rate is calculated from fourfold degenerate positions (the
third base of codons for which any base will encode the same
amino acid). In this way, sequence conservation detected with
more diverged species (and their higher neutral substitution
rates) is weighted more heavily when calculating the conserva-
tion score.

To generate the final conservation score and normalize for
any phylogenetic biases (e.g., the use of two rodents but only one
bird species), the data are “phylogenetically averaged” by first
averaging the conservation scores within each represented clade
and then averaging across the different clades. The final bino-
mial-based conservation score is calculated from overlapping 25-
base windows (incrementing the window position one base at a
time).

More precisely, let p; be the probability that a given base in
the human sequence has been conserved in species j, assuming
the neutral substitution rate between human and species j. The
conservation score S,,;,(i) of the 25-base window centered at po-
sition i is calculated as follows:

1. For each species j,

A. Let N be the number of aligned bases in the 25-base win-
dow of the human-species j alignment and let K be the
number of perfect matches.

B. Calculate the cumulative binomial probability of observing
at least K matches in N bases, given the neutral substitution
probability p;:

N

ci) =¥ pra - p+

k=K

C. If the proportion of matches is greater than or equal to the
baseline conservation level for that species, K/ N = p;, the
species score s; is set to —/log(C(j)). Otherwise, set
s;=1log(1 — C(j)). In cases where N =0, s; is set to zero.

2. To obtain the final conservation score Sg;,(i), the individual
species’ scores s; are “phylogenetically averaged”:

SBin(i) =1 / S (O'S(Schimpanzcc + Sbaboon) + O'S(Sdog + Scat)
+ O'S(Scow + Spig) + Schicken O'S(Sfugu + Stetraodon))'

In this calculation, conservation scores below zero represent
alignable regions that are more diverged (i.e., less conserved)
than expected, while conservation scores greater than zero rep-
resent regions that are more conserved than expected.

The program used to identify MCSs by the binomial-based
method is available at http://research.nhgri.nih.gov/MCS.

Parsimony-Based Method for MCS Detection

The parsimony-based method analyzes the multi-sequence align-
ment column by column. The conservation of each column is
initially measured with a parsimony score. Given a phylogenetic
tree T relating the sequences being analyzed, the parsimony
score P(i) of the i-th column of the alignment is defined as the
minimum number of substitutions, performed along the
branches of the tree, needed to explain the bases observed at
the leaves of the tree. The parsimony score is a tight lower bound
on the number of substitutions having actually occurred at po-
sition i during evolution. Sequences with gaps in column i are
ignored when computing the parsimony score P(i). A P-value is
then computed that is associated with the parsimony score of
column i, measuring the “surprise” of observing a parsimony
score P(i) or lower if column i had evolved at a neutral substitu-
tion rate.

To quantify this notion of surprise, a model of neutral evo-
lution needs to be defined. The phylogenetic tree T relating the
species under study, as well as the length I(e) of each branch e,
have previously been established (Thomas et al. 2003). Assuming
an HKY neutral substitution rate matrix Q (Hasegawa et al. 1985),
the transition probability matrix along a branch (u,v) is given by
M, =@V Together with a background base distribution ,
this defines a null model of neutral evolution that generates a set
of random but related bases at the leaves of the tree by simulating
evolution. Let A(u) be the random variable representing the base
generated by this random process at node u. We compute
the probability that the parsimony score of the bases thus gen-
erated at the leaves of T have a parsimony score at most P(i).
If this probability is small, the column is unlikely to have been
generated under neutral evolution. Let r be the root of T; let
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Z(u) be a random variable describing the parsimony score of
the bases at the leaves of the subtree rooted at u. We are inter-
ested in computing Pr[Z(r) = P(i)]. To this end, we define
Z,(u), for j €fa,c,g,t} as the parsimony score obtained for the sub-
tree rooted at u, if node u is forced to be labeled with base j.
Notice that Z(r) = min(Z,(r),Z.(r),Z,(1),Z(r)). We compute the
probability Pr[Z,(u) = z,, Z(u) =z, Zy) = 2, Z,(w) = 2,1 A(u)
= o] for all possible choices of z,, z, z,, z,€ N and « € {a,c,g,t} to
obtain

PHZ(r) = P(i)] = >
a e{a,c,g,t}
Za,Zc,Zg,2t € N s.t.
min(zq,zc,zg,2t = P(i)

PI[Z{,(T') =Zg

Z(1) = 2oy Zy(1) = 2oy Z{1) = 2,1 A(1) = d] - ()

We compute Pr[Z,(w) = z,, Z(w) =z, Z,u) =z, Z,(u) =12z Au)

= «a] using a dynamic programming algorithm that proceeds
from the leaves of T back to its root. When u is a leaf, this prob-
ability is zero everywhere except for Pr[Z,(u) = 0, Z.(u) = +%,
Zy(u) =+, Z(u) = +° 1 A(u) = a] = 1 and similarly for ¢, g, and t.
In analogy to Sankoff and Rousseau’s algorithm (1975) for com-
puting parsimony scores, define (x,,x.,X,,%,) @ (¥,,¥c>Yg5Y,) =
(min(x, + y X, +y, + 1, x, +y,+ 1, x,+y,+2),..., min(x, +y,,
X+ ¥+ Lox +y,+ 1, x,+y,+2)) where x; = min;.; x, When u
is an internal node with children v and w, we have
@)y Z(10) = ZV)s... Z(v)) D (Z W), .. Zw)). and thus

Pr{Z,(w) = 2,y Z(u) = 2, ZW), = z,, Z,(u) = 2,1 A(u) = d]

By e(acgt)
Xa X XgXtYaVe VgVt €N s.t.
(Xa,Xc X X0P(Va, VeV g VD=Za,Zc, 2g,2t)

Pr(za(v) =Xay ey Zt(v) =Xt I A(V) = B] :
PI‘[Zd(W) =Vares Zt(w) =Vt I A(W) = "/] . M(u,v)(alB) . M(u,w)(ar'y)

Note that the above sum is finite because Pr[Z,(u) = z,, Z.(u) = z,
Z,u) = z,, Z,(u) = z,] is zero whenever z,, z,, z,, z, differ from each
other by more than two (for binary trees) or are larger than the
number of leaves (Blanchette 2003). Finally, the score assigned to
position i, computed on a 25-base window, is Sp,(i) =
=2 i1z, iv12 10g(PI[Z(1) = P(j)]). Sp,rs(i) is high when i is at the
center of a window of unusually well-conserved columns.

The program used to identify MCSs by the parsimony-based
method is now part of the FootPrinter package (Blanchette and
Tompa 2003), available at http://bio.cs.washington.edu.

Choosing an Appropriate Threshold for MCS Detection

We chose to use a threshold such that 5% of the human sequence
from the analyzed region falls within an MCS for the following
reasons. First, human-mouse sequence comparisons suggest that
~5% of the human genome is under active selection (Interna-
tional Mouse Genome Sequencing Consortium 2002; Roskin et
al. 2003). Second, additional studies estimate that the fraction of
the human genome under active selection is in the range of 4%
to 8% (F. Chairomonte and D. Haussler, pers. comm.). Third, we
find a small range of threshold values where virtually all known
actively conserved sequences (coding exons) are detected within
MCSs while excluding the vast majority of non-coding sequences
(Fig. 1); this range results in 4% to 8% of the human sequence
residing within the detected MCSs. Finally, applying the meth-
ods utilized by the International Mouse Genome Sequencing
Consortium (2002) to the multi-species sequences analyzed here
(and described by Thomas et al. 2003), we obtain a similar esti-
mate for the amount of human sequence under active selection
(data not shown), suggesting that this genomic region is repre-
sentative of the entire human genome.

Defining MCSs

Both the binomial- and parsimony-based methods assign a score
to 25-base windows incremented one base at a time. Therefore,
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this score applies not only to column i but also to the whole
window. To account for this, the final score assigned to posi—
tion i is as follows: ScoreBinomial(i) = max;_; 15 ;.12 Sgin(j)
and ScoreParsimony(i) = max;_;, 15 ;412 Spars(j)- These scores
are then used to define MCSs by each method: For a given thresh-
old t, position i is predicted to be part of an MCS if
ScoreBinomial(i) = ¢, and similarly for ScoreParsimony(i). Note
that these calculations constrain the minimum MCS length to 25
bases. However, the minimum distance between two MCSs is not
constrained (and, in fact, MCSs can be separated by as little as
one base).

The “intersecting set of MCSs” was defined as segments of
contiguous sequence where each base exceeds the conservation
score thresholds of both the binomial- and parsimony-based
methods (see Results; also note that these MCSs are not con-
strained to be a minimum of 25 bases in length). For some analy-
ses (those described under “Uniqueness of MCSs in the Human
Genome” and “Correlating MCSs with Functional Elements” in
the Results), intersecting MCSs separated by <10 bases were
merged to maximize detection of functional sequence spanning
multiple MCSs. This reduced the total number of MCSs by 23%,
while increasing the total number of MCS bases by only 1.4%.
We refer to these below as the “merged MCSs”.

Assessing the Uniqueness of MCSs

Merged MCSs not overlapping known coding exons and contain-
ing <5% repetitive sequence were compared to the human ge-
nome sequence (November 2002 build; see http://
genome.ucsc.edu) using MegaBlast (Zhang et al. 2000). A dropoff
value of 50 was used to prevent small gaps from splitting an
alignment into two parts. To minimize multiple hits associated
with small MCSs (<34 bp), alignments containing <90% of the
MCS length were not considered.

Conserved RNA Secondary Structures

To identify potential RNA secondary structures, MCS sequences
were analyzed with the QRNA program (Rivas and Eddy 2001).
This program uses two orthologous sequences to predict the pres-
ence of a protein-coding region, an RNA structural element, or
neither by searching for conserved RNA secondary structures.
Five pairs of species’ sequences were analyzed: human-mouse,
human-pig, human-dog, cat-cow, and dog-pig. A total of 29
MCSs were identified where the average (over the five species
pairs) log-odds posterior probability of being an RNA structural
element was greater than zero (see http://www.nisc.nih.gov/
data). As a control, the QRNA program was used to analyze a data
set where the multi-sequence alignments of the MCSs were
“scrambled” (i.e., the aligned columns within an MCS were ran-
domly re-ordered, thereby altering the primary sequence but
yielding the same percent identity across the different species).
Upon scrambling, fewer MCSs obtained a score above zero (19
versus 29). The number of predictions obtained with the
scrambled MCSs could indicate a slight bias towards lower-
complexity AT- or GC-rich regions.

Detection of Transcription Factor-Binding Sites

MCS sequences were analyzed for potential binding sites for tran-
scription factors listed in TRANSFAC 5.0 (Matys et al. 2003). The
TRANSFAC database catalogs transcription factor-binding sites
using positional weight matrices (PWMs), which describe the
probability of observing each base at each position of a binding
site. Each candidate site for transcription factor binding can thus
be evaluated under the PWM model as well as the null back-
ground model. The logarithm of the likelihood ratio is often used
to then measure the quality of the match.

Using the aligned orthologous sequences containing candi-
date transcription factor-binding sites and the available PWM,
we computed the score S as the sum of the log-likelihood ratios
for all mammalian species. We then computed a P-value for $§
under a null model of neutral evolution identical to that used for
the parsimony-based method. This was done using dynamic pro-
gramming, similar to that presented above for computing parsi-
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mony score P-values and derived from Blanchette (2003). For
each PWM in TRANSFAC 5.0, we identified all sites with P-values
<107 (see http://www.nisc.nih.gov/data).

We then examined the clustering of predicted transcription
factor-binding sites for each PWM. Suppose k of the N putative
sites for a given PWM are located within the same MCS. Assum-
ing a null model, where each position in each MCS is equally
likely to have a match to one of the N sites, we used simulations
to estimate the probability of a merged MCS with at least k sites.
This probability is the P-value used in this study. Note that the
sizes of the merged MCSs were taken into consideration during
the simulations. To simplify the analysis, we considered only
non-overlapping sites on both strands.

Assessing the Contribution of Different Species’
Sequences to MCS Detection

A 695,679-bp subregion of the above data set (positions 247861-
770083 and 839435-874186; see http://genome.ucsc.edu) was se-
lected for these analyses because it is associated with near-
complete sequence coverage in all species. Within this subregion
are 561 intersecting MCSs that contain 33,322 bp (referred to as
the “reference MCS bases”). For each of the 2! — 1 =2047 sub-
sets of species (all containing human), we measured the sensitiv-
ity and specificity of the binomial-based method to detect these
intersecting MCSs at varying conservation score thresholds. The
complete set of results from these analyses is available at http://
www.nisc.nih.gov/data. It should be noted that analyses per-
formed with the entire 1.8-Mb genomic region (which includes
an occasional clone gap) yielded very similar results to that ob-
tained with the above subregion. Also, because of the computa-
tional demands, it was not practical to use the parsimony-based
method for analyzing all 2047 subsets. However, application of
the parsimony-based method on a small number of the subsets
yielded near-identical results as that obtained with the binomial-
based method.
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