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Vertebrate pre-mRNA transcripts contain many sequences that resemble splice sites on the basis of agreement to the
consensus, yet these more numerous false splice sites are usually completely ignored by the cellular splicing
machinery. Even at the level of exon definition, pseudo exons defined by such false splices sites outnumber real
exons by an order of magnitude. We used a support vector machine to discover sequence information that could be
used to distinguish real exons from pseudo exons. This machine learning tool led to the definition of potential
branch points, an extended polypyrimidine tract, and C-rich and TG-rich motifs in a region limited to 50 nt
upstream of constitutively spliced exons. C-rich sequences were also found in a region extending to 80 nt
downstream of exons, along with G-triplet motifs. In addition, it was shown that combinations of three bases within
the splice donor consensus sequence were more effective than consensus values in distinguishing real from pseudo
splice sites; two-way base combinations were optimal for distinguishing 3� splice sites. These data also suggest that
interactions between two or more of these elements may contribute to exon recognition, and provide candidate
sequences for assessment as intronic splicing enhancers.

[Supplemental material is available online at www.genome.org.]

In higher eukaryotes, most protein-coding genes are mosaics of
exons and introns: The exons contain the protein coding infor-
mation but are interspersed with larger intervening sequences of
no known physiological functions called introns. The introns are
removed from the gene transcripts in a process known as pre-
mRNA splicing (Reed 2000). Splicing is mediated by the spliceo-
some, a large complex of over 100 proteins and five RNA mol-
ecules (Hartmuth et al. 2002; Jurica et al. 2002; Rappsilber et al.
2002; Zhou et al. 2002). Intron removal takes place in two trans-
esterification steps. The first involves cleavage at the upstream
end of the intron accompanied by the ligation of the 5� end of
the intron to the 2� hydroxyl group of an adenosine residue
about 20 to 30 nt from the downstream end of the intron; this
branch point results in a lariat structure. In the second step,
cleavage at the downstream end of the intron is accompanied by
ligation of the two exons. The freed lariat goes on to be degraded.
These chemical steps can take place before transcription has been
completed (Kessler et al. 1993; Bauren and Wieslander 1994).

Before these chemical transformations can take place, the
two ends of the intron must be identified by the splicing ma-
chinery. This identification must be precise and orderly so as to
insure the production of a functional messenger RNA. Although
splice sites are usually recognized unambiguously, there is a large
class of exceptions in which alternative splice sites can be recog-
nized. All possible modes of alternative splicing have been ob-
served (e.g., alternative 5� splice sites, alternative 3� splice sites,
exon skipping, etc.), resulting in two or more protein products
specified by the same gene. As more and more mRNA molecules
have been analyzed, the proportion of genes recognized to give
rise to alternatively spliced products has increased to over 60%

(Graveley 2001). Nevertheless, because typically only one or a
few of the exons in a gene are subject to alternative splicing, the
great majority of exons remain constitutively spliced.

In this study, we applied a computational approach to the
problem of splice site recognition, but restricted ourselves to a
consideration of constitutive splicing only. The most obvious
identifiers of splice sites are the distinctive sequence elements at
the ends of the introns, the integrity of which is necessary for
splicing. Almost universally conserved are a GT dinucleotide at
the 5� end and an AG at the 3� end of each intron (the DNA
version of all sequences will be used here). A consensus sequence
extends the 5� splice site (donor) to the 9-mer (C or
A)AG |GTRAGT and the 3� splice site (acceptor) to the 15-mer
Y10NCAG |G (the nonpolar terms donor and acceptor will be used
here to avoid confusion as we switch focus between exons and
introns). The degree of conservation of a particular base at these
additional positions varies from 35% to 80%, and only a small
minority of splice sites contain a perfect match to the consensus.
Due to the degeneracy of the splice site consensus sequences and
the large size of introns, it is possible to find many candidate
sequences that match the consensuses as well or better than real
splice site sequences. These pseudo sites far outnumber the real
sites, yet they are successfully ignored by the splicing machinery
(Sun and Chasin 2000).

The pairing of splice sites may be a factor in their recogni-
tion, and there is considerable evidence that interaction of splice
sites across the exon, rather than the intron, is important for
splice site recognition (Berget 1995). The designation of the exon
rather than the intron as the primary target of recognition is
termed exon definition, and is supported by two types of evi-
dence. The concept emerged from biochemical experiments in
which the provision of a splice site downstream of the second
exon in a two-exon pre-mRNA was seen to greatly enhance splic-
ing of the upstream intron in a cell-free splicing system (Robber-
son et al. 1990). Genetic evidence comes from the analysis of

3Corresponding author.
E-MAIL lac2@columbia.edu; FAX (212) 532-0425.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.1679003.

Letter

13:2637–2650 ©2003 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/03 $5.00; www.genome.org Genome Research 2637
www.genome.org



splice site mutations: mutations in the splice site residues at ei-
ther end of an exon result more often than not in the skipping of
the entire exon; that is, the unmutated end of the affected exon
is also spoiled for splicing. Many examples of this sort have been
seen either amongmultiple mutations in a single gene (Carothers
et al. 1993; O’Neill et al. 1998) or in a survey of single splicing
mutations in many genes associated with human genetic disease
(Krawczak et al. 1992).

Exon definition can be used as a further criterion for proper
splice site choice: Coupled with the observations that most in-
ternal exons are between 50 and 250 nt long, we can define
pseudo exons as stretches of intron within these limits that are
bounded by pseudo splice sites. However, this restraint does not
do much to remove false sites from consideration. In our previ-
ous analysis of the human hprt gene, pseudo exons outnumbered
real exons by an order of magnitude (Sun and Chasin 2000). Thus
there must be additional sequence information that distin-
guishes real splice sites from pseudo splices or real exons from
pseudo exons.

Splicing enhancer sequences have been proposed to fill this
role. These sequences were originally discovered as short purine-
rich exonic stretches that were necessary for the inclusion of
alternatively spliced exons (Watakabe et al. 1993). Subsequent
work showed that effective sequences could also be pyrimidine-
rich or AC-rich (Tian and Kole 1995; Coulter et al. 1997), al-
though purine-rich sequences still predominate (Ladd and Coo-
per 2002). More recently, in vitro or in vivo selection experi-
ments have produced a large number of sequences that can act
as enhancers when introduced into alternatively spliced or
otherwise debilitated exons, and these show specificity for in-
teractions with particular protein splicing factors (Liu et al.
1998, 2000; Schaal and Maniatis 1999b). Although tested in
alternative splicing systems, exonic enhancer sequences have
been readily found in constitutively spliced exons (Schaal and
Maniatis 1999a). Moreover, it has long been recognized that mu-
tations within exons in sites other than the splice consensus
sequences can impair splicing (Reed and Maniatis 1986). How-
ever, the degeneracy of the exonic splicing enhancer sequences
that have emerged from these studies makes it difficult to see
how this information can be used to distinguish real exons from
pseudo exons, because enhancer-like sequences abound within
introns and within pseudo exons (X.H-F. Zhang and L.A. Chasin,
unpubl.).

Additional information that specifies real splice sites could
involve: (1) a distinction between real enhancers and pseudo
enhancers; (2) enhancer sequences not yet identified; (3) silencer
sequences that repress the use of pseudo splice sites; (4) subtle
differences in splice site sequences; (5) specific interactions
among these elements. These possibilities are not mutually ex-
clusive. The recognition of these elements is difficult because the
active sequences may be located at variable distances from the
relevant splice sites, they may be represented by a heterogeneous
family of sequences, and they may represent variable sequence
solutions for the formation of specific structures that are the
actual targets of recognition. In the face of these difficulties, we
have undertaken a computational approach to this question
based on machine learning.

We asked whether a machine-learning classifier could learn
to distinguish between the real exons and pseudo exons we have
defined above, and we used support vector machines (SVMs)
for this purpose. SVMs have been used extensively in text classi-
fication and image recognition (Cortes and Vapnik 1995;
Joachims 1998), and have been applied to protein sequence clas-
sification (Jaakkola et al. 1999; Leslie et al. 2002) and to discrimi-
nation tasks in nucleic acid sequences such as translation initia-
tion site recognition (Zien et al. 2000). SVMs are state-of-the-art

classifiers that have shown excellent empirical performance in
prediction tasks and have strong theoretical justification (Vapnik
1998).

Our basic strategy was to identify sequence features that
allow an SVM to distinguish real from pseudo exons, and then to
apply statistical tests to the sequences that emerged to determine
whether they are specifically associated with exons. We limited
ourselves to constitutively spliced internal exons. We trained
SVMs by providing positive and negative examples (real vs.
pseudo exons) and features we believed could be available to the
cellular splicing machinery of the cell: the individual sequences
comprising the acceptor and donor splice site consensus and the
occurrences of k-mers in intronic flanking sequences. Sequences
in exon bodies present a special problem of interpretation, be-
cause they harbor a variety of signals that distinguish them from
introns but that may have no relevance for splicing. The most
obvious of these is protein coding information, but signals for
mRNA transport, stability, and localization are also undoubtedly
present. These readily discernible differences confound the iden-
tification of splicing-specific signals. For this reason we have de-
ferred a detailed examination of exon sequences in this work,
concentrating instead on the splice sites and their intronic flanks.

We found sequence elements in 50-nt windows upstream
and downstream of exons that are associated with exons, and we
found sequence elements that are avoided by these regions. In
addition, an SVM revealed combinations of bases within donor
site sequences that provide a sharper distinction between real
and pseudo sites than do the consensus values. The functionality
of these associations can now be tested in molecular genetic ex-
periments. Although it was not our intention to produce an al-
gorithm for gene finding, the results reported here may be of
some use toward that end.

RESULTS

The Real Exon and the Pseudo Exon Databases
A total of 25,229 internal exons were collected from 3917 genes
(see Methods) in the Exon Intron Database (EID) of Saxonov et al.
(2000). From this set we limited ourselves to 5753 exons that
were not known to be alternatively spliced, that were flanked by
completely sequenced introns, and that were between 50 and
250 nt long. From the same set of genes, we established a data set
of 9246 pseudo exons, sequences that have the appearance of
exons in that they have the same size limits and must have con-
sensus values (see Methods) higher than 78 for donor sites (5�

splice sites) and 75 for acceptor sites (3� splice sites). Real exons
have median consensus values of 82 for donor sites and 80 for
acceptors. The cited limits would eliminate about 25% of real
exons. In addition, pseudo exons had to be at least 100 nt away
from the closest real exon. We left branch points as a feature that
might be defined by our analysis. The pseudo exon data set pro-
vides a control set to help us discover functional sequence ele-
ments, both those needed to define an exon and potentially
those that repress splicing of pseudo exons.

In addition to the sequences from EID, we generated 15,000
real exons and 25,000 pseudo exons for use as a final test set from
1853 full-length human genes (all different from those in the EID)
collected by aligning mRNA sequences from GenBank to genomic
sequences from the human genome database (see Methods).

Use of Support Vector Machine to Discriminate Exons
From Pseudo Exons
We trained a support vector machine classifier (SVM) on a train-
ing set of true and pseudo exons in order to learn a classification
rule that can discriminate between them. Each input sequence is
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represented by a vector of sequence-based features, scored as ei-
ther present (1) or absent (0) in the sequence. The features used
are short sequences (k-mers) from the exon flanks and exon body
and combinations of bases within the splice site (see Methods).
The learned prediction rule is evaluated on a test set of examples
unseen during training. By training on features from different
regions of the sequence (flanks, body, and splice sites) and evalu-
ating SVM performance, we can determine which regions are
most useful for discrimination. We can also examine the trained
SVM classifier to see which individual sequence features are most
discriminative and whether they are positively or negatively
weighted (indicative of true or pseudo exons).

The trained SVM determines a ranking of test examples by
their the discriminant values. Varying the threshold for the dis-
criminant scores yields a plot of the rate of true positives as a
function of the rate of false positives, resulting in a “receiver
operating curve” for the test set. We evaluate classification per-
formance using the receiver operating characteristic (ROC) score,
which is the area under this curve. Perfect ranking of true posi-
tives above false positive gives an ROC score of 1, whereas a
random classifier has an expected ROC score close to 0.5.

We trained the SVM on a set of ∼3000 real exons and a like
number of pseudo exons and then reported the ROC score on an
untouched set of ∼2000 of each. Statistical analyses of sequence-
based features were then carried out on yet another untouched
set of ∼15,000 real and pseudo exons.

Contribution of Different Components
to the Discrimination of Exons From Pseudo Exons
We divided exons and their flanks into five nonoverlapping com-
ponents: upstream flanks, acceptor splice sites [3� splice sites in-
cluding the polypyrimidine tract (PPT)], exon bodies, donor
splice sites (5� splice sites), and downstream flanks. The flank and
exon sequences were defined as starting beyond the splice site
sequences themselves (i.e., not starting exactly at the exon/
intron boundary). These were taken to be �14 for the upstream
flank and +6 for the downstream flank, numbers being relative to
the intron–exon boundary. Although the length of the flank was
varied in many experiments, 50 nt was used in most experiments
reported here (unless otherwise indicated). Thus the upstream
flanks extended from �64 to �15, the downstream flank from
+7 to +56, and the exons from +2 to �4. We then used an SVM
to evaluate the information contained in the sequences of these
components, as described below.

Splice Site Sequences
Although both real exons and pseudo exons comprise sequences
with similar consensus values, they differ in the particular ar-
rangement of bases that underlie these scores. To test the idea
that pseudo exons may host different internal base combina-
tions, we used position-dependent base combinations as features
for an SVM, assessing up to seven base combinations in the do-
nor sites (excluding the GT) and up to 13 in the acceptor sites
(excluding the AG). Combinations of three bases proved to be
optimal for donor sites, whereas two-way base combinations
were best for acceptor sites. Using both sites simultaneously, an
ROC score of 0.907 was achieved, indicating that there was a
substantial difference in base combinations between real sites
and pseudo sites (Table 1). Leaving out either site significantly
compromised the results (Table 1). This result suggests that the
particular arrangement of bases in the splice site plays a large role
in its recognition. However, we note that the real exons were not
subjected to filtering by consensus score, unlike pseudo exons,
which had to have a donor consensus value of at least 78. To
control for this possible bias in the case of donor sites, we elimi-
nated the low-scoring (donor consensus value < 78) real sites so

that the real and pseudo sets had the same score range. The SVM
using donor-site base combinations alone achieved an ROC of
0.822, only slightly lower than the value of 0.837 obtained when
the real set included the low-scoring sites (Table 1). However,
even though the real and pseudo sites now shared the same
threshold, the distribution of their scores was different. Pseudo
exons tend to have more scores near the cut-off (78 for donor and
75 for acceptor sites), whereas real exons in this range have a
peak around a median value of 85.6. We therefore ran another
experiment that eliminated the consensus value as a filter alto-
gether. We collected from introns any 9-mer with GT at the
fourth and fifth positions as the negative data set (870,000) that
was within 50 to 250 nt downstream of any AG. The positive data
set included all real donor sites (3000). We obtained ROC values
of 0.951 using consensus values and 0.977 for SVM using three-
way donor base combinations. The higher ROC values are due to
the fact that we are using a very large and poor set of sequences
as pseudo exons in this case. We conclude that the three-way
combinations are as good or better than consensus values as a
criterion for distinguishing real from pseudo donor sites.

To compare the consensus value and the three-way combi-
nations more sensitively, we plotted the false positive rate, FP/
(TP+FP), as a function of sensitivity. The use of consensus values
produced about twice as many false positives at almost all sensi-
tivity levels than did an SVM using three-way base combinations,
whether performed on the set of pseudo donor sites chosen only
on the basis of GT (Fig. 1A) or on the set with a minimum con-
sensus value of 78 (Fig. 1B). As shown in Figure 1, similar results
were obtained whether we computed consensus values by adding
the probabilities at each position (CV: Shapiro and Senapathy
1987) or by calculating the log likelihood (LLH; Rogan et al.
1998). We also compared the SVM results to the maximum de-
pendence decomposition (MDD)method, which is based on two-
way base combinations (Burge and Karlin 1997, as implemented
by G. Yeo and C. Burge at http://genes.mit.edu/burgelab/
maxent/Xmaxentscan_scoreseq.html). The two methods per-
formed similarly on pseudo donor sites built around any GT, but
the SVM performed better on the selected set of pseudo sites with

Table 1. SVM Peformance in Distinguishing Real From Pseudo
Exons

Flanks Splice sites

Exon body ROC SpecificityaUS DS 3� 5�

CVb 0.609 0.484
+ � � � � 0.791 0.638
� + � � � 0.784 0.618
+ + � � � 0.855 0.695
� � + � � 0.823 0.672
� � � + � 0.837 0.698
� � + + � 0.907 0.777
+ + + + � 0.932 0.825
� � � � + 0.946 0.841
+ + � � + 0.984 0.956
� � + + + 0.987 0.964
+ + + + + 0.991 0.976

aSpecificity = TP/(TP + FP) at a sensitivity (SE = TP/(TP + FN)) of 0.90.
bThe SVM classified on the basis of the acceptor and the donor con-
sensus values.
Performances are indexed by ROC values and specificity. Each row is
an SVM test. ROC values were measured in untouched sets of ∼2200
real and ∼2300 pseudo exons. The first five columns indicate the
components used by SVM. US, upstream; DS, downstream; TP, true
positive; FN, false negative; FP, false positive; SE, sensitivity; SP,
specificity.

Pre-mRNA Splicing Information Identified by SVM
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consensus value scores greater than 78 (Fig. 1B). These results
support the idea that a substantial proportion of pseudo splice
sites host unfavorable base combinations, and they suggest that
three-way base combinations could be more predictive of the
quality of donor sites than consensus value.

Flanks
If there are some general enhancers in the flanks of real exons or
repressors in the flanks of pseudo exons, then their presence may
be detectable by differences in oligomer composition. We exam-
ined the performance of an SVM using occurrences of oligomers
from 4 to 7 nt long in each flank as features, and explored flank
lengths from 50 to 400 nt beyond the splice sites. The optimum
result was achieved using pentamers or tetramers and 50-nt
flanks with a degree-2 polynomial kernel, which implicitly uses
pairs as well as individual features (see Methods). The ROC value
using pentamers was 0.855 (Table 1). Leaving out either of the
flanks or using a linear kernel significantly compromised perfor-

mance, and the use of longer oligomers (6- or 7-nt), slightly de-
creased the ROC value (data not shown). Extending both flanks
to 100 nt did not improve the SVM performance, and when the
flanks were extended above 200 nt the result was substantially
worse (data not shown). We concluded that there is distinctive
sequence information in flanks of exons, and this information
involves both upstream and downstream 50–100-nt flanks. It
should be noted that although splice site sequence information
was not used in examining the contribution of the flanks, the
very definition of a flank does require a topological designation
of a potential splice site.

Exon Bodies
As with the flanks, we used an SVM to differentiate real and
pseudo exons solely on the basis of their exon body oligomers.
Hexamers yielded the highest ROC score (0.947) by a slight mar-
gin, but we present the results for pentamers for consistency with
the flank data. A statistical differentiation of exon bodies from

Figure 1 Three-way combinations of bases within the splice donor site. (A,B) False positive rate as a function of sensitivity in discriminating real and
pseudo exon donor sites. Systematic variation of the threshold resulted in the different sensitivities. Classifying scores were from SVM (heavy black lines);
multiple dependence decomposition (MDD, light black lines); consensus value (CV) calculated according to Shapiro and Senapathy (1987; heavy gray
lines); and consensus values calculated by the log likelihood method (LLH, light gray lines). (A) The data set contained all of the real exons. Pseudo exons
were defined as containing a simple GT as a potential donor site (no consensus value filter). (B) The data set contained all of the real exons. Pseudo exons
were defined as having consensus values of at least 78. (C) Three-way combinations weighted most highly by SVM in distinguishing real from pseudo
exons. The training set consisted of approximately 3400 real exons and 3200 pseudo exons, all of which exhibited donor site consensus values of at least
78. Positive and negative weights are listed separately, in descending weight order (absolute value). Asterisks denote agreements to the consensus. These
64 combinations allow SVM to perform at 92% of the accuracy achieved with the full set.
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their intronic contexts is not difficult and has been used exten-
sively in gene-finding algorithms (e.g., Burge and Karlin 1997).
However, exon bodies are filled with information for translation,
mRNA transport, and mRNA stability. For this reason, it is diffi-
cult to know how much of the distinctiveness of exon sequences
reflects splicing information.

Combining Features
SVM performance improved when more than one type of feature
was used. Addition of flank sequences to splice sites increased the
ROC value from 0.907 to 0.932, a high value achieved in the
absence of exon body information. The inclusion of all three
feature types increased the performance of SVM to 0.993 (Table
1), close to the maximum achievable. An analysis of the relative
contributions of the different classes of features can be found in
the online Supplemental material, available at www.genome.org.
Varying the original parameters for the number of positions in
the splice site sequence and the length of oligomers in the flanks
did not improve the combined SVM performance.

The effectiveness of the SVM in discriminating between real
and pseudo exons using only flank and splice site information
(ROC = 0.932) could in part be due to the presence of highly
repeated sequences in or near pseudo exons but not real exons.
To evaluate this contribution, we used RepeatMasker (Smit and
Green 2002) to eliminate highly repeated sequences from our
data sets. Of a set of 9246 pseudo exons (including 400 nt of
flank) subjected to this filter, 4912 remained in the data set as
repeat-free sequences. Using this repeat-free data set, we repeated
the training and testing using splice site and flank information
(no exon bodies); performance was not affected by the removal
of repeats (ROC = 0.931). SVM also performed equally well
(ROC = 0.933) with these features using a data set of real exons
that had been purged of those with low consensus values (< 78),
ruling out the possibility that these real exons were being distin-
guished by their low scores.

Exon Prediction
To evaluate how these features could help predict real exons in a
gene sequence, we chose eight genes that were not in our train-
ing set and generated a list of 1225 potential exons. The splice
consensus values used were just low enough to capture all 37 real
exons in these genes. We then used an SVM to predict the real
internal exons. Inclusion of information from several combina-
tions of components for SVM greatly cut down the number of
pseudo exons. The inclusion of flank information reduced the
number of pseudo exons by a factor of 2 to 3 (Table 2, rows 4 and
5), reinforcing the idea that flanks can be important in exon
recognition. Under conditions in which 95% of the real exons
were recognized, inclusion of all sequence information reduced
the number of pseudo exons from 1188 to 53, representing a
reduction in the noise-to-signal ratio from 34 to 1.5.

We thought it would be interesting to compare the perfor-
mance described above to that of a full-fledged gene finding pro-
gram, Genscan. Presented with the eight complete gene se-
quences, Genscan found all but one real exon (97% sensitivity)
and chose only one pseudo exon, compared to the 53 out of 1188
that the SVM found in the binary classification setting (using all
sequence features). To test whether gene structure information
used by Genscan was responsible for this better performance, we
re-ran Genscan using the same input that was used for the SVM:
lists of real exons and pseudo exons with 50-nt flanks. In this
case, Genscan missed 10 of the 37 exons (73% sensitivity) but
chose none of the 1188 pseudo exons, even when run with the
most permissive parameters. (For comparison, at the same 73%
sensitivity level, the SVM approach using all sequence features

retained nine pseudo exons.) The comparison is imperfect, be-
cause our SVM was purposely trained to recognize pseudo exons
with higher CV scores and because the training sets of the two
methods were different. We did not try to improve performance
of the SVM as an exon predictor, because our focus was on iden-
tifying factors that could play a mechanistic role. However, in
addition to suggesting splicing-related sequence features, we be-
lieve that the SVM approach described here could potentially be
used to improve the performance of gene-finding programs.

Identification of Sequences Used to Distinguish
Real Exons
To extract discriminative features, we carried out a systematic
recursive feature selection (RFE) on the training set. In this pro-
cedure, the SVM was recursively retrained using only the top half
of the features that were used in the previous run (see Methods).
We continued these feature elimination runs as long as the ROC
value remained within 90% of that produced by the original full
feature set.

Donor Site Three-Way Combinations
Out of 1340 initial three-way donor combinations present in the
data, a total of 64 three-way base combinations sufficed for an
effective classification (ROC of 0.809 vs. 0.837) comparing real
and pseudo exons with a consensus value of at least 78 (the top
75% of real exons). The list of top contributors included 51 posi-
tively and 13 negatively weighted combinations (Fig. 1C). About
half of the positive combinations (21/51) represent the consen-
sus sequence, and these were the most highly weighted combi-
nations. For the most part the weighting follows the difference in
prevalence of these combinations in the real versus the pseudo
set (data not shown). However, the negatives include a similar
proportion of consensus combinations (3/13), and there are
some exceptional combinations that do not follow a simple
prevalence discriminator. For example, g- -GT-ag-, ga-GT- -g-, and
ga-GT-a- -all are fairly abundant among real exons (11% to 13%)
but are even more abundant among pseudo exons (14% to 15%),
yet were assigned weights that were in the top quarter among
positives. Because the SVM score is a weighted sum of all possible
three-way combinations, it could be that these particular combi-
nations, although prevalent in pseudo exons, are associated with
other (unfavorable) combinations within the same pseudo splice
site sequence.

Table 2. Exon Prediction Using SVM

Splice
sites Flanks

Exon
bodies

True positives detected

32/37 35/37 37/37

� � � 1225 1225 1225
� + � 164 259 668
� � + 108 232 383
+ � + 58 111 180
+ + + 19 53 90

Eight human genes (3–42 42� kb, average 13� kb) were scanned for
potential exons using criteria relaxed enough to capture all 37 real
internal exons (acceptor and donor splice site scores of 70, lengths
from 18 to 300 nt); 1225 pseudo exons were thus generated. SVM
was asked to classify the candidates as real or pseudo exons. The
weights given to various SVM components were varied, resulting in
different degrees of success in recognizing the 37 real internal exons.
The number of false positives (pseudo exons) chosen as real exons is
shown for the inclusion of splice site sequence, flank sequence, and/or
exon sequence information. Note that no reading frame information
was included.
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Acceptor Site Two-Way Base Combinations

We extracted high-scoring two-way base combinations from the
SVM results of a comparison of real and pseudo exons having a
minimum acceptor site consensus value of 75. The inclusion of
128 two-way base combinations was sufficient to maintain the
effectiveness of this type of information (ROC = 0.805 vs. 0.844
for all 1248 possible two-way combinations). Of these, 49 had
positive and 79 had negative weights. The G+C content was three
times as high in the positive set (74/98) compared to the negative
set (35/158). Among the positive combinations, two sequences of
adjacent bases stood out: four AA and three CG dinucleotides
were present, a number several times higher than the 0.5 ex-
pected on a random basis in this set and found among pseudo
exons. This difference prompted us to examine the overall fre-
quency of these dinucleotides in 10-nt PPTs (i.e., the �14 to �5
region upstream of real exons, 15,896 examined) of the large
untouched test set. AA occurred 2.3 times more frequently than
expected based on the consensus matrix. Analysis of the CG fre-
quency is complicated by the fact that this dinucleotide is about
one-fifth the expected value in the genome in general. In PPTs, it
is present at a higher level, about one-quarter of expectation. A

more useful indicator of CG abundance is its fourfold greater
frequency with real exons (0.093 per PPT) compared to pseudo
exons (0.024 per pseudo PPT). It appears that AA and CG are
characteristic of many PPTs.

Among negatively weighted combinations, AG was overrep-
resented, and this dinucleotide is indeed rare in PPTs, at only
13% of its expected value. The scarcity of AG has been noted pre-
viously in the region between the branch point and the acceptor
site (Zhang 1998), and can be understood as representing the
avoidance of a competitor for the real splice site. TA was another
dinucleotide overrepresented in the negatively weighted set, and
it is modestly underrepresented in PPTs at 75% of its predicted
value. Again, because the SVM is examining all two-way combi-
nations in every sequence, the TA may be an indirect indicator of
more distinctive (and of course more complex) combinations.

Finally, we noted that among the 13 positions examined,
position �4 was included at a frequency (in 21 of 256 possible
two-way combinations) close to the average for all positions. In
the consensus sequence, this position is N: it is just as likely to be
represented by any of four bases. This result raises the possibility
that position�4 may play a role in splice site recognition despite
its lack of calculated information content.

Flanks
We used the SVM recursively to extract the
top features found in 50-nt upstream and
downstream flanks. An SVM was initially
presented with all possible pentamers, 1024
for each flank; the highest scorers were cho-
sen without regard to the flank in which
they resided. The number of pentamers
could be reduced to 256, one-eighth of the
original number, without greatly compro-
mising the effectiveness of SVM in using
flank information exclusively to distinguish
real from pseudo exons (ROC = 0.827 com-
pared to the original 0.855 using all 2048
pentamers). These top pentamers were first
divided into two categories: those with
positive weights, being either associated
with real exons and/or disassociated with
pseudo exons, and those with negative
weights, with the converse associations.
These pentamers were then further divided
according to their origin in the upstream or
downstream flank, resulting in four groups
of pentamers: 62 upstream positives, 61
downstream positives, 65 upstream nega-
tives, and 68 downstream negatives.

To determine whether these top rated
pentamers were limited to particular re-
gions in the exon flanks, we plotted the
sum of the weights of the 256 top-rated
pentamers found in 5-nt windows upstream
and downstream of real exons. As can be
seen in Figure 2, there is a pronounced peak
for these summed weights proximal to the
exon on each side. On the downstream side,
there is a peak about 15 nt from the exon
with a decrease to background levels at +80
nt. The upstream distribution is much more
constrained, extending only to �40 nt. Be-
cause we only compared 50-nt windows
with the SVM, we did not make use of the
finer (5-nt) positional information revealed

Figure 2 Distribution around exons of pentamer weights assigned by SVM. The top 256 penta-
mers were divided into four groups according to their origins (downstream or upstream) and signs
of their weights (positive or negative). For each group, the SVMweights assigned to each pentamer
were summed for pentamers that started in nonoverlapping windows of 5 nt on either side of
15,000 real exons, 24,000 pseudo exons, and 12,000 repeat-free pseudo exons. Values for up-
stream pentamers only are shown on the left and for downstream pentamers only on the right (i.e.,
values derived from exclusively upstream pentamers are not plotted on the downstream side and
vice versa). Top: positively-weighted pentamers; bottom: negatively-weighted pentamers
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in Figure 2. Future applications of SVMs may be able to use this
information to advantage.

We next examined the prevalence of the individual pentam-
ers within the regions 150 nt upstream and downstream of the
splice site sequences (from �165 to +156). For each pentamer in
each position bin of 5 nt (e.g., �15 to �20), a z-score was cal-
culated as a measure of the representation of the pentamer be-
yond that expected by chance (see Methods). Thus, each
pentamer was associated with a vector composed of a set of z-
scores, representing its frequency profile around exons. These
vectors were then clustered hierarchically and further grouped
using a self-organizing map (SOM; http://gepas.bioinfo.cnio.es/
cgi-bin/somtree). By this means, pentamers having similar posi-
tional profiles were clustered together. Remarkably, almost all of
the pentamers in each cluster showed a high degree of sequence
similarity despite the fact that the clustering procedure took no
account of the actual sequences (Fig. 3). Two additional groups
were comprised of pentamers that showed no significant posi-
tional preference (Fig. 3, bottom panels). Many of these clusters
represented known splicing elements, but some were novel. We
describe each pentamer cluster below.

Pyrimidine-Rich Sequences
One of the largest clusters of positive pentamers consisted of
pyrimidine-rich sequences. Almost all had four or five pyrimi-
dines and originated in the upstream flank (Fig. 3A). The preva-
lence of these pentamers peaked at a position just upstream of
the PPT and declined monotonically with increasing distance
from the exon. We had defined our acceptor sites as having a PPT
of 10 nt, but this limit was rather arbitrary, as the tract often
extends further upstream (Penotti 1991). The distribution of py-
rimidine-rich pentamers undoubtedly reflects this extended PPT.
Thus these sequences are probably more appropriately consid-
ered part of the polypyrimidine tract that defines the acceptor
site rather than “flank” information of a different type. The red
line in each distribution chart depicts the average distribution of
the pentamer cluster in the pseudo exon set. In all cases, the
pseudo exon distribution is relatively flat compared to that of the
real exons. Moreover, it is often consistently lower than the flat
regions of the real exons. We interpreted this decrement as due to
the presence of highly repeated sequences present in the pseudo
exon class but rare in the real exons flanks. If a particular
pentamer is not highly represented in repeat sequences, its preva-
lence overall will decrease by default, because about half of the
pseudo exons overlap with repeats. When repeat-free pseudo ex-
ons were examined, the background prevalence increased (data
not shown) to match the background of real exons, defined
as the prevalence in regions more than 100 nt from the splice
sites.

Pyrimidine-rich pentamers were also found among down-
stream sequences, but the prevalence of these pentamers there is
not higher than expected by chance (Fig. 3E). Their lower preva-
lence among pseudo exons explains why they were highly
weighted by SVM. Note that these sequences are also prevalent in
the upstream flank; indeed two of the eight pentamers that origi-
nated downstream have identical counterparts among the up-
stream pentamers. It should be remembered that upstream and
downstream pentamers constituted separate features for the
SVM, and the flanks were not constrained to contribute equally
to the final set.

The pentamers were clustered on the basis of similar posi-
tional distributions, not sequences. Thus, three of the pentamers
in this “pyrimidine-rich” cluster are not actually pyrimidine-rich:
AATGT, TGATT, and ATGTT. They might be better placed in a
cluster of branch point-like sequence with a similar but distinct
distribution, described below.

Branch Point-Like Sequences
A second cluster of pentamers in upstream flanks resembled the
YNYTRAY branch point consensus sequence (Green 1991): the 18
members of this class define a consensus of CTRAC. This
pentamer cluster peaks in the window from �20 to �24, and
reaches background levels at �40 (Fig. 3B). This distribution is
similar to that of known branch points (Harris and Senapathy
1990). Although the prevalence of the branch point consensus is
only slightly overrepresented upstream of real exons (Harris and
Senapathy 1990), the SVM was able to designate these sequences
as important signals. This result serves as a sort of internal con-
trol for important flank sequences that validates the assignment
of the additional sequences described below.

G-Rich Sequences
A large cluster of downstream pentamers were G-rich, and all but
one of the 18 members include a G-triplet. These sequences show
a broad distribution stretching as far as 90 nt downstream of the
donor site sequence (Fig. 3G). G-rich pentamers were also de-
tected upstream of the exon, from positions �40 to �84, but
these were much fewer and less prevalent than the downstream
sequences (Fig. 3D). The dearth of G-rich sequences from�15 to
�40 is simply a reflection of the extended polypyrimidine tract.
The abundance of G-rich sequences near the ends of intron has
been noted previously (Nussinov 1988; Engelbrecht et al. 1992).
The pseudo exons show no increased prevalence of these se-
quences.

C-Rich Sequences
Although also pyrimidine-rich, C-rich sequences emerged as a
class distinct from polypyrimidines in their distribution, in that
they were found downstream (Fig. 3F) as well as upstream of the
exons (Fig. 3C). The distinctiveness of this class from general
pyrimidine-rich sequences can be seen by comparing the down-
stream distributions in Figures 3F and 3E. Most of these se-
quences (12 of 16) included a C-triplet, and their heightened
prevalence extended to 36 nt downstream of the donor site se-
quence. The upstream C-rich sequences were fewer, and each
sequence had an exact counterpart downstream. As expected, the
upstream sequences overlapped with the extended polypyrimi-
dine tract, but they exhibited a broader distribution (cf. Figs. 3C,
3A).

TG-Rich Sequences
Five of six pentamers that clustered just upstream of the PPT
position contained the dinucleotide TG. Although this cluster
presented the lowest z-scores, there is a significant peak just up-
stream of the exon. In Figure 3H, the prevalence of these penta-
mers is plotted to include the PPT, so that it can be seen that the
distribution of these pentamers is not that of pyrimidine-rich
sequences.

Other Positive Sequences
Of the 121 positive pentamers, 29 did not fall into a common
cluster. These sequences are shown in the bottom panels in Fig-
ure 3. Although diverse, these sequences remain candidates for
intronic splicing enhancers and are being further investigated.

Negative Sequences
The 140 negatively weighted sequences that were extracted are
more difficult to interpret, as they could represent highly re-
peated sequences present only in the pseudo exon set or simply
mirrors of positive sequence concentrations. An example of the
latter could be purine-rich pentamers that are negatively associ-
ated with upstream flanks simply because there is a predomi-
nance of pyrimidines there (the extended PPT). Nevertheless, we
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Figure 3 Grouping and distribution of the top positively scoring flanking pentamers. A subset of 121 positively weighted pentamers that contributed
most to the ability of SVM to distinguish real from pseudo exons were grouped according to their similar positional distributions of their prevalence
around exons, as measured by a z-score (see text). Z-scores with an absolute value greater than 2 have a P-value of less than 0.05. Values were summed
for pentamers starting in windows of 5 nt starting just upstream of the acceptor site (�15) and just downstream of the donor site (+7); an exception
is panel H, in which upstream windows up to the exon (�1) are shown. Light gray lines represent individual pentamers listed on the right; the heavy
dark line is the average. The red line shows the average for the distribution of these pentamers around pseudo exons. Pentamers in each flank were
treated separately for extraction from SVM and for clustering. However, their prevalence is shown both upstream and downstream of the exons
regardless of their origin.
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found the distribution of some negatively correlating sequences
interesting. One cluster of pentamers exhibited a relative scarcity
in the immediate upstream flank and contained YAG (Y = C or T)
as a common motif (Fig. 4A). The frequency of these pentamers
was also below expectations in the downstream flank, but this
difference was of borderline significance. Interestingly, these
pentamers exhibited sharp peaks of prevalence rather than scar-
city in the flanks of pseudo exons (red line in Fig. 4A). These
pseudo exon peaks disappeared when highly repeated sequences
were removed from the data set (blue line in Fig. 4A). Because
YAG represents part of the acceptor splice site consensus se-
quence (CAG |G), we measured the distribution of this tetramer in
exon flanks. As can be seen in Figure 4B, CAGG shows an even
more extreme scarcity than YAG. This underrepresentation
(compared to all possible tetramers) is not simply due to purine
content, because the reverse sequence, GGAC, exhibits a much
weaker negative correlation (peak z-score of�8 vs.�17); indeed,
tetramers containing AG but bordered by bases with the poorest
agreement to the consensus (AAGT and GAGT) do not show an
underrepresentation beyond that displayed by a purine-rich te-
tramer (Fig. 4B). Thus there seems to be a lack of a full consensus
splicing site sequence rather than the lack of a simple AG in this
region. It is reasonable to think that an ectopic CAGG that could
act as a competitor for the real splice site has been selected
against.

We also found evidence for the avoidance of competitor
donor splice site sequences. A group of seven pentamers contain-
ing the sequence AGGT was found to be scarcer than expected
downstream of the donor splice site (Fig. 4C). These four bases
straddle the splice site in the donor consensus sequence. Their
scarcity upstream of the exon as well can be explained by their
purine-rich character or their resemblance to an acceptor AG.
The avoidance of downstream GT can also be seen in the distri-
bution of tetramers shown in Figure 4B.

A third group that emerged from the negative data based on
distributional similarity consisted of pentamers rich in A and C
(at least four of five). These 11 sequences are scarce both up-
stream and downstream of the splice sites (Fig. 4D). Although
they are moderately purine-rich as a group (62%), their under-
representation on either side of the exon and their emergence as
sequences highly weighted by the SVM suggests that they may
have a negative influence on splicing.

Population of Exons Flanks by Positive Pentamers
The z-scores shown in Figures 3 and 4 provide a reliable assess-
ment of the concentration of pentamers in exon flanks, but they
do not measure the number of exons that harbor these se-
quences. A survey of the 50-nt flanks showed that in general,
positive pentamers were more frequent among real exons than
among randomly chosen intronic 50-mers and less frequent
among pseudo exons (see online Supplemental material).

DISCUSSION
Our aim in this work was to discover information used by the cell
to recognize splice sites. Toward this end we used pseudo exons
as a foil to help sort out signals from noise in a computational
analysis of human genomic sequences. Pseudo exons also served
as a control set for evaluating the significance of potential splic-

Figure 4 Grouping and distribution of the top negatively scoring flank-
ing pentamers. A subset of 140 pentamers that contributed most with a
negative weight to the ability of SVM to distinguish real from pseudo
exons were grouped according to their similar positional distributions of
their prevalence around exons, as measured by a z-score (see text). Z-
scores with an absolute value greater than 2 have a P-value of less than
0.05. (A,C,D) Light gray lines represent individual pentamers listed to the
right; the heavy dark line is the average. The red line shows the average
for the distribution of these pentamers around pseudo exons; the blue
line shows this average for repeat-free pseudo exons. Pentamers in each
flank were treated separately for extraction from SVM and for clustering.
However, their prevalence is shown both upstream and downstream of
the exons regardless of their origin. (D) Distribution of the acceptor splice
consensus sequence CAGG and related tetramers.

Pre-mRNA Splicing Information Identified by SVM

Genome Research 2645
www.genome.org



ing signal sequences. We excluded reading frame information in
our analysis, making the assumption that this information was
not available in the cell nucleus. An SVM was effectively trained
by comparing these two sets and was able to reveal topological
and sequence information associated with real signals. In this
initial analysis, our representation of sequences depended on
oligomer composition, base combinations and distance con-
straints, but one can imagine other types of input that could be
useful, such as longer but mismatched oligomers and RNA struc-
tural information. Similarly, more narrowly defined pseudo sets
could be used, such as alternative versus constitutive exons, weak
versus strong exons, etc. For instance, we found that an SVM can
distinguish pseudo exons even if they are comprised of dicodon
sequences similar to those found in real exons (see online Supple-
mental material). This strategy, that is, the definition of a set of
pseudo signals highly similar to the real signals and the use of an
SVM to find differences between the pseudo and real sets, may
also be usefully applied to define other genomic signals, most
notably the sequence elements that distinguish real promoter/
enhancers from more numerous false sites.

Highly repeated sequences such as SINES and LINES make
up about half of the human genome but do not generally overlap
with real exons, and some are even excluded from flanking re-
gions (Majewski and Ott 2002; X.H-F. Zhang and L.A. Chasin,
unpubl.). In contrast, repeats were present in about half of our
pseudo exons. We did not exclude them, reasoning that the ques-
tion of why pseudo exons in repeats are not spliced is as valid a
question as why pseudo exons in unique sequences are not
spliced. However, the inclusion of repeats brings with it the dan-
ger that some of the sequences we have associated with splicing
or nonsplicing are indirect indicators of the real signals, being
fellow travelers within the repeats. Future analyses should allow
us to distinguish such indirect associations.

Machine learning via an SVM achieved an ROC of 0.99 for
real versus pseudo exon recognition, or if we take one value from
the ROC curve, a specificity (true positives found/all predicted) of
0.95 at a sensitivity (true positives found/real exons) of 0.95.
When applied as a predictor of internal exons in a test set of eight
genes under more demanding conditions (a pseudo exon to real
exon ratio of 33 to 1 and exons as small as 18 nt), SVM yielded a
specificity of 0.63 at a sensitivity of 0.85. These latter values are
close to the average for six gene predictor programs tested by
Rogic et al. (2001) for internal exons, notwithstanding the fact
that we did not optimize SVM for general exon prediction (e.g.,
consensus values less than 78) and did not include any reading
frame information.

Splice Site Sequences
Although both real exons and pseudo exons comprise sequences
with similar consensus values, they differ in the particular ar-
rangement of bases that underlie these scores. Two-way combi-
natorial information has been used previously to search for ex-
ons, as in the maximal dependence decomposition of 5� splice
sites in Genscan (Burge and Karlin 1997). Here we found that
three-way combinations for donor sites and two-way combina-
tions for acceptor sites were effective for discrimination. Indeed,
the use of three-way base combinations as a criterion for donor
site identification proved to be superior to consensus values in
predicting real exons (Fig. 1). These data provide a new addi-
tional or alternative standard by which to judge the strength or
weakness of potential splice sites, especially donor sites. For ex-
ample, we described a double mutation of the dihydrofolate re-
ductase gene intron 5 donor site (AGG/gtcagt) that had an im-
proved consensus score (80.8) compared to the wild type (AGA/
gtaagt, 79.6) yet spliced exon 5 with only 3% efficiency
(Carothers et al. 1993). Its consensus value increased from the

35th to the 41st percentile from wild type to mutant, whereas its
three-way value score dropped from the 81st to the 10th percen-
tile, consistent with its poor splicing phenotype. For those wish-
ing to use this three-way donor site data for exon prediction, we
include a normalized list of scores in the online Supplemental
material.

The two-way combinations in the acceptor site sequence
represent simpler associations, but they nevertheless revealed
some interesting relationships. In the positive set of two-way
combinations, purines represented 67% of the relevant bases,
whereas their frequency in 10-nt PPTs is only 20%. Why would
the SVM find purines as a positive way to differentiate real from
pseudo exons? The stretch of pyrimidines upstream of the accep-
tor splicing site is termed the polypyrimidine tract, but in reality
it is usually punctuated with one or two purines: 88% of the real
exons in our data set contain at least one purine in the 10-nt
region from �14 to �5. To produce a positive weighting factor,
purines could be playing either a positive role or a neutral role. In
the latter case, the SVMwould be detecting neutral combinations
associated with real exons as opposed to deleterious combina-
tions associated with pseudo exons. There is no evidence that
purines play a positive role in the PPT: studies in which the PPT
was varied either by design (Roscigno et al. 1993; Coolidge et al.
1997) or by iterative selection (Buvoli et al. 1997; Lund et al.
2000) pointed to pyrimidines as being the sole or at least the key
recognition elements for a PPT. Similarly, a purine-free consensus
was derived for sequences selected for binding to the PPT-
binding protein U2AF65 (Singh et al. 1995). Although a positive
role cannot be ruled out, we favor the second explanation, that
some purine combinations are particularly benign, and it is these
that are noticed by the SVM.

Position �4 in the acceptor site is occupied approximately
equally by each of the four bases in most surveys of real exons.
Thus one might assume that this position contains no general
information with respect to splicing and would not be used by an
SVM as a discriminator between real and pseudo splice sites. Con-
trary to this expectation, position �4 was included among
highly rated combinations at a frequency comparable to that of
the other 12 positions (8%). Because this raises the possibility of
a role of position �4 in splicing, we sought other tests of this
idea. CpGs occur in introns at 1/5 of the expectation based on
the frequency of C and of G, but in exons this ratio increases to
1/2, presumably due to functional selection. The underrepresen-
tation of CpGs at position �4 is 0.36, suggesting some function-
ality. As a second test we compared position �4 conservation
among 7600 pairs of orthologous mouse and human exons. The
base at position �4 was 64% conserved, a level no less than the
PPT as a whole (61%). For comparison, position �3 is 77% con-
served, whereas positions around �100 are only 40% conserved.
These two tests support the SVM result suggesting that the base at
position �4 is functional in at least some cases.

Flanking Sequences
A key conclusion of this work is that regions bordering the splice
site sequences from about �40 to +80 contain information that
could be used for splice site recognition. Majewski and Ott (2002)
also concluded that exon flanks may contain sequences impor-
tant for splicing on the basis of a nonrandom distribution of
k-mers. Extraction of pentamer sequences that contributed most
to the performance of the SVM and clustering them according to
their position relative to the exon revealed both expected and
novel sequence classes in these regions.

One class that might have been expected comprised pyrimi-
dine-rich pentamers just upstream of the �14 border that we
defined as the limit of the PPT. Although the information con-
tent of the upstream flank falls off beyond this position, a non-
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random distribution favoring pyrimidines remains detectable
out to �27 (Penotti 1991; Stephens and Schneider 1992). We
found a nonrandom (P < 0.05) distribution of these pentamers
extended to position�34. As pseudo exons were only selected to
have a PPT out to�14, it is understandable that these sequences
stood out. However, this group of 28 alone could not achieve a
high degree of distinction between real and pseudo exons. A
group representing possible branch point sequences was also
found upstream of the real exons, peaking at a position near
�22, distinct from that of the pyrimidine-rich pentamers. The
consensus provided by this select group of pentamers was
CTRAC, and the two corresponding pentamers displayed
the highest z-scores in this region. This sequence agrees with the
TACTAAC sequence complementary to the 5� end of U2 snRNA
and represents a subset of the YNYTRAY consensus defined by
(relatively few) experimentally established branch points.

The SVM identified G-triplets as a major class of flanking
sequence associated with real exons. It was noted previously that
G-triplets are more abundant near the 5� ends of introns and to
a lesser extent at the 3� ends (Nussinov 1988; Engelbrecht et al.
1992; Lim and Burge 2001; Majewski and Ott 2002). Despite the
abundance of G-triplets at both ends of the intron, the SVM
made use of these sequences mainly downstream of the exon,
suggesting that G-triplets act as enhancers that target an up-
stream 5� splice site and not the 3� splice site. Indeed, McCol-
lough and Berget (1997, 2000) showed that G-triplets can bind
U1 snRNP to enhance splicing at upstream donor sites in a short
intron. Carlo et al. (1996) defined a more extended G-rich se-
quence (GGGGCUG) that could act as an intronic enhancer for
very short exons by binding SF1 (Carlo et al. 2000). All three
pentamers defined by this 7-nt sequence are found among those
extracted as most important for the SVM (Fig. 3), suggesting that
this enhancer element may be used more generally.

C-rich pentamers were especially distinctive downstream of
the exon, where they did not overlap with a PPT. C-rich se-
quences have been noted previously but within exons, appar-
ently associated with the acceptor site (Nussinov 1988), or as
elements that enhance the splicing of small introns in Drosophila
(Kennedy and Berget 1997). Their emergence here suggests a role
as a more general intronic enhancer element. Similarly, the con-
centration of TG-rich pentamers in a region between the branch
point and the PPT suggest these pentamers as candidate enhanc-
ing elements.

Negatively Weighted Sequences
Groups of pentamers weighted negatively represented sequences
that were relatively scarce in real exon flanks compared to pseudo
exons. These included sequences corresponding to the consen-
suses immediately bordering the sites of splicing, CAGG and
AGGT for the acceptor and donor sites, respectively. The ambi-
guity presented by such competitors may not be tolerated. A
third type of negative sequence was AC-rich. AC-rich sequences
have previously been associated with exonic splicing enhancers
(Coulter et al. 1997) rather than silencers, but this is hardly a
discrepancy, because the locations are different, and in any case
pentamers are undoubtedly only rough representations of com-
plete functional elements.

It is noteworthy that the negative sequences identified here
were not highly overrepresented in the pseudo exon set. Such a
result might have been anticipated if a major mechanism for the
distinction between real and pseudo exons involved silencing of
the latter. We previously raised this possibility on the basis of
finding that sequences that could inhibit splicing when inserted
into an exon were quite common in the human genome (Fair-
brother and Chasin 2000). There was some evidence in the pres-
ent study for such repressive elements in pseudo exons, but they

were associated with highly repeated sequences, as indicated by
the red line peaks in Figure 4. Thus a repressive mechanism re-
mains a possibility for that large class of pseudo exons associated
with repeats.

Other Flanking Sequences
There remained many pentamers that shared neither a common
distribution nor a common sequence motif. These sequences
may represent a heterogeneous group of splicing enhancer or
silencer sequences. Further analysis may help to classify exons
according to distinctive enhancer elements.

METHODS

Construction of Real Exon and Pseudo Exon Databases

Databases
The essential features of the collected pseudo exon sequences are
described in Results; details are available as online Supplemental
material. The consensus score (CV) used to filter real and pseudo
exons is based on a position-specific weighted matrix and was
calculated essentially according to the method of Shapiro and
Senapathy (1987). The best possible score is 100 and the worst is
0. The median CV for real exons is 82 for donor and 80 for
acceptor sites.

For SVM training we used approximately 3000 randomly
chosen real exons and a similar number of pseudo exons. A test
set consisted of approximately 2000 sequences of each type that
were never used for testing. Statistics were gathered on a third set
of approximately 15,000 sequences of each type that were not
used for training or for testing.

SVM Classifiers
Support vector machines (SVMs) are examples of machine learn-
ing classifiers; that is, they are used to learn a binary classification
rule from labeled (positive and negative) training data. Given
feature representations of the training sequences and their labels
(true or pseudo), the SVM solves an optimization problem to
learn a linear decision function, f(x) = 〈 w, x〉 + b where w is the
normal vector to the linear decision boundary and x is the feature
vector representation of an input sequence. Once the SVM is
trained, predictions can be made on a test sequence (represented
by x) by predicting positive if f(x) > T for a given threshold, nega-
tive otherwise.

Data Division for SVM Classification
The real exons and pseudo exons derived from the EID were
randomly divided into two sets. The working set was comprised
of approximately 60% of the real exons and 33% of the pseudo
exons; their numbers were roughly equal. A test set contained the
remainder of the real EID exons and a like number of randomly
chosen pseudo exons. The working set was used for training and
cross-validation, and the test set was used for evaluation only.

K-mer Features for SVM Experiments
In order to train an SVM classifier, input sequences must be rep-
resented by fixed length feature vectors.

For the upstream and downstream flanks and exon bodies,
the features we use are occurrences of k-length contiguous sub-
sequences (“k-mers”). That is, we represent sequences by a sparse
vector �(x) = (�a(x))a=a1,a2…ak, where each choice a = a1,a2…ak of
k nucleotides corresponds to a coordinate and the feature �a(x) is
1 if the k-mer a occurs in the sequence x, 0 otherwise. The total
number of features is 4k, but since most features are 0 for a given
sequence, the vector can be represented in a space-efficient way.
Similar representations have been used for SVM protein classifi-
cation (Leslie et al. 2002), but in this case features were counts of
k-mers occurring with mismatches in the input sequences, and
the feature vectors were represented implicitly through use of a
kernel function (Cristianini and Shawe-Taylor 2000).
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Base Combination Features for SVM Experiments
Donor and acceptor sites and pseudo sites were represented by all
possible t-way combinations of positions internal to the splice
site of the exon or pseudo exon, excluding the nearly universal
GT and AG dinucleotides, and all choices of t nucleotides in these
positions. For example, if a donor site contains an “A” at position
+3, a “G” at position +4, and a “G” at position +5, its value for the
feature (3:A,4:G,5:G) is 1. Combinations that do not occur have
the feature value 0. For three-way combinations, there are 35 �
64 features (seven choose three combinations of positions mul-
tiplied by possible choices of nucleotides for each combination).
A similar representation has been used for SVM recognition of
peptide cleavage sites (Vert 2002), except that a weighted contri-
bution of t-way combinations for all choices of t was implicitly
used, again implemented through a kernel function.

Combining Different Types of Features
Splice site features (t-way combinations) and flank and exon fea-
tures (k-mers) were combined by concatenating the feature vec-
tors and then using a degree-2 polynomial kernel; that is, we use
the kernel function K(x,y) = ( 〈 x,y〉 + c)2 in place of the standard
inner product for SVM training and testing. This kernel amounts
to implicitly using all pairs of the original features as features for
the SVM (taking products of original feature values to obtain the
new feature values).

SVM Package and Cross-Validation
We used the GIST SVM package written by William S. Noble
(Univ. of Washington) for all SVM experiments. The latest ver-
sion of the software is publicly available at www.cs.columbia.
edu/compbio. We used the command line parameters “-normal-
ize -diagfactor 0.1”, which are default settings in the latest ver-
sion. Different settings were evaluated using fivefold cross-
validation. Feature representations were directly generated using
our own Perl scripts. The output was evaluated by the “score-
svm-results” script provided in the software.

Real Exon Prediction
Eight multi-exon (> four exons) genes that contain 37 internal
real exons were randomly chosen from the untouched data set
(AB051901, AF037438, AF041428, AF261937, AF338439,
AJ301616, U91328, M26434). The subsequences in these eight
genes that satisfy the following criteria were extracted as exon
candidates. First, these sequences had to be flanked by an up-
stream 15-mer whose acceptor site matrix agreement score is
greater than 70 and a downstream 9-mer whose donor site matrix
agreement score is greater than 70. These lower limits were cho-
sen so as to capture all real exons. Second, the sequences had to
be between 18 nt and 250 nt in length. These sequences were
allowed to overlap with each other. By this means, 1225 exon
candidates were selected, including the 37 real internal exons.
We then used SVMs that had been trained on the training data
set described above to predict which candidates were real. SVMs
assigned a weight to each candidate. By taking different thresh-
olds for this weight, different numbers of true positive (real exons
predicted as real) and false positive (pseudo exons predicted as
real) were determined.

Recursive Feature Selection
In the SVM solution, the normal vector to the hyperplane deci-
sion boundary is defined by

w = �
i = 1...m

yi�i x i ( 1 )

where xi are the training feature vectors, yi = �1 are the labels,
and �i are the learned weights. The coordinates of the vector w
can be used to rank the importance of features: If a coordinate |wj|
is large in absolute value, then the jth feature is important for
SVM; the sign of wj shows whether it is indicative of positive or
negative examples. In standard recursive feature elimination

(RFE), one trains an SVM, uses the ranking induced by the |wj| to
eliminate the bottom half of the features, and recursively retrains
on the smaller feature set.

In our feature selection setting, we are concatenating k-mer
feature vectors for the upstream and downstream flanks and then
using a degree-2 polynomial kernel to combine both sources of
information. We can no longer easily compute w, because we are
implicitly using a nonlinear feature mapping. However, we can
use the learned SVM weights �i to compute vectors wup and wdown
using equation (1) with the k-mer feature vectors for the up-
stream and downstream flanks, respectively. Now we can elimi-
nate the bottom half of the features for each flank separately and
retrain on the smaller feature set. This procedure approximates
RFE in our setting. The recursive process was ended when the
ROC score for the SVM on an untouched test set fell below 90%
of the original ROC score (obtained using the full feature set).

Comparisons Between Three-Way Base Combinations
and Consensus Values
The first comparison was carried out between all real exons in the
test set versus pseudo exons defined by any 50- to 250-nt se-
quences between an AG and a GT. The second comparison was
made between real exons whose donor site consensus values were
greater than 78 and pseudo exons defined in the previous sec-
tion. In both comparisons, an SVM weight was computed for
three-way combinations in donor sites in each sequence as an
alternative classifier to consensus value. The discriminative
strengths of SVM and consensus values were measured by con-
tinuously increasing the thresholds (from lowest to highest) of
SVM weights or consensus value, and recording the false positive
error rate, FP/(TP+FP), for each threshold in each case.

Statistics of the Top Two-Way Base Combinations
in Acceptor Sites
Aminimum of 128 two-way base combinations were necessary to
maintain the performance of SVM at a level greater than
ROC = 0.80. These features comprised 256 individual bases and
were divided into two groups according to the signs of their
weights. G+C and purine contents were counted at the individual
base level in either group, respectively. For dinucleotides (the two
bases occupying adjacent positions), such as AA, CG, and AG, the
rough expectations of their frequencies in this list of 128 were
calculated according to the formula (12/1248) * 128 = 1.2, where
the 12 is the number of adjacent position pairs possible among
the 13 positions, 1248 is the number of all possible two-way
combinations, and 128 is the length of the list. For a dinucleotide
to be positive, the expectation is roughly 1.2 * (49/128) = 0.5,
where the 49 is the number of positive features in the list.

To further prove the importance of some dinucleotides, we
compared their frequencies in real acceptor sites with two differ-
ent types of expectations. Expectations based on the consensus
were made by assuming independence between adjacent posi-
tions and multiplying the possibilities of getting the two bases at
neighboring positions. Expectations based on pseudo exons were
made by counting the frequencies of the dinucleotides in the set
of 24,000 pseudo exons. The actual frequencies of these di-
nucleotides in real exons were computed in the set of 15,000 real
exons.

Distribution of Top Pentamer Weights in Flanks
The top 256 features extracted as described in the previous sec-
tion were divided into four groups according to their origins
(downstream or upstream) and signs of their weights (positive or
negative). For each group, we examined the pentamers’ weight
distribution around the 15,000 untouched real exons. We took
sliding 5-bp windows from �150 to 150 and summed the SVM
weights of the top pentamers that occurred in each window. The
resulting distributions were plotted in Figure 3.
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Analyses of Top Pentamers
The frequencies of the top-scoring pentamers in flanks were cal-
culated for 5-bp sliding windows. The frequencies in each win-
dow were then compared to the background frequencies of these
pentamers. For each pentamer in each window, a z-score was
calculated by

�n − N * b�

�N * b

where n is the number of occurrences of the pentamer in the bin,
N is the total number of all pentamers in the bin, and b is the
background frequency of the pentamer taken from a set of
15,878 entire introns. Thus each pentamer is associated with a
vector comprised of a set of z-scores representing the prevalence
of that pentamer at different positions around the exons. We
clustered the top pentamers according to a self-organizing map
(http://gepas.bioinfo.cnio.es/cgi-bin/somtree) and then grouped
clusters with similar sequences. The distributions of the penta-
mers in each group were plotted in Figures 3 and 4.
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