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We have developed a novel, high-throughput approach to collecting randomly perturbed gene-expression profiles
from the human genome. A human 293 cell library that stably expresses randomly chosen zinc-finger transcription
factors was constructed, and the expression profile of each cell line was obtained using cDNA microarray
technology. Gene expression profiles from a total of 132 cell lines were collected and analyzed by (1) a simple
clustering method based on expression-profile similarity, and (2) the shortest-path analysis method. These analyses
identified a number of gene groups, and further investigation revealed that the genes that were grouped together
had close biological relationships. The artificial transcription factor-based random genome perturbation method thus
provides a novel functional genomic tool for annotation and classification of genes in the human genome and those
of many other organisms.

[Supplemental material is available online at www.genome.org. The microarray data from this study have been
submitted to GEO under the accession nos. GSM10013–GSM10044 and GSM10069–GSM10168.]

Systematic approaches to achieve rapid and accurate functional
annotation of a large number of uncharacterized genes are ur-
gently needed in this postgenomic era. Identifying the functions
of gene products is also a critical step toward utilization of ge-
nomic information in the drug discovery process. A number of
methods have been developed to identify the functions of novel
genes. For example, methods for large-scale phenotypic analysis
in yeast (Tong et al. 2001; Giaever et al. 2002) and fly (Spralding
et al. 1999) have been developed for thousands of mapped mu-
tants. Whereas these phenotype-based gene identification meth-
ods are useful, they are limited by the availability of easily scor-
able phenotypes of interest. In addition, large-scale mutant li-
braries do not exist for mammals, such as mice or humans.

Recent advances in the genome-wide gene expression-
profiling technology using DNA microarrays have made this ap-
proach a powerful one for the high-throughput analysis of tens
of thousands of genes. The gene expression profile of a specific
gene is valuable because it is a signature of the state of the cell,
such as its response to environmental stress or disease. To under-
stand the function of a specific gene of interest, it is helpful to
know the expression profile of that gene under a variety of con-
ditions. Several studies have established that genes whose prod-
ucts have similar functions or are involved in different steps of
the same pathway share similar expression profiles and can be
grouped together on the basis of their expression signature (Eisen
et al. 1998; Iyer et al. 1999). In other words, the expression of
genes that function in a common process is highly coordinated
in eukaryotes (Niehrs and Pollet 1999).

A pioneering study by Hughes et al. (2000) demonstrated
the power of large-scale gene expression profiling to identify the
functions of uncharacterized genes. They collected genome ex-
pression-profiling data from several hundreds of yeast mutants
and constructed a reference database or “compendium” of ex-
pression profiles. The identification of coregulated groups of
genes facilitated the functional annotation of novel genes and

the identification of drug target pathways. Other studies showed
that two genes that share similar expression profile are likely to
constitute a functionally interacting pair (Ge et al. 2001; Kem-
meren et al. 2002). To identify coregulated gene groups, large-
scale gene expression analysis is required, so that one may dis-
card background gene groups whose expression patterns are simi-
lar only under limited conditions.

Unlike for yeast, however, specific gene activation or dele-
tion on a large scale in mammalian cells has been technically
challenging. Several technologies that involve specific down-
regulation of human genes have been developed, including an-
tisense RNA (Cho et al. 2001), small interfering RNA (siRNA; Tus-
chl 2002), and ribozyme (Kawasaki et al. 2002) approaches. How-
ever, currently, there are no reports of these technologies being
used for large-scale gene-disruption analysis in mammalian cells.

Recent advances in the field of artificial transcription-factor
technology allow one to build tens of thousands of active tran-
scription factors with ease (Segal and Barbas III 2001; Bae et al.
2003; Lee et al 2003). Zinc fingers are small DNA recognition
motifs composed of ∼30 amino acid residues and a zinc ion. Each
finger typically recognizes a 3-bp sequence, and three or more
zinc fingers are tandemly linked to build a zinc finger protein
(ZFP) that recognizes a stretch of nine or more base pairs. We
built novel ZFPs by shuffling appropriate zinc fingers to match
the DNA target sites of interest. Thus, unlike previous protocols,
such as phage display selection, this approach is easily scalable.
Thousands of highly active ZFPs can be constructed simulta-
neously. For example, shuffling 20 domains to make three-finger
proteins would yield 8000 (= 20 � 20 � 20) ZFPs in a single step
(Bae et al. 2003). ZFPs are then fused to either transcriptional
activation domains, such as VP16 or p65 or repression domains
such as KRAB, to build artificial transcription factors. Artificial
transcription factors based upon ZFPs can regulate endogenous
gene expression when introduced into cells. Use of these ZFP-
based artificial transcription factors can provide efficient, high-
throughput perturbation of the human genome.

In this study, we present a novel, high-throughput method
with which to acquire functional genomic data. Our approach
involves the building of a large-scale gene-expression profile da-
tabase for the human genome. To achieve this, we have used a
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number of preassembled ZFP-transcription factors (ZFP-TFs). By
performing large-scale microarray experiments with cell lines
that express these ZFP-TFs, we demonstrate that each ZFP-TF
regulates a distinct set of genes in the human genome, thus veri-
fying that our method perturbs the gene expression program in
an unbiased manner. The gene expression profiles obtained were
then subjected to bioinformatic analyses to build a number of
coregulated gene groups. Inspection of these groups identified a
number of genes whose functional relationships were evident,
proving the validity of this approach.

RESULTS

Random Genome Perturbation Using ZFP-TFs
From a number of preassembled ZFP-TF collections in our labo-
ratory, we randomly picked a group of ZFP-TFs, and then estab-
lished stable HEK-293 cell lines that express each individual ZFP-
TF in a Doxycycline (Dox)-dependent manner (Fig. 1). Therefore,
upon the addition of Dox, a unique ZFP-TF is expressed, and in
turn, it could regulate a unique set of genes. To obtain the global

gene expression signature affected by each ZFP-TF, genome-scale
gene analysis was performed for a total of 132 cell lines, using a
cDNA microarray that contained 7458 known human genes (Fig.
1). The identities of ZFP-TFs used are shown in Supplemental
Table 1, available online at www.genome.org.

Overall, different ZFP-TFs showed unique global gene ex-
pression signatures, in agreement with our hypothesis that ran-
dom perturbation of the genome can be attained with randomly
chosen ZFP-TFs (See clustergram in Supplemental Fig. 1). It
should be noted that the gene expression profiles obtained by
ZFP-TFs disappeared when we deleted functional domains or in-
troduced mutations into the DNA-binding domains, which de-
stroyed DNA-binding ability (Supplemental Fig. 2).

We then characterized some of the basic properties of gene
regulation by several ZFP-TFs. First, we tested whether a particu-
lar transcription profile obtained with a given ZFP-TF was cell-
type specific. To this end, we compared gene expression profiles
generated by one ZFP-TF, F2840-p65, in the following cell types:
(1) 293 cells, a noncancerous human embryonic kidney cell line
that stably expressed the F2840-p65 ZFP-TF, and (2) HeLa cells, a

human cervical carcinoma cell line, in
which the F2840-p65 ZFP-TF was tran-
siently transfected. Comparison of the mi-
croarray data revealed that the insulin gene
was highly up-regulated in both cell lines
(Fig. 2A, arrows). In addition, similar sets of
genes were regulated in both cell types (Fig.
2A, bottom; Supplemental Table 2). How-
ever, we noted that there were also differ-
ences in the gene regulation pattern be-
tween 293 and HeLa cells (Supplemental
Table 2), which may reflect differences in
chromatin structure or DNA content
(karyotype) between two cell lines. Another
ZFP tested also showed similar, yet not iden-
tical expression profiles in 293 and HeLa
cells (Supplemental Fig. 3). Thus, ZFP-TF ap-
pears to regulate resembling sets of genes
when introduced into cell lines made from
different cell types.

Second, we performed a time-course
experiment using one of our stable cell lines
that expresses a ZFP transcriptional activa-
tor, F475-p65. Time-course analysis re-
vealed induction of a few genes at early
time point (Figs. 2B, 3 hrs), and an increase
in the number of genes as time progresses
(Fig. 2B). In addition to the time course ex-
periment, we also performed ZFP-TF induc-
tion, followed by treatment of protein-
translation inhibitor Cycloheximide (see
Methods). Genes induced at all time points,
and whose expression pattern is not signifi-
cantly affected by Cycloheximide treat-
ment, were considered as primary target
genes. From this, we identified three genes
(Fig. 2B; also see Supplemental Fig. 4). In
silico analysis identified ZFP-binding sites
in the proximal promoter region for all
three genes analyzed (Supplemental Fig. 4).
This ZFP-TF was designed originally to regu-
late VEGF in another study (Bae et al. 2003).
In agreement with the previous study, VEGF
was identified as a primary target in this
analysis. Therefore, thismethod appears to be
useful for identifying target genes of ZFP-TFs.Figure 1 Experimental scheme. See the text for details.
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This result also suggests that a pathway analysis can be per-
formed if time-course microarray experiments are performed for
a number of ZFP-TF-expressing stable cell lines. Because ZFP-TF
expression is tightly controlled by the addition of Dox, a rigorous
time-course analysis is possible using our cell library system. This
will eventually help in the building of a hierarchical map or
transcriptional network of gene expression.

Analysis of ZFP-TF Expression-Profiling Data Set
Reveals a Number of Gene Groups With
Functional Relationships
The expression profile data set obtained from microarray experi-
ments with 132 cell lines were analyzed to gain information on
gene functions. First, we attempted to group genes with similar
biological functions by clustering genes with similar expression
profiles. Several clusters containing genes with similar functions,
such as ribosomal genes, histone genes, or genes involved in RNA
processing, were easily recognized by inspecting the Treeview

images (Eisen et al. 1998; data not shown). These results were
expected because of previous studies with large-scale microarray
experiments (Eisen et al. 1998; Iyer et al. 1999; Niehrs and Pollet
1999; Hughes et al. 2000). To isolate novel groups of genes that
showed a strong correlation in their expression profiles, we set a
stringent criterion of a Pearson similarity coefficient of 0.85 or
more between the genes, and only the gene groups that met this
criterion were extracted (see Methods). By this approach, we were
able to group 445 genes into 174 groups. The result of this analy-
sis is shown in Supplemental Table 3. As expected, and consistent
with the global clustering method (Eisen et al. 1998), several
groups consisted of components of a gene family or protein com-
plex, whose function could be easily identified. For example,
cystatins C and S (Supplemental Table 3, group 11), metallothio-
nein genes (group 107), and sulfotransferase family 1A members
2 and 3 (group 36) constituted a gene group. Gene groups that
consisted of the melanoma antigen family 1A (groups 74 and
149), histone genes (groups 33, 154, and 155), and ribosomal
genes (groups 61, 64, 80, and 98) were also observed.

Figure 2 (Continued on facing page)
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We found that the analysis of our ZFP-TF-driven data set
produced very precise groupings, as demonstrated by the histone
clusters shown in Figure 3. Previous microarray studies have
shown that all histone genes are grouped together, both in yeast
and human cell lines (Eisen et al. 1998; Iyer et al. 1999). How-
ever, in our study, we were able to see histone genes grouped
according to their subclasses (Fig. 3). The precise subgrouping of
histone genes using our experimental approach combined with
grouping analysis demonstrates the usefulness of this approach
in categorizing genes with similar biological functions.

For the other gene groups, whose components did not, at
first glance, show close functional relationships, we tried to iden-
tify any possible functional connection using an extensive search

and study of the PUBMED literature data-
base. We identified several gene groups to
which we could assign putative functional
relationships on the basis of their descrip-
tions in the literature. Some of these groups
are shown in Table 1. For example, ID4 and
caspase 5 constitute a coregulated group
with a Pearson coefficient of 0.85. From the
literature search, we found that ID4 can in-
duce apoptosis (Andres-Barquin et al. 1999).
Because caspase 5 is a well-known pro-
apoptotic gene, it is possible that these two
genes are functionally related, playing im-
portant roles in the pro-apoptotic pathway.
Another group consists of annexin A3,
se20-4 tumor antigen, and myocilin (Table
1). Annexin is an inhibitor of phospholi-
pase A2 (PLA-2) (Oh et al. 2000); se20-4 tu-
mor antigen is the nucleolar TGF-�1 target
protein (Ozbun et al. 2001); and myocilin is
a trabecular meshwork-inducible glucocor-
ticoid response protein (Polansky et al.
1997). As TGF-�1 and glucocorticoid at-
tenuate IL1-�-induced PLA2 elevation
(Muhl et al. 1992), these three genes might
be common downstream targets of TGF-� or
glucocorticoid signaling.

The tight clustering of genes with simi-
lar function suggests that this method is
successful in grouping genes with close bio-
logical relationships. It should be noted
that because we set a highly stringent cut
off value, many of the groups we obtained
contained only a small number of genes.

Verification of Functional
Relationships Using
Shortest-Path Analysis
Next, we applied a recently developed
shortest-path (SP) analysis method (Zhou et
al. 2002) to analyze our gene expression
profile data. This method considers transi-
tive expression similarity among genes as
an attribute to link genes within the same
biological pathway. It has an advantage
over traditional clustering approaches be-
cause it can group not only functionally
related genes with similar expression pro-
files, but also those with different expres-
sion patterns (Zhou et al. 2002). Results of
the SP analysis of our expression profile
data set are shown in Supplemental Table 4.

This analysis further extended the information we have obtained
from simple clustering and grouping analysis.

An example of SP analysis is shown in Figure 4, a gene clus-
ter that includes insulin-like growth factor-2 (IGF-2). Although
this gene cluster was also identified in the simple grouping
method (Supplemental Table 3, group 17), SP analysis led to the
identification of the Shc gene as a new member in this group.
Thorough literature analysis revealed that the members of this
gene cluster are functionally inter-related. First, it has been
shown that protein phosphatase 2A (PP2A) is involved in the
insulin/IGF-1 signal-transduction pathway (Ugi et al. 2002). The
presence of IGF-2 and PP2A in the same SP group is consistent
with the observation that PP2A participates in IGF-2 signaling. It

Figure 2 Characterization of a ZFP-TF-activated gene expression profile. (A) A gene expression
profile obtained with a ZFP-TF in two different cell lines. A ZFP activator, F2840-p65, was either
stably expressed in 293 cells (left) or transiently expressed in HeLa cells (right). In both experiments,
insulin was highly expressed (marked by arrows). Dots colored in red were not subjected to analysis
to avoid false results due to tailing. (Bottom) Plotting of the logarithmic expression ratios of each
experiment and the correlation coefficient of two experiments. (B) Time-course analysis of gene
expression driven by a ZFP-TF. A 293 cell line stably expressing a ZFP activator, F475-p65, was
treated with Dox for the times stated. Genes identified as primary targets are marked.
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has also been reported that the growth-factor signaling involves
PP2A and an unidentified tyrosine phosphatase for MAP kinase
inactivation (Alessi et al. 1995). The presence of receptor-protein
tyrosine phosphatase N and PP2A in this group, along with IGF-
2, is consistent with the possibility that these two phosphatases
act together in the IGF-2-signaling pathway. This group also con-
tains FKBP8, a member of FK506-binding protein (FKBP) family.
In addition to FK506, FKBPs can also bind to rapamycin (Bierer et
al. 1990). It has been reported recently that rapamycin can block
IGF signaling by complexing with FKBP (Dilling et al. 1994). The
presence of FKBP8 in the IGF-2 gene group suggests that this gene
product has a potential role in mediating the effect of rapamycin
in IGF-2 signaling. Physical interactions betweenmembers of this
group have also been characterized. Shc is known to interact
physically with PP2A (Ugi et al. 2002) and cadherin (Xu et al.
1997). Cadherins can also interact with a receptor-type protein
tyrosine phosphatase (Brady-Kalnay et al. 1998), in agreement
with the presence of both cadherin and receptor-type protein
tyrosine phosphatase in the IGF-2 group (Fig. 4).

This group also contains an uncharacterized gene (Fig. 4,
putative gene product) with some similarity to the Drosophila
furry gene (Cong et al. 2001). On the basis of extensive relation-
ship among other members of this group and their role in IGF
signaling, we predict that this uncharacterized gene will also play

an important role in IGF signaling. Further experiments are re-
quired to determine the biological function of this protein.

Experimental Validation of Gene Groups:
Spi-B–Melanoma Antigens
Another SP group contained members of the melanoma antigen
family A (Fig. 5A), suggesting that these genes are coordinately
regulated. This coordinated regulation can be explained by the
existence of a common transcriptional regulator. We noticed
that Spi-B, PU.1-related transcription factor, was also included in
this group. Therefore, we asked whether Spi-B is the master regu-
lator of melanoma antigen family-A expression. For this, we
cloned the Spi-B gene in a pcDNA3 mammalian expression vec-
tor, then transfected this vector into 293 cells. For the melanoma
antigen family genes that we analyzed (MAGE-3, MAGE-5, MAGE-
8, and MAGE-9), induction of mRNA level was observed upon
transfection of the Spi-B expression vector (Fig. 5B). Inspection of
the promoter regions ofMAGE-3, MAGE-5, MAGE-8, andMAGE-9
revealed the presence of Spi-B-binding sites (Supplemental Fig.
5). Therefore, SP analysis of a ZFP-TF-derived gene expression
data set revealed a novel transcriptional regulator of the family of
melanoma antigen-A genes.

Figure 3 Histone gene groups. Numbers in gene groups are as in Supplemental Table 2. Clustering image of each group over 132 experiments is shown.

Lee et al.

2712 Genome Research
www.genome.org



DISCUSSION
In this report, we demonstrated that the human genome can be
randomly perturbed by ZFP-TFs, and that the resulting expres-
sion profiles can provide novel information about the function
of genes. Using conventional clustering, on the basis of expres-
sion profile similarity and the recently introduced SP analysis, we
were able to identify many groups of genes with close functional
relationships. SP analysis of ZFP-TF-derived expression data sets
also revealed Spi-B as a novel regulator of the melanoma antigen
gene family, and this prediction was verified experimentally.

There are important advantages of using ZFP-TFs as genome-
wide regulators of gene expression. First, ZFP-TFs can be used to
both down-regulate and up-regulate target genes. Therefore,
compared with the antisense or RNAi approach, in which only
down-regulation is possible, ZFP-TFs should allow a more com-
prehensive analysis of coclustered genes.

Second, the number of finger domains included in the ZFP-
TF can regulate the specificity of ZFP. Depending upon whether
three- or six-finger ZFPs are used, the number of regulated genes
in a cell varies. Three- or four-finger proteins, as used in this
study, are not highly specific; they can modulate several genes
when introduced into cells. Whereas this could be a disadvantage
in terms of specific regulation, in cases in which a large number
of gene perturbations are required, it is an advantage. For ex-
ample, a gene expression profile obtained from a single ZFP-TF
with broad specificity can reveal information about several ge-
netic pathways, and this information can be easily categorized
with the use of bioinformatic analyses. This is a clear advantage
over the antisense or RNAi approach, in which the number of an-
tisense or RNAi molecules required to regulate the entire genome is
theoretically the same as the number of genes in the genome.

Third, the universality of transcription-factor action makes
this strategy easily applicable to many other eukaryotic and pro-
karyotic genomes.

In addition to the multiple gene regulation by ZFP-TFs, there
may be other reasons why our ZFP-TF-based random perturba-
tion method was successful in identifying a number of coregu-
lated gene groups with a relatively few experiments. For example,
by affecting different genes in the same gene group, one would
get similar patterns of gene perturbation. This would reduce the
number of perturbing agents required to obtain coregulated gene
groups. In fact, the work by Hughes et al (2000) in yeast clearly
demonstrates that affecting different genes in the same pathway

produces similar expression signatures. It is also possible that some
ZFP-TFs might have targeted transcription factors, which would
provide a complex gene expression signature. That would help in-
crease the complexity of overall information to be analyzed.

We also note the limitation of our approach. As we set a highly
stringent cut-off value to discard false positives, the majority of
gene groups consist only of a pair of genes. Therefore, many true
associations among multiple genes could have been missed.

Overall, we have shown the utility of ZFP-TF-based micro-
array technology in identifying novel functional relationships
among genes. More array experiments, along with the use of
microarray chips that cover the entire human genome, would be
required for a complete functional analysis of the human ge-
nome. In addition, time-course expression experiments for each
cell line will provide another level of information, which will
eventually help in building pathway maps of human cellular
gene expression.

METHODS

Construction of Stable Cell Lines That Express ZFP-TFs
We selected ZFP-TFs from our premade collection without any
bias or preference. Human embryonic kidney (HEK) cell lines
stably expressing ZFP-TFs were generated as follows: Plasmids
encoding ZFP-TFs were stably introduced into FlpTRex-293 cell
lines (Invitrogen) essentially as described in the manufacturer’s
protocol. Briefly, the HindIII–XhoI fragment from the pLFD-p65,
pLFD-VP16, or pLFD-Kid vectors (Bae et al. 2003), which contain
DNA segments that encode ZFP-TFs, were subcloned individually
into pcDNA5/FRT/TO (Invitrogen). The resulting plasmids were
cotransfected along with pOG44 (Invitrogen) into FlpTRex-293
cells to induce a site-specific integration event. Stable integrants
were then screened. The resulting cell lines expressed ZFP-TFs
upon the addition of Dox. A total of 132 cell lines were subjected
to gene expressionmicroarray experiments. The identities of ZFP-
TFs used for the experiments are shown in Supplemental Table 1.
It should be noted that for some cell lines, we isolated stable
clones after random transfection. Thus, the identities of ZFP-TFs
are not known.

DNA Microarray
DNA microarrays containing 7458 human EST clones, including
215 unassigned ESTs and 20 ESTs of putative genes, were pro-
vided by Genomic Tree, Inc. FlpTRex-293 cells that stably ex-
pressed ZFP-TFs were cultured with (+Dox) or without (�Dox) 1

Table 1. Coregulated Gene Groups With Functional Relationships

EST ID Gene name Putative functional relationship

AI363200
AI363445

proenkephalin
G � interacting protein (GAIP)

Proenkephalin binds to G protein-coupled opioid receptors (Mansour et al. 1995). GAIP
is a regulator of G protein signaling (Berman et al. 1996).

AA464856
W60703

inhibitor of DNA binding 4
caspase 5

ID4 is known to induce apoptosis (Andres-Barquin et al. 1999). Caspase 5 is an
apoptosis-related cystein protease (Krippner-Heidenreich et al. 2001).

AI126424
AI92302

E2F-like protein
eps15R

E2F-1 (Li and Baserga 1996) and Eps15R (Klapisz et al. 2002) are at the downstream of
EGF signaling.

AI055825
AI251747

Low-affinity IgE Fc receptor
odorant-binding protein 2B

Fish odors or fumes cause allergic reaction through IgE-mediated hypersensitivity
(Crespo et al. 1995).

AA054073
AA143331

CEACAM6
matrix metalloproteinase 1

CEA/CEACAM6 and matrix metalloproteinases inhibit anoikis and enhance cell invasion
(Ordonez et al. 2000; Koul et al. 2001).

AI949576
AI969825
AI971049

annexin A3
tumor antigen se20-4
myocilin

Might be at common downstream of TGF-beta or glucocorticoid signaling. See text for
details.

AA422058
AA496628

methyltransferase-like 1
nonmetastatic cells 2, protein (NM23B)

DNA methylation inactivates metastasis suppressor genes (Lou et al. 1999). NM23B is
found in reduced amount in tumor cells of high metastatic potential (Steeg et al.
1988)

AA398883
AA431080

squamous cell carcinoma antigen 1
keratin, type II cytoskeletal 6A

Cytokeratin 19 is a squamous cell carcinoma marker (Schneider et al. 2002). Therefore,
both gene products might be markers of squamous cell carcinoma.
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µg/mL Dox for 48 h. The total RNA was prepared from each
sample. RNA from a �Dox sample was used as the reference
(Cy3), and RNA from a +Dox sample constituted the experimen-
tal (Cy5) sample. Microarray experiments were performed ac-
cording to the manufacturer’s protocol. For HeLa cell microarray
experiments, a pLFD-p65/F2840 plasmid, which is an expression
vector encoding the F2840-p65 ZFP-TF, was transiently trans-
fected into HeLa cells using the Lipofectamine Plus (Invitrogen)
reagent, and for the control, pLFD-p65 alone without the ZFP-TF
was transfected.

In the Cycloheximide experiment, Dox treatment in cells
was carried out for 3 h, after which they were cultured for an
additional 3 h with 20 µg/mL cycloheximide. This sample was
compared with the sample collected after a 6-hour culture in the
presence of Dox, but without cycloheximide treatment. Also, 6 h
after Dox treatment in cells, They were cultured with 20 µg/mL
cycloheximide for another 6 h. Similarly, this sample was com-
pared with the sample cultured for 12 h with Dox alone. To
identify primary target genes, genes induced at all time points
and whose increase were not significantly decreased by cyclo-
heximide treatment, were considered as primary target genes.
Other induced genes at any time point were considered as sec-
ondary effects.

Data Analysis
CLUSTER and TREEVIEW programs (Eisen et al. 1998) were used
for global hierarchical, average-linkage clustering. Only genes
that are up- or down-regulated greater than twofold in one or
more experiments and present in >70% of the experiments, were
subjected to further analysis.

To isolate gene groups with strong similarities in their ex-
pression profiles, we processed the data with the following algo-
rithm.

1. A gene, that is not included in any group, is selected to form
a temporary group T.

2. The Pearson similarity coefficient is calculated for all genes in
the T group, as well as for the rest of genes not included in any
group. If the similarity is greater than the cutoff (initially
100%), we include the compared gene in the T group.

3. If the T group has more than two genes, we consider it to be
a new group.

4. Repeat 1 and 3 until there are no genes left to be included in
the group.

5. Next, at step 2, decrease the cutoff by 5% and repeat steps 1–4
until no genes are left (that is, not included in any group).

SP analysis was performed essentially as described in Zhou et al.
(2002).

The detailed information on microarray data analysis and
clustergrams of individual groups are available at www.toolgen.
com.

Experimental Validation
The Spi-B transcription factor was cloned using PCR and sub-
cloned into the pcDNA3 vector (Invitrogen) to generate pcDNA3-
SpiB. pcDNA3-SpiB was then transiently transfected into 293
cells, and 48 h after transfection, cells were harvested and the

Figure 4 IGF-2 cluster identified by SP analysis. SP group number is as in Supplemental Table 3.
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total RNA was prepared. Real-time PCR was performed according
to the manufacturer’s protocol (Corvette Research). The se-
quences of primers used for the real-time PCR experiments are
available upon request.
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