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Abstract

In this paper, we summarize a novel approach to robotic rehabilitation that capitalizes on the

benefits of patient intent and real-time assessment of impairment. Specifically, an upper-limb,

physical human-robot interface (the MAHI EXO-II robotic exoskeleton) is augmented with a non-

invasive brain-machine interface (BMI) to include the patient in the control loop, thereby making

the therapy ‘active’ and engaging patients across a broad spectrum of impairment severity in the

rehabilitation tasks. Robotic measures of motor impairment are derived from real-time sensor data

from the MAHI EXO-II and the BMI. These measures can be validated through correlation with

widely used clinical measures and used to drive patient-specific therapy sessions adapted to the

capabilities of the individual, with the MAHI EXO-II providing assistance or challenging the

participant as appropriate to maximize rehabilitation outcomes. This approach to robotic

rehabilitation takes a step towards the seamless integration of BMIs and intelligent exoskeletons to

create systems that can monitor and interface with brain activity and movement. Such systems will

enable more focused study of various issues in development of devices and rehabilitation

strategies, including interpretation of measurement data from a variety of sources, exploration of

hypotheses regarding large scale brain function during robotic rehabilitation, and optimization of

device design and training programs for restoring upper limb function after stroke.

I. INTRODUCTION

Stroke is the leading cause of neurological disability in the United States [22]. Repetitive,

task-specific training of the affected limb can result in significant motor recovery more than

one year after the stroke incident [21]. Experiments show that robot-assisted training of the

impaired arm can be as effective as unassisted repeated practice [14] and more effective than

neuro-developmental therapy commonly used for motor recovery after stroke [19].

Furthermore, robotic rehabilitation systems offer increased efficiency, lower cost, and new

sensing capabilities to the therapist.
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Given the proven potential of robotic rehabilitation systems, we aim to accelerate the

development, efficacy, and use of robotic rehabilitation after stroke. This paper presents our

approach to the development of robotic rehabilitation systems designed to capitalize on the

benefits of patient intent and real-time assessment of impairment. We use a brain-machine

interface (BMI) based on electroencephalography (EEG) to control a robotic exoskeleton

that will guide a patient’s limb through a naturalistic movement with the goal of training

brain networks that might aid in motor recovery from incomplete paralysis. The robotic

device enables accurate positioning of the impaired limb while simultaneously providing

assistance or resistance forces and collection of motion data that can be used to characterize

the quality of the patient’s movements. To evaluate the efficacy of the system and the degree

of motor recovery, we use real-time data acquired from the robotic exoskeleton and the BMI

to calculate objective performance metrics, and we compare these to traditional clinical

measures of motor function.

II. BACKGROUND AND MOTIVATION

A. Robotic rehabilitation systems

Various aspects of robotic rehabilitation have been investigated previously, including a

significant effort in the design of novel rehabilitation robots (e.g., [10], [13], [16]).

Rehabilitation engineering research has increasingly focused on quantitative evaluation of

residual motor abilities in an effort to obtain an objective evaluation of rehabilitation effects

[6]. Exoskeleton rehabilitation robots, such as the MAHI EXO-II (Fig. 1) used in our system

[9], [18], offer the advantage of precisely recording and monitoring isolated joint

movements of the arm and wrist, rather than just the end effector (as in the MIT-MANUS

and MIME systems [13]), and hence are better-suited for quantifying motor impairment of

multi-joint upper extremity reaching movements.

B. Neural interfaces

The last decade has seen remarkable advances in neural decoding and assistive BMI systems

to reconstitute motor function, enabling control of computer cursors, robotic limbs, and

orthoses in real time (e.g., [2], [4], [11], [20]). Based on recent findings that BMI training

can be used for selective induction of use-dependent CNS plasticity that might facilitate

motor recovery, the concept of restorative BMI has emerged [3], [5], [7]. Although long-

term BMI use has been shown to result in the formation of a stable, addressable, and robust

cortical map for 2D prosthetic control [8], little is known about the nature of the cortical

representation for BMI control of limb movements at the macro-scale of EEG. We believe

that developing non-invasive BMI-exoskeleton robot systems in closed-loop with the injured

brain is critical for (1) understanding current limitations of BMI systems, (2) improving their

chance to succeed when applied to patient populations such as stroke, (3) allowing robots to

work cooperatively (i.e., shared-control) with people to extend, restore, or augment their

human capacities, and (4) conducting reverse-translational studies of the effects of BMI-

induced cortical plasticity that can contribute to a better understanding of cortical

physiology while informing computational models of brain function.
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C. Assessing motor deficits and recovery after stroke

Clinical measures of motor improvement, while reliable and widely accepted, have several

drawbacks including variability, subjectivity, and lengthy evaluation procedures [12], [17].

In contrast, robotic measures (e.g., movement accuracy, timing, and smoothness) and EEG-

based measures have the benefits of being completely objective, capturing quality of

movement and the current state of the movement representation, and providing patients and

therapists with immediate feedback on patient progress. Despite these advantages, robotic

and EEG-based measures lack the wide acceptance of clinical measures because they are

often device- or task-specific and have not been tested for relevance to clinical outcomes.

Our system will record robotic and EEG-based measures during clinical testing to facilitate

the identification of task- and device-independent robotic and neurophysiological measures

that correlate well with clinical measures, enabling the incorporation of objective measures

of motor function into clinical rehabilitation procedures.

III. APPROACH

The goal of this research is to accelerate the development, efficacy, and use of robotic

rehabilitation after stroke by capitalizing on the benefits of patient intent and real-time

assessment of impairment. Toward this goal, we augment the MAHI EXO-II, a physical

human-robot interface, with a non-invasive EEG-based BMI to include the patient in the

control loop and make the therapy ‘active’. Using this system, we are developing robotic

and EEG-based measures of motor impairment and recovery that will allow real-time

evaluation of patient progress and drive patient-specific therapy sessions. When appropriate,

the MAHI EXO-II can then provide assistance or challenge the participant as needed to

maximize rehabilitation outcomes. The following sections describe the components of the

system and the methods for evaluation.

A. The MAHI EXO-II robot exoskeleton

The MAHI EXO-II (Fig. 1) is a five-DOF exoskeleton comprised of a revolute joint at the

elbow, a revolute joint for forearm rotation, and a 3-RPS (revolute-prismatic-spherical)

serial-in-parallel wrist actuated by DC brush motors for lowered cost. The design allows for

100% of wrist abduction/adduction range-of-motion (ROM) and 63% of wrist flexion/

extension ROM during activities of daily living (ADL), and offers key design improvements

over prior versions such as reduced backlash and singularities, increased torque output in

some DOF, improved wearability by allowing the device mount to be abducted at the

shoulder, and streamlined interchange between left and right arm configurations [15]. The

device is equipped with high-resolution sensors that enable accurate measurement of

position and velocity in the workspace (see [9], [10] for detailed performance data). During

therapy, the device actuators can provide variable and patient-controlled assistance forces to

vary the difficulty of the task.

B. The non-invasive BMI-exoskeleton system

A closed-loop real-time BMI system will be integrated with the physical exoskeleton and a

real-time open source virtual exoskeleton model (VEM), as shown in Fig. 2. Our

architecture modularizes the key components of the neural exoskeleton system into inputs,
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signal analysis, controls, plant, and presentation (virtual or physical). As a result of the

common interfaces of the system, EEG decode algorithms implemented in the signal

processing module can be used interchangeably, which facilitates comparison across labs

and teams. In Fig. 2, the Inputs correspond to the EEG signals (outputs of Block II) recorded

using a 64 channel Active electrode EEG cap (Block I). Block III corresponds to the Signal

Analysis, which consists of our proposed time-domain decoding algorithms, including sub-

band filtering and subsystems for decision fusion. The Controls and Plant are embedded

within Block IV, which represents the virtual or actual MAHI EXO-II. To harness the

increased sensing capabilities in advanced exoskeleton device designs, users will require

interfaces supported by novel forms of sensory feedback and novel control paradigms. To

allow for this, Block V contains the presentation of visual and ‘robotic’ feedback of the

exoskeleton during BMI operation. The proposed system is the first comprehensive robust,

safe, solution based on EEG decoding of natural volitional movement, using state-of-the-art

active EEG and a robotic exoskeleton platform for use by human subjects. Note that for

improved robust brain control, the system has built-in redundancy due to its multiple

decoders (e.g., Wiener and Kalman filters, and a motor intent classifier for switching the

neural interface during periods of non-movement intention).

C. EEG Methods

All participants will complete training to learn how to use their intentions to move the

exoskeleton through repeated single-joint and multi-joint movements while they wear the

BMI system. During BMI training, subjects will imagine moving their limb while watching

the robot’s resulting movement. (For unimpaired subjects, muscle activity from the limbs

will be monitored via electromyography (EMG) to ensure that only ‘movement thoughts’

are used to control the robot; patients will be asked to actively attempt to perform the

movements.) Importantly, the single-joint and multi-joint targeted movements will be self-

selected and self-initiated by the subjects. (See [1] for detailed behavioral task and setup.)

The aim is for patients to intentionally evoke robotic assitance through the BMI to increase

the range of paretic arm movement by controlling the robot to move through a larger range

than they can produce on their own. For each group, this is accomplished by reconstructing

trajectories of the elbow and wrist joints decoded from EEG to control the MAHI EXO-II in

real-time with visual feedback of the robot’s movement.

D. Clinical measures

To evaluate patient performance, we are focusing on three common clinical measures: Fugl-

Meyer (FM) upper-limb component, Action Research Arm Test (ARAT) and Jebsen-Taylor

Hand Function Test (JT). These tests rate motor impairment (FM and ARAT) and functional

performance (JT) of motions associated with activities of daily living. The time to complete

each task is recorded and compared to normative data for interpretation. Our goal is to

obtain robotic measures that correlate well with these clinical measures.

E. Structural and functional neuroimaging measures

To look for evidence of neural plasticity over time, structural and functional fMRI will be

performed on a 3T MRI scanner. Subjects will perform a controlled repetitive movement

task of the hand during an fMRI blocked design paradigm with four cycles alternating
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between 30 seconds of movement followed by 30 seconds of no movement. After the task

fMRI, an additional resting fMRI scan will be done to look at functional connectivity of

activated regions. Finally, a 10 minute diffusion-weighted sequence will be done to look at

structural connectivity. The structural MRI results will be used to measure damage to brain

regions involved in upper extremity movement and will provide an anatomical basis to

localize the functional MRI data. The functional MRI results will be used to localize

activation in brain regions during upper extremity movement and at rest. The DTI will look

at structural connectivity.

We anticipate finding increased activation in the stroke-affected primary cortex (M1),

premotor cortex (PMC), supplementary motor area (SMA), and ipsilateral cerebellum. We

predict that changes in activation of these specific brain regions will correlate with change in

behavioral functions and movement quality. We also predict that improvement in behavioral

functions and movement quality will positively correlate with the functional and structural

connectivity among specific brain regions.

F. Robotic measures

Robotic measures are calculated by post-processing the data files collected via the robotic

exoskeleton while the participant makes point-to-point reaching movements. Measures that

capture movement speed (such as movement time and average velocities), accuracy (such as

trajectory error and variability), and smoothness of movement (such as jerk and number of

zero crossings in the acceleration profile) can be used to quantify motor impairment from

robotic sensor data. These robotic measures are derived from known characteristics of

healthy human movements for center-out reaching tasks and are normalized for broad

applicability across robotic hardware.

Currently, we are exploring the use of trajectory error (TE) and smoothness of movement

(SM) measures to objectively evaluate motor function. In healthy human movements, the

nominal desired trajectory is a straight line from the last target to the current target. Absolute

values of the deviations from this straight line trajectory during the point-to-point movement

are summed to obtain the raw TE value, which is then normalized with respect to the

number of data points and the distance traveled to create a device-independent measure of

accuracy. The SM measure is a correlation coefficient that expresses the correlation between

the patient’s speed profile and a speed profile utilizing the minimum jerk principle (an

optimally smooth speed profile). The TE and SM measures serve as objective assessments

of movement quality; TE evaluates the patients’ performance of tracking straight line target

trajectories, while SM compares the speed profile of the patients’ movements with the speed

profiles observed in healthy people’s movements. Both measures demonstrate how stroke

patients’ movements deviate from healthy people’s movements, and they provide practical,

fast, direct, and objective evaluations of movement quality.

G. Statistical analyses

The primary goal of our statistical analyses is to evaluate how well the objective robotic and

EEG-based measures reflect the motor improvements captured by accepted clinical

measures. To determine treatment effects for the EEG, robotic, and clinical measures,
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repeated measures ANOVA will be used with repeated measures on test day. We will then

use regression analyses to investigate the correlation between clinical, EEG, and robotic

measures at different days of treatment. Clinical and robotic measures of motor impairment

will be compared for each pair (FM-TE, FM-SM, ARAT-TE, ARAT-SM, JT-TE, and JT-

SM) across all participants. Correlations between robotic and clinical measures will be used

to evaluate the utility of the set of robotic measures. We expect that the chosen robotic

measures (TE and SM) will correlate strongly with the clinical measures, which would

indicate that these objective robotic measures could be used in place of the equivalent

clinical measures.

IV. CONCLUSION

This paper described a novel approach to robotic rehabilitation using patient intent and real-

time assessment of motor function to improve rehabilitation outcomes. This approach will

lead to more complete integration of robotic exoskeleton devices and brain interfaces,

allowing patients to be more active in their therapy. The use of such an integrated system

will also allow more objective and reliable evaluation of patient progress by identifying

robotic and EEG-based measures that correlate well with accepted clinical measures.

Incorporating these objective measures into patient therapy will enable online evaluation of

patient progress, leading to more patient-specific therapy sessions in which assistance or

resistance can be provided as needed through the integrated physical system. This research

will also result in improvements in the understanding of neuromuscular control of upper

extremities and large scale brain function during robotic rehabilitation. These advances will

be an important step towards the optimization of device design and training programs for

restoring upper limb function after stroke.
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Fig. 1.
MAHI EXO-II exoskeleton on tetraplegic patient, for determination of robotic measures of

motor impairment.
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Fig. 2.
Closed-loop BMI system architecture for the control of the MAXI EXO-II using EEG

signals.
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