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For the purposes of this review, we define nonlesional epilepsy 
as any epilepsy in which a lesion or a dysfunctional defined area 
is not observable using visual inspection of standard clinical 
neuroimaging. Thus, any new techniques discussed here aim 
at identifying or improving the certainty of detection of an 
area of abnormality corresponding to the epileptogenic lesion.

It is critical to mention that although there is no standard-
ized epilepsy imaging protocol in place among different 
institutions and hospitals, the primary clinical neuroimaging 
modality is MRI, with the acquisition of a whole brain T1 acqui-
sition for imaging anatomy, and various T2-based acquisitions 
for detecting tissue pathology, such as fast low angle inversion 
recovery (FLAIR) and gradient recalled echo (GRE). Apart from 
this basic study, every center has different imaging protocols 
that vary a great deal in quality, specifications, and sensitivity.

There are a number of imaging-based research avenues 
aimed at characterizing and diagnosing nonlesional epilepsy. 
A review of recent developments for the detection and map-
ping of brain abnormalities in nonlesional epilepsy follows.

Computational Post-Processing of Structural MRI
Computational post-processing techniques may be used to 
quantify brain morphological features and allow the use of 
statistical inference (rather than visual inspection) to identify 
abnormalities, based on comparison with healthy controls. 
There are a number of epilepsy-relevant features that may 
be measured using a whole brain T1- or T2-weighted MRI 
scan: local gray matter volume, measured using voxel-based 

morphometry (1); cortical thickness (2); blurring of the bound-
ary between gray and white matter in the cortex (3, 4); sulcal 
depth (5); and more exotic measures that quantify local spatial 
properties of tissue, such as cortical gyrification (6) and texture 
analysis (7, 8). The most sensitive methods for identifying rel-
evant epilepsy -related brain regions in nonlesional epilepsies 
will likely involve a combination of these features (9). A review 
by Bernasconi et al. discusses morphometric approaches for 
the detection of cryptogenic epileptogenic tissue in more 
detail (10).

Another less widely explored avenue is the application of 
post-processing methods to alternative imaging sequences, 
such as FLAIR or T2-weighted imaging. The application of 
voxel-based methods to FLAIR imaging identified structural 
changes in 11.4% of lesion-negative focal epilepsy cases in a 
study published in 2009 (11). These acquisitions have not been 
explored as much as whole brain T1-weighted MRI because 
hardware limitations in the past have made it difficult to ac-
quire scans with full brain coverage in a reasonable acquisition 
time. However, the availability of multi-channel coils from all 
major MR manufacturers now means that T2-weighted images 
may be acquired with the same spatial resolution as older T1-
weighted MRI acquisitions (~1 mm isotropic).

These methods have been applied to either confirmed 
cases of focal dysplasia (FCD) or non-visible FCD. The latter is 
more important, as these techniques can have the potential of 
identifying 30% more patients who currently have no identifi-
able focal abnormality (4).

The task of determining the optimal combination of quan-
titative features—whether these are multiple morphometric 
parameters derived from a single acquisition, or features 
obtained from multiple image acquisitions (T1- and T2-weight-
ed imaging in combination)—is not simple and relies upon 
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sophisticated multivariate statistical methods. There are a wide 
variety of machine learning techniques currently available; the 
primary challenge in applying these methods to neuroimaging 
data are low numbers of subjects relative to the large number 
of candidate morphometric features.

Functional MRI
Functional MRI methods allow us to map temporal changes in 
oxygenated blood flow (blood-oxygenation-level-dependent 
[BOLD] contrast imaging and related methods). Of particular 
relevance to epilepsy is simultaneous EEG-fMRI, in which EEG 
is acquired during fMRI acquisition, and the timing from EEG 
events is used to map BOLD changes in response to electro-
graphic discharges. A recent paper reported that BOLD re-
sponse in EEG-fMRI was useful for identifying epileptogenic re-
gions in 55% of nonlesional epilepsy cases, which the authors 
interpreted as useful for identification of subtle lesions or for 
guiding implantation of electrodes for further localization (12). 
A related study with a modest sample size (n = 9) in lesion-
negative frontal epilepsy also found that EEG-fMRI assisted in 
delineating the epileptogenic zone (13). Another fMRI method 
that holds great promise for imaging networks in lesion-
negative epilepsy is resting state fMRI, in which subjects at rest 
are imaged using standard BOLD fMRI, and brain regions with 
correlated BOLD fluctuations are interpreted as networks. Rest-
ing state fMRI has been used to demonstrate differences in 
functional connectivity in individuals with childhood absence 
epilepsy (14). The primary challenges in resting state fMRI 
studies are 1) the detection and removal of non-neural cor-
relations, for example due to motion, cardiac and respiration 
(15), and 2) identification of relevant epilepsy-related networks 
for further analysis. Elimination of non-neural signals may be 
aided by the acquisition of physiological data synchronized 
with the fMRI acquisition, as well as post-processing noise re-
moval techniques. Individual networks may be identified using 
statistical methods, such as independent components analysis 
(16). There is extensive literature on the use of fMRI in epilepsy; 
for a recent review of ictal fMRI, we refer interested readers to 
the 2013 study from Chaudry et al. (17). Preoperative fMRI is of 
use clinically for language and memory function but has a lim-
ited role in distinguishing lesional versus nonlesional epilepsy 
and, thus, is not discussed further.

Diffusion-Weighted Imaging (DWI)
Water diffusion in white matter is anisotropic, and the most 
common approach to modeling water diffusion is with diffu-
sion tensor imaging (DTI). DTI allows generation of maps of 
quantitative diffusion measures, such as fractional anisotropy, 
mean diffusivity, and apparent diffusion coefficient. Although 
there is clear evidence that these measures are affected in 
MRI-visible cases (18), there is less evidence that DWI and 
related image processing methods can identify epilepsy-
related white matter changes, although some findings have 
been reported (19). The most consistent finding is that DWI 
changes are particularly pronounced following seizures 
(20–22). The lack of evidence for DWI-based changes in nonle-
sional epilepsy may be due to methodological issues with DTI, 
in particular, the inability of the tensor to resolve white matter 
pathways in voxels containing multiple fibers, which have 

been estimated to be present in 63 to 90 percent of white 
matter voxels (23). More recent developments, such as the 
use of high angular resolution diffusion imaging (HARDI) in 
combination with more sophisticated modeling techniques, 
such as constrained spherical deconvolution, may overcome 
these limitations (24). A recent approach called Apparent 
Fiber Density allows diffusion differences to be detected in 
individual white fiber tracts within voxels that contain mul-
tiple fibers (25); this method was used to provide preliminary 
evidence that lesion-negative temporal lobe epilepsy has a 
pattern of bilateral white matter changes that is distinct from 
lesional TLE (26).

Improved Structural MRI Acquisition
Development of better hardware increases spatial resolution, 
signal, or sensitivity to tissue pathology. The most standard 
method for increased spatial resolution is the use of higher 
field MRI scanners, such as 7T MRI. To date, there is limited 
evidence that the use of 7T imaging is useful for imaging 
nonlesional epilepsy cases, which is likely due to the limited 
availability of high-field scanners, appropriate acquisition 
sequences, and lack of systematic studies. Some promising 
results have been reported for the use of high-field MRI to 
detect small lesions in vivo in other neurological disorders, 
such as multiple sclerosis, which may be directly applicable 
to epilepsy (27). Another hardware development that is 
increasingly available is multichannel head coils. Although 
these coils generate better images in terms of signal-to-
noise ratio (SNR) and may also be used to reduce scan time, 
improved diagnostic yield has not been well demonstrated 
(28). Newer acquisitions include double inversion recovery 
MRI and MP2RAGE, a variant on the well-known MPRAGE 
(magnetization-prepared rapid gradient echo) acquisition. 
Double inversion recovery reduces the signal from CSF and 
white matter, allowing for improved contrast in the cortex 
and detection of subtle lesions. The method has been shown 
to identify structural abnormalities in lesion-negative epilepsy 
cases (29). MP2RAGE is a more recent method that combines 
images acquired with two inversion times to generate a single 
image that has high T1 weighting and is very “flat” (low bias 
field) (30). Images acquired using this method have excellent 
contrast and will be well suited to the quantitative methods 
discussed in the first section.

MRS
MRS has the benefit of identifying areas of metabolic dysfunc-
tion in focal epilepsy akin to FDG-PET. Proton spectroscopy is 
sensitive to neuronal dysfunction by showing reduced NAA (n-
acetylaspartate) levels in focal epileptogenic areas irrespective 
of pathology reflecting mitochondrial dysfunction. Multiple 
studies have shown MRS abnormalities in epileptogenic tem-
poral lobe regions with asymmetries reported in 70 to 80 per-
cent of TLE patients with LRE. In clinical studies, MRS has also 
shown predictive value after epilepsy surgery when structural 
MRI is normal. Technical challenges, in particular, limited whole 
brain coverage, and cortical lipid contamination limit the 
use of MRS in extratemporal lobe epilepsy. However, recent 
improvements in whole brain metabolite measurements and 
analysis can overcome many of these problems (31).
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MRS studies have shown also network metabolic dysfunc-
tion (32). A recent study showed a close metabolic relation-
ship between hippocampal and thalamic regions, probably 
representing the relationships that occur in the context of 
seizure propagation. These findings may play a role in identify-
ing network distribution patterns in LRE and may allow for 
identification of potential targets for surgery.

PET
In patients with LRE defined by ictal or interictal EEG, the 
main indication for FDG PET is to identify a single focal 
abnormality when an MRI is normal. FDG PET can also be of 
some value when there is possibly more than one focal ictal 
zone or when clinical data are discordant with EEG findings. 
FDG PET yield can be improved by using statistical analysis 
methods, such as statistical parametric mapping (SPM) as 
well as by PET/MRI co-registration on a clinical level which 
improves sensitivity (33).

So far, receptor PET studies have been limited to research 
laboratories. In some patients, α-methyl-l-tryptophan (AMT) 
PET can improve detection of epileptogenic tubers (34]. 
Studies have reported that PET imaging using the GABAA/ben-
zodiazepine-specific radiotracers, such as 11C-flumazenil or 18F-
radiolabeled flumazenil can identify more restricted regions 
of abnormalities in the epileptogenic zone and have higher 
sensitivity in extratemporal localization. Similarly, other PET 
receptor tracers have been tested, such as serotonin markers 
(5-HT1A, MPPF (4-(2’-methoxyphenyl)-1-[2’-[N-(2’’-pyridinyl)-p-
fluorobenzamido]ethyl]-piperazine), dopamine system recep-
tors (18F]-fluoro-L-Dopa, 88F]-Fallypride), glutamate/NMDA 
receptors (11C]-S-ketamine, 11C]-CNS 5161) and  opiate recep-
tors (11C-carfentanil) (35, 36). However, practical limitations 
of using any of these radiotracers include the lack of commer-
cially available radiotracers, short half-life that necessitates an 
onsite cyclotron, moderate signal-to-noise ratio, and the need 
for arterial blood sampling to model tracer-binding features. In 
addition, to date, none has demonstrated a clear clinical role in 
nonlesional epilepsy.

SPECT
Perictal SPECT has proven very valuable in studying localiza-
tion-related epilepsy patients (37). SPECT is primarily used in 
patients with nonlesional TLE but more commonly in patients 
with nonlesional extra-TLE or in those with poorly localized 
seizures when other data suggest a likely focal onset. The yield 
of ictal SPECT in patients with an abnormal MRI is of limited 
value. The wide availability of SPECT and stable radiotracers 
balances the limitations imposed by the need for perictal 
injections.

SPECT sensitivity and specificity have improved using 
SISCOM (subtraction ictal SPECT co-registered to MRI) analysis. 
Several studies have shown enhanced sensitivity and specific-
ity versus ictal studies alone (38). Furthermore, SPECT studies 
using statistical analysis based on normalized brain blood flow 
models have demonstrated superior sensitivity to SISCOM. 
Recent studies have shown that statistical based techniques 
models identified a hyperperfusion focus in 84% of patients 
versus SISCOM in 66% (p > 0.05). Moreover, the probability of 
seizure-free outcome improves when statistical models cor-

rectly localize a focal area compared to indeterminate localiza-
tion (81% vs 53%; p > 0.03).

Summary
New technical developments and improved statistical imaging 
analysis methods are increasing the yield for detecting abnor-
malities in LRE. Determination and classification of LRE is likely 
to increase in the future as techniques become more sensitive 
and imaging epilepsy networks becomes a reality.
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