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The definition of hesitant interval-valued intuitionistic fuzzy sets (HIVIFSs) is developed based on interval-valued intuitionistic
fuzzy sets (IVIFSs) and hesitant fuzzy sets (HFSs).Then, some operations on HIVIFSs are introduced in detail, and their properties
are further discussed. In addition, some hesitant interval-valued intuitionistic fuzzy number aggregation operators based on t-
conorms and t-norms are proposed, which can be used to aggregate decision-makers’ information inmulticriteria decision-making
(MCDM) problems. Some valuable proposals of these operators are studied. In particular, based on algebraic and Einstein t-
conorms and t-norms, some hesitant interval-valued intuitionistic fuzzy algebraic aggregation operators and Einstein aggregation
operators can be obtained, respectively. Furthermore, an approach of MCDM problems based on the proposed aggregation
operators is given using hesitant interval-valued intuitionistic fuzzy information. Finally, an illustrative example is provided to
demonstrate the applicability and effectiveness of the developed approach, and the study is supported by a sensitivity analysis and
a comparison analysis.

1. Introduction

Since fuzzy sets were proposed by Zadeh [1], the studies
on multicriteria decision-making (MCDM) problems have
made great progress. Further, fuzzy sets were generalized to
intuitionistic fuzzy sets (IFSs) by Atanassov [2, 3], where each
element in an IFS has a membership degree and a nonmem-
bership degree between 0 and 1, respectively.Then,Atanassov
and Gargov [4] proposed the notion of interval-valued
intuitionistic fuzzy sets (IVIFSs) which are the extension of
IFSs, where the membership degree and nonmembership
degree of an element in an IVIFS are, respectively, represented
by intervals in [0, 1] rather than crisp values between 0
and 1. In recent years, many researchers have studied the
theory of IVIFSs and applied it to various fields [5–8]. For
instance, Atanassov [9] introduced the operators of IVIFSs.
Lee [10] proposed a method for ranking interval-valued

intuitionistic fuzzy numbers (IVIFNs) for fuzzy decision-
making problems. Lee [11] provided an enhanced MCDM
method of machine design schemes under the interval-
valued intuitionistic fuzzy environment. Li [12] proposed a
TOPSIS based nonlinear-programming method for MCDM
problems with IVIFSs. Park et al. [13] extended the TOPSIS
method to solve group MCDM problems in interval-valued
intuitionistic fuzzy environment in which all the preference
information provided by decision-makers is presented as
IVIFNs. Chen et al. [14] developed an approach to tackle
group MCDM problems in the context of IVIFSs. Nayagam
and Sivaraman [15] introduced a method for ranking IVIFSs
and compared it to other methods by means of numerical
examples. Chen et al. [16] presented a MCDMmethod based
on the proposed interval-valued intuitionistic fuzzy weighted
average (IVIFWA) operator. Meng et al. [17] developed
an induced generalized interval-valued intuitionistic fuzzy
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hybrid Shapley averaging (GIVIFHSA) operator and applied
it to MCDM problems.

Hesitant fuzzy sets (HFSs), another extension of tradi-
tional fuzzy sets, provide a useful reference for our study
under hesitant fuzzy environment. HFSs were first intro-
duced by Torra and Narukawa [18], and they permit the
membership degrees of an element to be a set of several
possible values between 0 and 1. HFSs are highly useful in
handling the situations where people have hesitancy in pro-
viding their preferences over objects in the decision-making
process. Some aggregation operators of HFSs were studied
and applied to decision-making problems [19–21]. Then, the
correlation coefficients of HFSs, the distance measures, and
correlation measures of HFSs were discussed [22–24], based
on which Peng et al. [25] presented a generalized hesitant
fuzzy synergetic weighted distance measure. Zhang and Wei
[26] developed the E-VIKOR method and TOPSIS method
to solve MCDM problems with hesitant fuzzy information.
Zhang [27] developed a wide range of hesitant fuzzy power
aggregation operators for hesitant fuzzy information. Chen et
al. [28] generalized the concept of HFSs to hesitant interval-
valued fuzzy sets (HIVFSs) in which themembership degrees
of an element to a given set are not exactly defined but
denoted by several possible interval values. Wei [29] defined
HIVFSs and some hesitant interval-valued fuzzy aggregation
operators. Wei and Zhao [30] developed some Einstein
operations on HIVFSs and the induced hesitant interval-
valued fuzzy Einstein aggregation (HIVFEA) operators and
applied them to MCDM problems. Zhu et al. [31] defined
dual HFSs (DHFSs) in terms of two functions that return
two sets ofmembership degrees and nonmembership degrees
rather than crisp numbers in HFSs. If the idea of dual HFSs
is used from a new perspective, then another extension of
HFSs may be defined in terms of one function that the
element of HFSs returns a set of IFSs, which are called hes-
itant intuitionistic fuzzy sets (HIFSs). But decision-makers
usually cannot estimate criteria values of alternatives with
exact numerical values when the information is not known
precisely.Therefore, interval values in fuzzy sets can represent
it better than specific numbers, such as interval-valued fuzzy
sets (IVFSs) and IVIFSs. Furthermore, although the theories
of IVIFSs and HFSs have been developed and generalized,
they cannot deal with all sorts of uncertainties in different
real problems. For example, when we ask the opinion of an
expert about a certain statement, he or she may answer that
the possibility that the statement is true is [0.1, 0.2] and that
the statement is false is [0.4, 0.5], or the possibility that the
statement is true is [0.5, 0.6] and that the statement is false is
[0.3, 0.5].This issue is beyond the scope of IVFSs and IVIFSs.
Therefore, some new theories are required.

So the concept of hesitant interval-valued intuitionistic
fuzzy sets (HIVIFSs) is developed in this paper. Comparing
to the existing fuzzy sets mentioned above, HIVIFSs are a
new extension of HFSs, which support a more flexible and
simpler approach when decision-makers provide their deci-
sion information in a hesitant interval-valued intuitionistic
fuzzy environment. Furthermore, IVIFSs,HFSs,HIVFSs, and
HIFSs are all the special cases of HIVIFSs.

In this paper, HFSs are extended based on IVIFSs.
HIVIFSs are defined, and their properties and applications
are also discussed. Thus, the rest of this paper is organized as
follows. In Section 2, the definitions and properties of IVIFSs
and HFSs are briefly reviewed. In Section 3, the notion of
HIVIFSs is proposed, and the operations and properties of
HIVIFSs based on 𝑡-conorms and 𝑡-norms are discussed. In
Section 4, some hesitant interval-valued intuitionistic fuzzy
number aggregation operators are developed and applied to
MCDMproblems. Section 5 gives an example to illustrate the
application of the developedmethod. Finally, the conclusions
are drawn in Section 6.

2. Preliminaries

In this section, some basic concepts and definitions related to
HIVIFSs are introduced, including interval numbers, IVIFSs,
and HFSs. These will be utilized in the subsequent analysis.

2.1. Interval Numbers and Their Operations

Definition 1 (see [32–34]). Let 𝑎 = [𝑎
𝐿
, 𝑎
𝑈
] = {𝑥 | 𝑎

𝐿
≤ 𝑥 ≤

𝑎
𝑈
}; then 𝑎 is called an interval number. In particular, if 0 ≤

𝑎
𝐿
≤ 𝑥 ≤ 𝑎

𝑈, then 𝑎 is reduced to a positive interval number.
Consider any two interval fuzzy numbers 𝑎 = [𝑎

𝐿
, 𝑎
𝑈
]

and �̃� = [𝑏
𝐿
, 𝑏
𝑈
], and their operations are defined as follows:

(1) 𝑎 = �̃� ⇔ 𝑎
𝐿
= 𝑏
𝐿
, 𝑎
𝑈
= 𝑏
𝑈;

(2) 𝑎 + �̃� = [𝑎
𝐿
+ 𝑏
𝐿
, 𝑎
𝑈
+ 𝑏
𝑈
];

(3) 𝑎 − �̃� = [𝑎
𝐿
− 𝑏
𝑈
, 𝑎
𝑈
− 𝑏
𝐿
];

(4) 𝑎 × �̃� = [min{𝑎𝐿𝑏𝐿, 𝑎𝐿𝑏𝑈, 𝑎𝑈𝑏𝐿, 𝑎𝑈𝑏𝑈},
max{𝑎𝐿𝑏𝐿, 𝑎𝐿𝑏𝑈, 𝑎𝑈𝑏𝐿, 𝑎𝑈𝑏𝑈}];

(5) 𝑘𝑎 = [𝑘𝑎
𝐿
, 𝑘𝑎
𝑈
], 𝑘 > 0.

2.2. IVIFSs. Atanassov first proposed IFSs, being enlarge-
ment and development of Zadeh’s fuzzy sets. IFSs contain the
degree of nonmembership, which makes it possible for us to
model unknown information.The definition of IVIFSs given
by Atanassov and Gargov [4] is shown as follows.

Definition 2 (see [4]). Let 𝐷[0, 1] be the set of all closed
subintervals of the interval [0, 1]. Let 𝑋 be a given set and
𝑋 ̸=⌀. An IVIFS in 𝑋 is an expression given by 𝐴 =

{⟨𝑥, 𝜇
𝐴
(𝑥), ]
𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋}, where 𝜇

𝐴
: 𝑋 → 𝐷[0, 1], ]

𝐴
→

𝐷[0, 1] with the condition 0 < sup
𝑥
𝜇
𝐴
(𝑥) + sup

𝑥
]
𝐴
(𝑥) ≤

1. The intervals 𝜇
𝐴
(𝑥) and ]

𝐴
(𝑥) denote the degree of

belongingness and nonbelongingness of the element 𝑥 to the
set 𝐴, respectively. Thus, for each 𝑥 ∈ 𝑋, 𝜇

𝐴
(𝑥) and ]

𝐴
(𝑥)

are closed intervals whose lower and upper boundaries are
denoted by 𝜇𝐿

𝐴
(𝑥), 𝜇
𝑈

𝐴
(𝑥) and ]𝐿

𝐴
(𝑥), ]𝑈
𝐴
(𝑥), respectively, and

then

𝐴 = {⟨𝑥, [𝜇
𝐿

𝐴
(𝑥) , 𝜇

𝑈

𝐴
(𝑥)] , []𝐿

𝐴
(𝑥) , ]𝑈

𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋} , (1)

where 0 < 𝜇
𝑈

𝐴
(𝑥) + ]𝑈

𝐴
(𝑥) ≤ 1, 𝜇𝐿

𝐴
(𝑥) ≥ 0, ]𝐿

𝐴
(𝑥) ≥ 0. For each

element 𝑥, the hesitancy degree can be calculated as follows:
Π
𝐴
(𝑥) = 1 − 𝜇

𝐴
(𝑥) − ]

𝐴
(𝑥) = [1 − 𝜇

𝑈

𝐴
(𝑥) − ]𝑈

𝐴
(𝑥), 1 − 𝜇

𝐿

𝐴
(𝑥) −
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]𝐿
𝐴
(𝑥)]. The set of all IVIFSs in 𝑋 is denoted by IVIFS(𝑋).

An interval-valued intuitionistic fuzzy number (IVIFN) is
denoted by 𝐴 = ([𝑎, 𝑏], [𝑐, 𝑑]) and the degree of hesitance is
denoted by [𝑒, 𝑓] = [1 − 𝑎 − 𝑑, 1 − 𝑎 − 𝑐] for convenience.

Definition 3 (see [16]). Let �̃�
𝑖
= ⟨[𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]⟩ (1 ≤ 𝑖 ≤ 𝑛)

be a collection of IVIFNs and let 𝑤
𝑖
(1 ≤ 𝑖 ≤ 𝑛) be the crisp

values, where �̃�
𝑖
= ⟨[𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]⟩ = [[𝑎

𝑖
, 𝑏
𝑖
], [1 − 𝑑

𝑖
, 1 − 𝑐

𝑖
]],

0 ≤ 𝑎
𝑖
≤ 𝑏
𝑖
≤ 1, 0 ≤ 𝑐

𝑖
≤ 𝑑
𝑖
≤ 1, 0 ≤ 𝑏

𝑖
+ 𝑑
𝑖
≤ 1, and

1 ≤ 𝑖 ≤ 𝑛, and then the interval-valued intuitionistic fuzzy
weighted average operator can be defined as follows:

IVIFWA
𝑤
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

=
∑
𝑛

𝑖=1
[[𝑎
𝑖
, 𝑏
𝑖
] , [1 − 𝑑

𝑖
, 1 − 𝑐
𝑖
]] × 𝑤

𝑖

∑
𝑛

𝑖=1
𝑤
𝑖

= [[
∑
𝑛

𝑖=1
𝑎
𝑖
𝑤
𝑖

∑
𝑛

𝑖=1
𝑤
𝑖

,
∑
𝑛

𝑖=1
𝑏
𝑖
𝑤
𝑖

∑
𝑛

𝑖=1
𝑤
𝑖

] ,

[
∑
𝑛

𝑖=1
(1 − 𝑑

𝑖
) 𝑤
𝑖

∑
𝑛

𝑖=1
𝑤
𝑖

,
∑
𝑛

𝑖=1
(1 − 𝑐
𝑖
) 𝑤
𝑖

∑
𝑛

𝑖=1
𝑤
𝑖

]]

= [[𝑎, �̃�] , [𝑐, 𝑑]] ,

(2)

where IVIFWA
𝑤
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) = [[𝑎, �̃�], [𝑐, 𝑑]] = ⟨[𝑎, �̃�],

[1 − 𝑑, 1 − 𝑐]⟩ is an interval-valued intuitionistic fuzzy value;
𝑎, �̃�, 𝑐, and 𝑑 are calculated by the Karnik-Mendel algorithms
[35].

Example 4. Let �̃�
1

= ⟨[0.3, 0.6], [0.1, 0.2]⟩ and �̃�
2

=

⟨[0.4, 0.6], [0.1, 0.3]⟩ be two IVIFNs, and 𝑤
1
= 0.3, 𝑤

2
= 0.5.

According to (2),

IVIFWA
𝑤
(�̃�
1
, �̃�
2
)

= [[
0.3 × 0.3 + 0.4 × 0.5

0.3 + 0.5
,
0.6 × 0.3 + 0.6 × 0.6

0.3 + 0.5
] ,

[
(1 − 0.2) × 0.3 + (1 − 0.3) × 0.5

0.3 + 0.5
,

(1 − 0.1) × 0.3 + (1 − 0.1) × 0.5

0.3 + 0.5
]]

= [[0.3625, 0.6750] , [0.7375, 0.9000]]

= ⟨[0.3625, 0.6750] , [1 − 0.9000, 1 − 0.7375]⟩

= ⟨[0.3625, 0.6750] , [0.1000, 0.2625]⟩ .

(3)

Definition 5 (see [36]). Let �̃� = ⟨[𝑎, 𝑏], [𝑐, 𝑑]⟩ be an IVIFN,
and then an accuracy function 𝐿(�̃�) can be defined as follows:

𝐿 (�̃�) =
𝑎 + 𝑏 − 𝑑 (1 − 𝑏) − 𝑐 (1 − 𝑎)

2
, (4)

where 𝐿(�̃�) ∈ [−1, 1] and 1 ≤ 𝑖 ≤ 𝑛.

Definition 6 (see [36]). Let �̃�
1
and �̃�
2
be two IVIFNs, and then

the following comparison method must exist.

(1) If 𝐿(�̃�
1
) > 𝐿(�̃�

2
), then �̃�

1
> �̃�
2
.

(2) If 𝐿(�̃�
1
) = 𝐿(�̃�

2
), then �̃�

1
= �̃�
2
.

Example 7. Let �̃�
1
= ⟨[0.4, 0.6], [0.1, 0.2]⟩ and �̃�

2
= ⟨[0.5,

0.6], [0.2, 0.3]⟩ be two IVIFNs. According to (4), 𝐿(�̃�
1
) =

(0.4 + 0.6 − 0.2 × (1 − 0.6) − 0.1 × (1 − 0.4))/2 = 0.43 and
𝐿(�̃�
2
) = 0.44. 𝐿(�̃�

2
) > 𝐿(�̃�

1
) can be obtained, so the optimal

one(s) is �̃�
2
.

Definition 8 (see [37–39]). A function 𝑇 : [0, 1] × [0, 1] →

[0, 1] is called 𝑡-norm if it satisfies the following conditions:

(1) for all 𝑥 ∈ [0, 1], 𝑇(1, 𝑥) = 𝑥;
(2) for all 𝑥, 𝑦 ∈ [0, 1], 𝑇(𝑥, 𝑦) = 𝑇(𝑦, 𝑥);
(3) for all 𝑥, 𝑦, 𝑧 ∈ [0, 1], 𝑇(𝑥, 𝑇(𝑦, 𝑧)) = 𝑇(𝑇(𝑥, 𝑦), 𝑧);
(4) if 𝑥 ≤ 𝑥


, 𝑦 ≤ 𝑦

, then 𝑇(𝑥, 𝑦) ≤ 𝑇(𝑥

, 𝑦

).

Definition 9 (see [37–39]). A function 𝑆 : [0, 1] × [0, 1] →

[0, 1] is called 𝑡-conorm if it satisfies the following conditions:

(1) for all 𝑥 ∈ [0, 1], 𝑆(0, 𝑥) = 𝑥;
(2) for all 𝑥, 𝑦 ∈ [0, 1], 𝑆(𝑥, 𝑦) = 𝑆(𝑦, 𝑥);
(3) for all 𝑥, 𝑦, 𝑧 ∈ [0, 1], 𝑆(𝑥, 𝑆(𝑦, 𝑧)) = 𝑆(𝑆(𝑥, 𝑦), 𝑧);
(4) if 𝑥 ≤ 𝑥


, 𝑦 ≤ 𝑦

, then 𝑆(𝑥, 𝑦) ≤ 𝑆(𝑥

, 𝑦

).

There are some well-known Archimedean 𝑡-conorms and 𝑡-
norms [39, 40].

(1) Let 𝑘(𝑡) = − In 𝑡, 𝑙(𝑡) = − In(1 − 𝑡), 𝑘−1(𝑡) = 𝑒
−𝑡,

𝑙
−1
(𝑡) = 1 − 𝑒

−𝑡, and then algebraic 𝑡-conorms and 𝑡-
norms are obtained as follows:𝑇(𝑥, 𝑦) = 𝑥𝑦, 𝑆(𝑥, 𝑦) =
1 − (1 − 𝑥)(1 − 𝑦).

(2) Let 𝑘(𝑡) = In((2 − 𝑡)/𝑡), 𝑙(𝑡) = In((2 − (1 − 𝑡))/(1 −

𝑡)), 𝑘−1(𝑡) = 2/(𝑒
𝑡
+ 1), 𝑙−1(𝑡) = 1 − (2/(𝑒

𝑡
+ 1)), and

then Einstein 𝑡-conorms and 𝑡-norms are obtained as
follows: 𝑇(𝑥, 𝑦) = 𝑥𝑦/(1 + (1 − 𝑥)(1 − 𝑦)), 𝑆(𝑥, 𝑦) =
(𝑥 + 𝑦)/(1 + 𝑥𝑦).

(3) Let 𝑘(𝑡) = In((𝛾 − (1 − 𝛾)𝑡)/𝑡), 𝛾 > 0, 𝑙(𝑡) = In((𝛾 −
(1 − 𝛾)(1 − 𝑡))/(1 − 𝑡)), 𝑘−1(𝑡) = 𝛾/(𝑒

𝑡
+ 𝛾 − 1), 𝑙−1(𝑡) =

1−(𝛾/(𝑒
𝑡
+𝛾−1)), and thenHamacher 𝑡-conorms and

𝑡-norms are obtained as follows:

𝑇 (𝑥, 𝑦) =
𝑥𝑦

𝛾 + (1 − 𝛾) (𝑥 + 𝑦 − 𝑥𝑦)
, 𝛾 > 0,

𝑆 (𝑥, 𝑦) =
𝑥 + 𝑦 − 𝑥𝑦 − (1 − 𝛾) 𝑥𝑦

1 − (1 − 𝛾) 𝑥𝑦
, 𝛾 > 0.

(5)

Based on the Archimedean 𝑡-conorms and 𝑡-norms,
some operations of IVIFSs are discussed as follows.

Definition 10. Let �̃� = ⟨[𝑎, 𝑏], [𝑐, 𝑑]⟩, �̃�
1
= ⟨[𝑎
1
, 𝑏
1
], [𝑐
1
, 𝑑
1
]⟩,

�̃�
2
= ⟨[𝑎
2
, 𝑏
2
], [𝑐
2
, 𝑑
2
]⟩ be three IVIFNs, 𝜆 ≥ 0, and then their

operations could be defined as follows [19, 41–43]:

(1) �̃�𝜆 = ⟨[𝑘
−1
(𝜆𝑘(𝑎)), 𝑘

−1
(𝜆𝑘(𝑏))], [𝑙

−1
(𝜆𝑙(𝑐)),

𝑙
−1
(𝜆𝑙(𝑑))]⟩;

(2) 𝜆�̃� = ⟨[𝑙
−1
(𝜆𝑙(𝑎)), 𝑙

−1
(𝜆𝑙(𝑏))], [𝑘

−1
(𝜆𝑘(𝑐)),

𝑘
−1
(𝜆𝑘(𝑑))]⟩, 𝜆 > 0;

(3) �̃�
1
⊕ �̃�
2

= ⟨[𝑙
−1
(𝑙(𝑎
1
) + 𝑙(𝑎

2
)), 𝑙
−1
(𝑙(𝑏
1
) + 𝑙(𝑏

2
))],

[𝑘
−1
(𝑘(𝑐
1
) + 𝑘(𝑐

2
)), 𝑘
−1
(𝑘(𝑑
1
) + 𝑘(𝑑

2
))]⟩;



4 The Scientific World Journal

(4) 𝑎 ⊗ �̃� = ⟨[𝑘
−1
(𝑘(𝑎
1
) + 𝑘(𝑎

2
)), 𝑘
−1
(𝑘(𝑏
1
) + 𝑘(𝑏

2
))],

[𝑙
−1
(𝑙(𝑐
1
) + 𝑙(𝑐

2
)), 𝑙
−1
(𝑙(𝑑
1
) + 𝑙(𝑑

2
))]⟩.

Here, 𝑙(𝑡) = 𝑘(1 − 𝑡), and 𝑘 : [0, 1] → [0,∞) is a strictly
decreasing function.

2.3. HFSs

Definition 11 (see [44]). Let𝑋 be a universal set, and aHFS on
𝑋 is in terms of a function that when applied to𝑋will return
a subset of [0, 1], which can be represented as follows:

𝐸 = {⟨𝑥, ℎ
𝐸
(𝑥)⟩ | 𝑥 ∈ 𝑋} , (6)

where ℎ
𝐸
(𝑥) is a set of values in [0, 1], denoting the possible

membership degrees of the element 𝑥 ∈ 𝑋 to the set 𝐸. ℎ
𝐸
(𝑥)

is called a hesitant fuzzy element (HFE) [23], and 𝐻 is the
set of all HFEs. It is noteworthy that if 𝑋 contains only one
element, then 𝐸 is called a hesitant fuzzy number (HFN),
briefly denoted by 𝐸 = {ℎ

𝐸
(𝑥)}. The set of all hesitant fuzzy

numbers is represented as HFNS.
Torra [44] defined some operations on HFNs, and Xia

and Xu [19, 22] defined some new operations on HFNs and
the score function.

Definition 12 (see [43]). Let ℎ, ℎ
1
, and ℎ

2
be three HFNs, 𝜆 ≥

0, and then four operations are defined as follows:

(1) ℎ𝜆 = ⋃
𝛾∈ℎ

{𝑘
−1
(𝜆𝑘(𝛾))};

(2) 𝜆ℎ = ⋃
𝛾∈ℎ

{𝑙
−1
(𝜆𝑙(𝛾))};

(3) ℎ
1
⊕ ℎ
2
= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝑙
−1
(𝑙(𝛾
1
) + 𝑙(𝛾

2
))};

(4) ℎ
1
⊗ ℎ
2
= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝑘
−1
(𝑘(𝛾
1
) + 𝑘(𝛾

2
))}.

Here, 𝑙(𝑡) = 𝑘(1 − 𝑡), and 𝑘 : [0, 1] → [0,∞) is a strictly
decreasing function.

Definition 13 (see [19]). Let ℎ ∈ HFNs, and 𝑠(ℎ) =

(1/#ℎ)∑
𝛾∈ℎ

𝛾 is called the score function of ℎ, where #ℎ is
the number of elements in ℎ. For two HFNs ℎ

1
and ℎ

2
, if

𝑠(ℎ
1
) > 𝑠(ℎ

2
), then ℎ

1
> ℎ
2
; if 𝑠(ℎ

1
) = 𝑠(ℎ

2
), then ℎ

1
= ℎ
2
.

Example 14. Let ℎ
1
= {0.3, 0.5, 0.6}, ℎ

2
= {0.4, 0.7} be two

HFNs. According to Definition 13, 𝑠(ℎ
1
) = (1/3)× (0.3+0.5+

0.6) = 0.4667, 𝑠(ℎ
2
) = 0.55, 𝑠(ℎ

2
) > 𝑠(ℎ

1
), so ℎ

2
> ℎ
1
.

Furthermore, Torra and Narukawa [18, 44] proposed an
aggregation principle for HFEs.

Definition 15 (see [18, 44]). Let 𝐸 = {ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
} be a set of

𝑛 HFEs, let 𝜗 be a function on 𝐸, and let 𝜗 : [0, 1]𝑛 → [0, 1],
and then

𝜗
𝐸
= ⋃
𝛾∈ℎ
1
×ℎ
2
×⋅⋅⋅×ℎ

𝑛

{𝜗 (𝛾)} . (7)

3. HIVIFSs and Their Operations

HFSs are the extension of traditional fuzzy sets, and their
membership degree of an element is a set of several possible
values between 0 and 1. In some cases, decision-makers

usually cannot estimate criteria values of alternatives with an
exact numerical value when the information is not precisely
known. Therefore, interval values in fuzzy sets can represent
it better than specific numbers, such as IVFSs and IVIFSs.
Furthermore, IVIFSs could describe the object being “neither
this nor that,” and the membership degree and nonmember-
ship degree of IVIFSs are interval values, respectively. Thus,
precise numerical values in HFSs can be replaced by IVIFSs,
which are more flexible in the real world, and this is what this
section will solve.

Definition 16. Assume that 𝑋 is a finite universal set. A
HIVIFS 𝐴 in𝑋 is an object in the following form:

𝐸 = {⟨𝑥,𝐻
𝐸 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (8)

where 𝐻
𝐸
(𝑥) is a finite set of values in IVIFSs, denoting the

possiblemembership degrees andnonmembership degrees of
the element 𝑥 ∈ 𝑋 to the set 𝐸.

Based on the definition given above,

𝐻
𝐸 (𝑥) = {

𝑛(𝐻
𝐸
(𝑥))

⋃
𝑖=1

⟨[𝜇
𝐿

𝐸
𝑖

(𝑥) , 𝜇
𝑈

𝐸
𝑖

(𝑥)] , []𝐿
𝐸
𝑖

(𝑥) , ]𝑈
𝐸
𝑖

(𝑥)]⟩} ,

(9)

where 0 ≤ 𝜇
𝐿

𝐸
1

(𝑥) ≤ 𝜇
𝑈

𝐸
1

(𝑥) ≤ 𝜇
𝐿

𝐸
2

(𝑥) ≤ 𝜇
𝑈

𝐸
2

(𝑥) ≤ ⋅ ⋅ ⋅

𝜇
𝐿

𝑛(𝐻
𝐸
(𝑥))

(𝑥) ≤ 𝜇
𝑈

𝑛(𝐻
𝐸
(𝑥))

(𝑥) ≤ 1, 0 ≤ 𝜇
𝑈

𝐸
𝑖

(𝑥) + ]𝑈
𝐸
𝑖

(𝑥) ≤ 1,
𝜇
𝐿

𝐸
𝑖

(𝑥) ≥ 0, ]𝐿
𝐸
𝑖

(𝑥) ≥ 0, and 𝑛(𝐻
𝐸
(𝑥)) ≥ 1. Actually, HIVIFSs

have several possible membership degrees taking the form
of IVIFSs instead of FSs in HFSs. If 𝑛(𝐻

𝐸
(𝑥)) = 1, then

the HIVIFS is reduced to an IVIFS; if 𝜇𝐿
𝐸
𝑖

(𝑥) = 𝜇
𝑈

𝐸
𝑖

(𝑥) (𝑖 =

1, 2, . . . , 𝑛(𝐻
𝐸
(𝑥))) and ]𝐿

𝐸
𝑖

(𝑥) = ]𝑈
𝐸
𝑖

(𝑥) = 0 (𝑖 = 1, 2, . . . ,

𝑛(𝐻
𝐸
(𝑥))), then the HIVIFS is reduced to a HFS; if 𝜇𝐿

𝐸
𝑖

(𝑥) =

𝜇
𝑈

𝐸
𝑖

(𝑥) (𝑖 = 1, 2, . . . , 𝑛(𝐻
𝐸
(𝑥))) or ]𝐿

𝐸
𝑖

(𝑥) = ]𝑈
𝐸
𝑖

(𝑥) (𝑖 =

1, 2, . . . , 𝑛(𝐻
𝐸
(𝑥))), then the HIVIFS is reduced to a HIVFS;

if 𝜇𝐿
𝐸
𝑖

(𝑥) = 𝜇
𝑈

𝐸
𝑖

(𝑥) (𝑖 = 1, 2, . . . , 𝑛(𝐻
𝐸
(𝑥))) and ]𝐿

𝐸
𝑖

(𝑥) =

]𝑈
𝐸
𝑖

(𝑥) (𝑖 = 1, 2, . . . , 𝑛(𝐻
𝐸
(𝑥))), then the HIVIFS is reduced

to a HIFS. Furthermore, 𝐻
𝐸
(𝑥) is called a hesitant interval-

valued intuitionistic fuzzy element (HIVIFE), and 𝐸 is the
set of all HIVIFEs. In particular, if 𝑋 has only one element,
⟨𝑥,𝐻
𝐸
(𝑥)⟩ is called a hesitant interval-valued intuitionistic

fuzzy number (HIVIFN), briefly denoted by

𝐻
𝐸
= {

𝑛(𝐻
𝐸
)

⋃
𝑖=1

⟨[𝑎
𝑖
, 𝑏
𝑖
] , [𝑐
𝑖
, 𝑑
𝑖
]⟩} . (10)

The set of all HIVIFNs is denoted by HIVIFNS.

Definition 17. Let𝐴 ∈ HIVIFS(𝑋),𝐴 = {⟨𝑥,𝐻
𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋},

and for all 𝑥 ∈ 𝑋, Π
𝐴
(𝑥) = ⋃

𝑛(𝐻
𝐴
(𝑥))

𝑖=1
{[1−𝜇

𝑈

𝐴
𝑖

(𝑥)−]𝑈
𝐴
𝑖

(𝑥), 1−

𝜇
𝐿

𝐴
𝑖

(𝑥) − ]𝐿
𝐴
𝑖

(𝑥)]}. Then,Π
𝐴
(𝑥) is called the hesitant interval-

valued intuitionistic index of 𝑥.

Example 18. Let 𝑋 = {𝑥
1
, 𝑥
2
}, and let 𝐴 = {⟨𝑥

1
, {⟨[0.3, 0.4],

[0.1, 0.2]⟩, ⟨0.4, 0.2⟩}⟩, ⟨𝑥
2
, {⟨[0.5, 0.6],[0.2, 0.4]⟩}⟩} be a

HIVIFS, and then Π
𝐴
(𝑥
1
) = {[0.4, 0.6], 0.4}, Π

𝐴
(𝑥
2
) = {[0,

0.3]}. Thus, Π
𝐴
(𝑥) = {⟨𝑥

1
, {[0.4, 0.6], 0.4}⟩, ⟨𝑥

2
, {[0, 0.3]}⟩}.
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The operations of HIVIFNs are defined as follows.

Definition 19. Let𝐻
1
= {⋃
𝑛(𝐻
1
)

𝑖
1
=1

⟨[𝑎
𝑖
1

, 𝑏
𝑖
1

], [𝑐
𝑖
1

, 𝑑
𝑖
1

]⟩} and𝐻
2
=

{⋃
𝑛(𝐻
2
)

𝑖
2
=1

⟨[𝑎
𝑖
2

, 𝑏
𝑖
2

], [𝑐
𝑖
2

, 𝑑
𝑖
2

]⟩} be two HIVIFNs, 𝜆 ≥ 0, and four
operations are defined as follows:

(1) 𝜆𝐻
1
= ⋃
𝑛(𝐻
1
)

𝑖
1
=1

{⟨[𝑙
−1
(𝜆𝑙(𝑎
𝑖
1

)), 𝑙
−1
(𝜆𝑙(𝑏
𝑖
1

))],
[𝑘
−1
(𝜆𝑘(𝑐
𝑖
1

)), 𝑘
−1
(𝜆𝑘(𝑑

𝑖
1

))]⟩};

(2) (𝐻
1
)
𝜆
= ⋃
𝑛(𝐻
1
)

𝑖=1
{⟨[𝑘
−1
(𝜆𝑘(𝑎
𝑖
1

)), 𝑘
−1
(𝜆𝑘(𝑏
𝑖
1

))],
[𝑙
−1
(𝜆𝑙(𝑐
𝑖
1

)), 𝑙
−1
(𝜆𝑙(𝑑
𝑖
1

))]⟩};

(3) 𝐻
1
⊕𝐻
2
= ⋃
𝑛(𝐻
1
)

𝑖
1
=1

⋃
𝑛(𝐻
2
)

𝑖
2
=1

{⟨[𝑙
−1
(𝑙(𝑎
𝑖
1

)+𝑙(𝑎
𝑖
2

)), 𝑙
−1
(𝑙(𝑏
𝑖
1

)+

𝑙(𝑏
𝑖
2

))], [𝑘
−1
(𝑘(𝑐
𝑖
1

) + 𝑘(𝑐
𝑖
2

)), 𝑘
−1
(𝑘(𝑑
𝑖
1

) + 𝑘(𝑑
𝑖
2

))]⟩};

(4) 𝐻
1
⊗ 𝐻
2

= ⋃
𝑛(𝐻
1
)

𝑖
1
=1

⋃
𝑛(𝐻
2
)

𝑖
2
=1

{⟨[𝑘
−1
(𝑘(𝑎
𝑖
1

) + 𝑘(𝑎
𝑖
2

)),

𝑘
−1
(𝑘(𝑏
𝑖
1

) + 𝑘(𝑏
𝑖
2

))], [𝑙
−1
(𝑙(𝑐
𝑖
1

) + 𝑙(𝑐
𝑖
2

)), 𝑙
−1
(𝑙(𝑑
𝑖
1

) +

𝑙(𝑑
𝑖
2

))]⟩}.

Here, 𝑙(𝑡) = 𝑘(1 − 𝑡), and 𝑘 : [0, 1] → [0,∞) is a strictly
decreasing function.

Example 20. Let𝐻
1
= {⟨[0.1, 0.3], [0.2, 0.4]⟩, ⟨[0.2, 0.3], [0.3,

0.4]⟩} and𝐻
2
= {⟨[0.3, 0.4], [0.2, 0.3]⟩} be two HIVIFNs, and

𝑘(𝑥) = − In𝑥, 𝑘−1(𝑥) = 𝑒
−𝑥, 𝑙(𝑥) = − In(1 − 𝑥), 𝑙−1(𝑥) =

1 − 𝑒
−𝑥, and 𝜆 = 2. The following can be calculated:

(1) 2𝐻
1

= {⟨[1 − 𝑒
−2(− log(1−0.1))

, 1 − 𝑒
−2(− log(1−0.3))

],

[𝑒
−2(− log 0.2)

, 𝑒
−2(− log 0.4)

]⟩, ⟨[1 − 𝑒
−2(− log(1−0.2))

, 1 −

𝑒
−2(− log(1−0.3))

], [𝑒
−2(− log 0.3)

, 𝑒
−2(− log 0.4)

]⟩} = {⟨[0.19,

0.51], [0.04, 0.16]⟩, ⟨[0.36, 0.51], [0.09,0.16]⟩};

(2) (𝐻
1
)
2
= {⟨[0.01, 0.09], [0.36, 0.64]⟩, ⟨[0.04, 0.09],

[0.51, 0.64]⟩};

(3) 𝐻
1
⊕ 𝐻
2
= {⟨[0.37, 0.58], [0.04, 0.12]⟩, ⟨[0.44, 0.58],

[0.06, 0.12]⟩};

(4) 𝐻
1
⊗ 𝐻
2
= {⟨[0.03, 0.12], [0.36, 0.58]⟩, ⟨[0.06, 0.12],

[0.44, 0.58]⟩}.

Theorem 21. Let𝐻
1
, 𝐻
2
, 𝐻
3
∈ 𝐻𝐼𝑉𝐼𝐹𝑁𝑆, 𝜆, 𝜆

1
, 𝜆
2
> 0, and

then

(1) 𝐻
1
⊕ 𝐻
2
= 𝐻
2
⊕ 𝐻
1
;

(2) 𝐻
1
⊗ 𝐻
2
= 𝐻
2
⊗ 𝐻
1
;

(3) 𝜆𝐻
1
⊕ 𝜆𝐻
2
= 𝜆(𝐻

1
⊕ 𝐻
2
);

(4) (𝐻
1
)
𝜆
⊗ (𝐻
2
)
𝜆
= (𝐻
1
⊗ 𝐻
2
)
𝜆;

(5) (𝐻
1
⊕ 𝐻
2
) ⊕ 𝐻
3
= 𝐻
1
⊕ (𝐻
2
⊕ 𝐻
3
);

(6) (𝐻
1
⊗ 𝐻
2
) ⊗ 𝐻
3
= 𝐻
1
⊗ (𝐻
2
⊗ 𝐻
3
);

(7) ((𝐻
1
)
𝜆
1)
𝜆
2 = (𝐻

1
)
𝜆
1
𝜆
2 .

Proof. According to Definition 19, it is clear that (1), (2), (5),
and (6) are obvious. (3), (4), and (7)will be proved as follows:

(3) 𝜆𝐻
1
⊕ 𝜆𝐻
2

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

𝑛(𝐻
2
)

⋃
𝑖
2
=1

{⟨[𝑙
−1
(𝜆𝑙 (𝑎

𝑖
1

) + 𝜆𝑙 (𝑎
𝑖
2

)) ,

𝑙
−1
(𝜆𝑙 (𝑏

𝑖
1

) + 𝜆𝑙 (𝑏
𝑖
2

))] ,

[𝑘
−1
(𝜆𝑘 (𝑐

𝑖
1

) + 𝜆𝑘 (𝑐
𝑖
2

)) ,

𝑘
−1
(𝜆𝑘 (𝑑

𝑖
1

) + 𝜆𝑘 (𝑑
𝑖
2

))]⟩}

=

𝑛(𝐻
1
)

⋃
𝑖=1

𝑛(𝐻
2
)

⋃
𝑗=1

{⟨[𝑙
−1
(𝜆 (𝑙 (𝑎

𝑖
1

) + 𝑙 (𝑎
𝑖
2

))) ,

𝑙
−1
(𝜆 (𝑙 (𝑏

𝑖
1

) + 𝑙 (𝑏
𝑖
2

)))] ,

[𝑘
−1
(𝜆 (𝑘 (𝑐

𝑖
1

) + 𝑘 (𝑐
𝑖
2

))) ,

𝑘
−1
(𝜆 (𝑘 (𝑑

𝑖
1

) + 𝑘 (𝑑
𝑖
2

)))]⟩}

= 𝜆 (𝐻
1
⊕ 𝐻
2
) ,

(4) (𝐻
1
)
𝜆
⊗ (𝐻
2
)
𝜆

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

𝑛(𝐻
2
)

⋃
𝑖
2
=1

{⟨[𝑘
−1
(𝜆𝑘 (𝑎

𝑖
1

) + 𝜆𝑘 (𝑎
𝑖
2

)) ,

𝑘
−1
(𝜆𝑘 (𝑏

𝑖
1

) + 𝜆𝑘 (𝑏
𝑖
2

))] ,

[𝑙
−1
(𝜆𝑙 (𝑐
𝑖
1

) + 𝜆𝑙 (𝑐
𝑖
2

)) ,

𝑙
−1
(𝜆𝑙 (𝑑

𝑖
1

) + 𝜆𝑙 (𝑑
𝑖
2

))]⟩}

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

𝑛(𝐻
2
)

⋃
𝑖
2
=1

{⟨[𝑘
−1
(𝜆 (𝑘 (𝑎

𝑖
1

) + 𝑘 (𝑎
𝑖
2

))) ,

𝑘
−1
(𝜆 (𝑘 (𝑏

𝑖
1

) + 𝑘 (𝑏
𝑖
2

)))] ,

[𝑙
−1
(𝜆 (𝑙 (𝑐

𝑖
1

) + 𝑙 (𝑐
𝑖
2

))) ,

𝑙
−1
(𝜆 (𝑙 (𝑑

𝑖
1

) + 𝑙 (𝑑
𝑖
2

)))]⟩}

= (𝐻
1
⊗ 𝐻
2
)
𝜆
,

(7) ((𝐻
1
)
𝜆
1)
𝜆
2

=

𝑛(𝐻)

⋃
𝑖
1
=1

{⟨[𝑘
−1
(𝜆
2
𝑘 (𝑘
−1
(𝜆
1
𝑘 (𝑎
𝑖
1

)))) ,

𝑘
−1
(𝜆
2
𝑘 (𝑘
−1
(𝜆
1
𝑘 (𝑏
𝑖
1

))))] ,

[𝑙
−1
(𝜆
2
𝑙 (𝑙
−1
(𝜆
1
𝑙 (𝑐
𝑖
1

)))) ,
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𝑙
−1
(𝜆
2
𝑙 (𝑙
−1
(𝜆
1
𝑙 (𝑑
𝑖
1

))))]⟩}

=

𝑛(𝐻)

⋃
𝑖=1

{⟨[𝑘
−1
(𝜆
2
𝜆
1
𝑘 (𝑎
𝑖
1

)) ,

𝑘
−1
(𝜆
2
𝜆
1
𝑘 (𝑏
𝑖
1

))] ,

[𝑙
−1
(𝜆
2
𝜆
1
𝑙 (𝑐
𝑖
1

)) ,

𝑙
−1
(𝜆
2
𝜆
1
𝑙 (𝑑
𝑖
1

))]⟩}

=

𝑛(𝐻)

⋃
𝑖=1

{⟨[𝑘
−1
(𝜆
1
𝜆
2
𝑘 (𝑎
𝑖
1

)) ,

𝑘
−1
(𝜆
1
𝜆
2
𝑘 (𝑏
𝑖
1

))] ,

[𝑙
−1
(𝜆
1
𝜆
2
𝑙 (𝑐
𝑖
1

)) ,

𝑙
−1
(𝜆
1
𝜆
2
𝑙 (𝑑
𝑖
1

))]⟩}

= (𝐻
1
)
𝜆
1
𝜆
2 .

(11)
The proof is completed.

Based on Definitions 5, 6, and 13, the ranking method for
HIVIFNs is defined as follows.

Definition 22. Let 𝐻 ∈ HIVIFNs, 𝑆(𝐻) = (1/#𝐻)∑
𝛾∈𝐻

𝛾 is
called the score function of 𝐻, where #𝐻 is the number of
the interval-valued intuitionistic fuzzy values in 𝐻. For two
HIVIFNs 𝐻

1
and 𝐻

2
, if 𝑆(𝐻

1
) > 𝑆(𝐻

2
), then 𝐻

1
> 𝐻
2
; if

𝑆(𝐻
1
) = 𝑆(𝐻

2
), then𝐻

1
= 𝐻
2
.

Note that 𝑆(𝐻
1
) and 𝑆(𝐻

2
) could be compared by utilizing

Definitions 5 and 6.

Example 23. Let𝐻
1
= {⟨[0.3, 0.4], [0.1, 0.2]⟩, ⟨[0.3, 0.5], [0.2,

0.4]⟩} and𝐻
2
= {⟨[0.3, 0.4], [0.2, 0.3]⟩} be two HIVIFNs, and

then

𝑆 (𝐻
1
) =

1

2
× ⟨[0.3 + 0.3, 0.4 + 0.5] , [0.1 + 0.2, 0.2 + 0.4]⟩

= ⟨[0.30, 0.45] , [0.15, 0.30]⟩ ,

𝑆 (𝐻
2
) = ⟨[0.3, 0.4] , [0.2, 0.3]⟩ .

(12)
According to Definitions 5 and 6,

𝐿 (𝑆 (𝐻
1
))

=
0.30 + 0.45 − 0.30 × (1 − 0.45) − 0.15 × (1 − 0.30)

2

= 0.24,

𝐿 (𝑆 (𝐻
2
))

=
0.3 + 0.4 − 0.3 × (1 − 0.4) − 0.2 × (1 − 0.3)

2

= 0.19.

(13)

Hence, 𝑆(𝐻
1
) > 𝑆(𝐻

2
), which indicates that 𝐻

1
is preferred

to𝐻
2
.

4. HIVIFN Aggregation Operators and Their
Applications in MCDM Problems

In this section, HIVIFN aggregation operators are proposed,
and some properties of these operators are discussed. In
particular, some hesitant interval-valued intuitionistic fuzzy
algebraic aggregation operators are proposed based on alge-
braic 𝑡-conorms and 𝑡-norms. Then, how to utilize these
operators to MCDM problems is discussed as well.

4.1. HIVIFN Aggregation Operators

Definition 24. Let 𝐻
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

HIVIFNs, and HIVIFNWA: HIVIFNS𝑛 → HIVIFNS, and
then

HIVIFNWA
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
) =

𝑛

⨁
𝑗=1

𝑤
𝑗
𝐻
𝑗
. (14)

The HIVIFNWA operator is called the HIVIFN weighted
averaging operator of dimension 𝑛, where 𝑤 = (𝑤

1
, 𝑤
2
, . . . ,

𝑤
𝑛
) is the weight vector of 𝐻

𝑗
(𝑗 = 1, 2, . . . , 𝑛), with 𝑤

𝑗
≥

0 (𝑗 = 1, 2, . . . , 𝑛) and ∑𝑛
𝑗=1

𝑤
𝑗
= 1.

Theorem 25. Let 𝐻
𝑗
= {⋃
𝑛(𝐻
𝑗
)

𝑖
𝑗
=1

⟨[𝑎
𝑖
𝑗

, 𝑏
𝑖
𝑗

], [𝑐
𝑖
𝑗

, 𝑑
𝑖
𝑗

]⟩} (𝑗 = 1, 2,

. . . , 𝑛) be a collection of HIVIFNs and let𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)

be the weight vector of 𝐻
𝑗
(𝑗 = 1, 2, . . . , 𝑛), with 𝑤

𝑗
≥ 0 (𝑗 =

1, 2, . . . , 𝑛) and ∑𝑛
𝑗=1

𝑤
𝑗
= 1. Then, the aggregated result using

the HIVIFNWA operator is also a HIVIFN, and

𝐻𝐼𝑉𝐼𝐹𝑁𝑊𝐴
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑎
𝑖
𝑗

)) ,

𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑏
𝑖
𝑗

))]

]

,

[

[

𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑐
𝑖
𝑗

)) ,

𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑑
𝑖
𝑗

))]

]

⟩
}

}

}

.

(15)

Proof. By using mathematical induction on 𝑛, we have the
following.
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(1) For 𝑛 = 2, since

𝑤
1
𝐻
1
=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

{⟨[𝑙
−1
(𝑤
1
𝑙 (𝑎
𝑖
1

)) , 𝑙
−1
(𝑤
1
𝑙 (𝑏
𝑖
1

))] ,

[𝑘
−1
(𝑤
1
𝑘 (𝑐
𝑖
1

)) , 𝑘
−1
(𝑤
1
𝑘 (𝑑
𝑖
1

))]⟩} ,

𝑤
2
𝐻
2
=

𝑛(𝐻
2
)

⋃
𝑖
2
=1

{⟨[𝑙
−1
(𝑤
2
𝑙 (𝑎
𝑖
2

)) , 𝑙
−1
(𝑤
2
𝑙 (𝑏
𝑖
2

))] ,

[𝑘
−1
(𝑤
2
𝑘 (𝑐
𝑖
2

)) , 𝑘
−1
(𝑤
2
𝑘 (𝑑
𝑖
2

))]⟩} ,

(16)

the following can be obtained:

HIVIFNWA
𝑤
(𝐻
1
, 𝐻
2
)

= 𝑤
1
𝐻
1
⊕ 𝑤
2
𝐻
2

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

𝑛(𝐻
2
)

⋃
𝑖
2
=1

{⟨[𝑙
−1
(𝑤
1
𝑙 (𝑎
𝑖
1

) + 𝑤
2
𝑙 (𝑎
𝑖
2

)) ,

𝑙
−1
(𝑤
1
𝑙 (𝑏
𝑖
1

) + 𝑤
2
𝑙 (𝑏
𝑖
2

))] ,

[𝑘
−1
(𝑤
1
𝑘 (𝑐
𝑖
1

) + 𝑤
2
𝑘 (𝑐
𝑖
2

)) ,

𝑘
−1
(𝑤
1
𝑘 (𝑑
𝑖
1

) + 𝑤
2
𝑘 (𝑑
𝑖
2

))]⟩} .

(17)

(2) If (15) holds for 𝑛 = 𝑘, then

HIVIFNWA
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑘
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑘
)

⋃
𝑖
𝑘
=1

{⟨[𝑙
−1
(𝑤
1
𝑙 (𝑎
𝑖
1

) + 𝑤
2
𝑙 (𝑎
𝑖
2

) + ⋅ ⋅ ⋅ 𝑤
𝑘
𝑙 (𝑎
𝑖
𝑘

)) ,

𝑙
−1
(𝑤
1
𝑙 (𝑏
𝑖
1

) + 𝑤
2
𝑙 (𝑏
𝑖
2

) + ⋅ ⋅ ⋅ + 𝑤
𝑘
𝑙 (𝑏
𝑖
𝑘

))] ,

[𝑘
−1
(𝑤
1
𝑘 (𝑐
𝑖
1

) + 𝑤
2
𝑘 (𝑐
𝑖
2

) + ⋅ ⋅ ⋅ 𝑤
𝑘
𝑘 (𝑐
𝑖
𝑘

)) ,

𝑘
−1
(𝑤
1
𝑘 (𝑑
𝑖
1

) + 𝑤
2
𝑘 (𝑑
𝑖
2

)

+ ⋅ ⋅ ⋅ 𝑤
𝑘
𝑘 (𝑑
𝑖
𝑘

))]⟩}

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑘
)

⋃
𝑖
𝑘
=1

{

{

{

⟨[

[

𝑙
−1
(

𝑘

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑎
𝑖
𝑗

)) ,

𝑙
−1
(

𝑘

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑏
𝑖
𝑗

))]

]

,

[

[

𝑘
−1
(

𝑘

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑐
𝑖
𝑗

)) ,

𝑘
−1
(

𝑘

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑑
𝑖
𝑗

))]

]

⟩
}

}

}

.

(18)

When 𝑛 = 𝑘 + 1, in terms of (1) and (4) in Definition 19,

HIVIFNWA
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑘
, 𝐻
𝑘+1

)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑘
)

⋃
𝑖
𝑘
=1

𝑛(𝐻
𝑘+1
)

⋃
𝑖
𝑘+1
=1

{⟨[𝑙
−1
(𝑙 (𝑙
−1
(𝑤
1
𝑙 (𝑎
𝑖
1

) + 𝑤
2
𝑙 (𝑎
𝑖
2

)

+ ⋅ ⋅ ⋅ + 𝑤
𝑘
𝑙 (𝑎
𝑖
𝑘

)))

+ 𝑤
𝑘+1

𝑙 (𝑎
𝑖
𝑘+1

)) ,

𝑙
−1
(𝑙 (𝑙
−1
(𝑤
1
𝑙 (𝑏
𝑖
1

) + 𝑤
2
𝑙 (𝑏
𝑖
2

)

+ ⋅ ⋅ ⋅ + 𝑤
𝑘
𝑙 (𝑏
𝑖
𝑘

)))

+ 𝑤
𝑘+1

𝑙 (𝜇𝑏
𝑖
𝑘+1

))] ,

[𝑘
−1
(𝑘 (𝑘
−1
(𝑤
1
𝑘 (𝑐
𝑖
1

) + 𝑤
2
𝑘 (𝑐
𝑖
2

)

+ ⋅ ⋅ ⋅ + 𝑤
𝑘
𝑘 (𝑐
𝑖
𝑘

)))

+ 𝑤
𝑘+1

𝑘 (𝑐
𝑖
𝑘+1

)) ,

𝑘
−1
(𝑘 (𝑘
−1
(𝑤
1
𝑘 (𝑑
𝑖
1

) + 𝑤
2
𝑘 (𝑑
𝑖
2

)

+ ⋅ ⋅ ⋅ + 𝑤
𝑘
𝑘 (𝑑
𝑖
𝑘

)))

+ 𝑤
𝑘+1

𝑘 (𝑑
𝑖
𝑘+1

))]⟩}

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑘+1
)

⋃
𝑖
𝑘+1
=1

{⟨[𝑙
−1
(𝑤
1
𝑙 (𝑎
𝑖
1

) + 𝑤
2
𝑙 (𝑎
𝑖
2

) + ⋅ ⋅ ⋅ +

𝑤
𝑘
𝑙 (𝑎
𝑖
𝑘

) + 𝑤
𝑘+1

𝑙 (𝑎
𝑖
𝑘+1

)) ,

𝑙
−1
(𝑤
1
𝑙 (𝑏
𝑖
1

) + 𝑤
2
𝑙 (𝑏
𝑖
2

) + ⋅ ⋅ ⋅ +

𝑤
𝑘
𝑙 (𝑏
𝑖
𝑘

) + 𝑤
𝑘+1

𝑙 (𝑏
𝑖
𝑘+1

))] ,

[𝑘
−1
(𝑤
1
𝑘 (𝑐
𝑖
1

) + 𝑤
2
𝑘 (𝑐
𝑖
2

) + ⋅ ⋅ ⋅ +

𝑤
𝑘
𝑘 (𝑐
𝑖
𝑘

) + 𝑤
𝑘+1

𝑘 (𝑐
𝑖
𝑘+1

)) ,

𝑘
−1
(𝑤
1
𝑘 (𝑑
𝑖
1

) + 𝑤
2
𝑘 (𝑑
𝑖
2

) + ⋅ ⋅ ⋅ +

𝑤
𝑘
𝑘 (𝑑
𝑖
𝑘

) + 𝑤
𝑘+1

𝑘 (𝑑
𝑖
𝑘+1

))]⟩}

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑘+1
)

⋃
𝑖
𝑘+1
=1

{

{

{

⟨[

[

𝑙
−1
(

𝑘+1

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑎
𝑖
𝑗

)) ,

𝑙
−1
(

𝑘+1

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑏
𝑖
𝑗

))]

]

,

[

[

𝑘
−1
(

𝑘+1

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑐
𝑖
𝑗

)) ,
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𝑘
−1
(

𝑘+1

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑑
𝑖
𝑗

))]

]

⟩
}

}

}

,

(19)

that is, (15) holds for 𝑛 = 𝑘+1; thus, (15) holds for all 𝑛. Then,

HIVIFNWA
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{⟨[𝑙
−1
(𝑤
1
𝑙 (𝑎
𝑖
1

) + 𝑤
2
𝑙 (𝑎
𝑖
2

) + ⋅ ⋅ ⋅ 𝑤
𝑛
𝑙 (𝑎
𝑖
𝑛

)) ,

𝑙
−1
(𝑤
1
𝑙 (𝑏
𝑖
1

) + 𝑤
2
𝑙 (𝑏
𝑖
2

) + ⋅ ⋅ ⋅ + 𝑤
𝑛
𝑙 (𝑏
𝑖
𝑛

))] ,

[𝑘
−1
(𝑤
1
𝑘 (𝑐
𝑖
1

) + 𝑤
2
𝑘 (𝑐
𝑖
2

) + ⋅ ⋅ ⋅ 𝑤
𝑛
𝑘 (𝑐
𝑖
𝑛

)) ,

𝑘
−1
(𝑤
1
𝑘 (𝑑
𝑖
1

) + 𝑤
2
𝑘 (𝑑
𝑖
2

)

+ ⋅ ⋅ ⋅ 𝑤
𝑛
𝑘 (𝑑
𝑖
𝑛

))]⟩}

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑎
𝑖
𝑗

)) ,

𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑏
𝑖
𝑗

))]

]

,

[

[

𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑐
𝑖
𝑗

)) ,

𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑑
𝑖
𝑗

))]

]

⟩
}

}

}

.

(20)

Definition 26. Let 𝐻
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

HIVIFNs, HIVIFNWG: HIVIFNS𝑛 → HIVIFNS, and then

HIVIFNWG
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
) =

𝑛

⨂
𝑗=1

(𝐻
𝑗
)
𝑤
𝑗

. (21)

The HIVIFNWG operator is called the HIVIFN weighted
geometric operator of dimension 𝑛, and𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)

is the weight vector of 𝐻
𝑗
(𝑗 = 1, 2, . . . , 𝑛), with 𝑤

𝑗
≥ 0 (𝑗 =

1, 2, . . . , 𝑛) and ∑𝑛
𝑗=1

𝑤
𝑗
= 1.

Similarly, the following theorems can be obtained.

Theorem 27. Let 𝐻
𝑗
= {⋃
𝑛(𝐻
𝑗
)

𝑖
𝑗
=1

⟨[𝑎
𝑖
𝑗

, 𝑏
𝑖
𝑗

], [𝑐
𝑖
𝑗

, 𝑑
𝑖
𝑗

]⟩} (𝑗 = 1, 2,

. . . , 𝑛) be a collection of HIVIFNs and let𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)

be the weight vector of𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑛), with𝑤

𝑗
≥ 0 (𝑗 = 1,

2, . . . , 𝑛) and∑𝑛
𝑗=1

𝑤
𝑗
= 1.Then, the aggregated result using the

HIVIFNWG operator is also a HIVIFN, and

HIVIFNWG
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑘
=1

{

{

{

⟨[

[

𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑎
𝑖
𝑗

)) ,

𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑏
𝑖
𝑗

))]

]

,

[

[

𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑐
𝑖
𝑗

)) ,

𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑑
𝑖
𝑗

))]

]

⟩
}

}

}

.

(22)

Definition 28. Let 𝐻
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

HIVIFNs,HIVIFNWAA:HIVIFNS𝑛 → HIVIFNS, and then

HIVIFNWAA
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
) = (

𝑛

⨁
𝑗=1

𝑤
𝑗
(𝐻
𝑗
)
2

)

1/2

.

(23)

The HIVIFNWAA operator is called the HIVIFN weighted
arithmetic averaging operator of dimension 𝑛, where 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
) is the weight vector of 𝐻

𝑗
(𝑗 = 1, 2, . . . , 𝑛),

with 𝑤
𝑗
> 0 (𝑗 = 1, 2, . . . , 𝑛) and ∑𝑛

𝑗=1
𝑤
𝑗
= 1.

Theorem 29. Let 𝐻
𝑗
= {⋃
𝑛(𝐻
𝑗
)

𝑖
𝑗
=1

⟨[𝑎
𝑖
𝑗

, 𝑏
𝑖
𝑗

], [𝑐
𝑖
𝑗

, 𝑑
𝑖
𝑗

]⟩} (𝑗 = 1, 2,

. . . , 𝑛) be a collection of HIVIFNs and let𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)

be the weight vector of 𝐻
𝑗
(𝑗 = 1, 2, . . . , 𝑛), with 𝑤

𝑗
≥ 0 (𝑗 =

1, 2, . . . , 𝑛) and ∑𝑛
𝑗=1

𝑤
𝑗
= 1. Then, the aggregated result using

the HIVIFNWAA operator is also a HIVIFN, and

𝐻𝐼𝑉𝐼𝐹𝑁𝑊𝐴𝐴
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

𝑘
−1
(
1

2
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(2𝑘 (𝑎

𝑖
𝑗

)))))) , 𝑘
−1
(
1

2
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(2𝑘 (𝑏

𝑖
𝑗

))))))]

]

,

[

[

𝑙
−1
(
1

2
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(2𝑙 (𝑐

𝑖
𝑗

)))))) , 𝑙
−1
(
1

2
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(2𝑙 (𝑑

𝑖
𝑗

))))))]

]

⟩
}

}

}

.

(24)
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Definition 30. Let 𝐻
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

HIVIFNs,HIVIFNWAG:HIVIFNS𝑛 → HIVIFNS, and then

HIVIFNWAG
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
) =

1

2
(

𝑛

⨂
𝑗=1

(2𝐻
𝑗
)
𝑤
𝑗

) .

(25)

The HIVIFNWAG operator is called the HIVIFN weighted
arithmetic geometric operator of dimension 𝑛, where 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
) is the weight vector of 𝐻

𝑗
(𝑗 = 1, 2, . . . , 𝑛),

with 𝑤
𝑗
> 0 (𝑗 = 1, 2, . . . , 𝑛) and ∑𝑛

𝑗=1
𝑤
𝑗
= 1.

Theorem 31. Let 𝐻
𝑗

= {⋃
𝑛(𝐻
𝑗
)

𝑖
𝑗
=1

⟨[𝑎
𝑖
𝑗

, 𝑏
𝑖
𝑗

], [𝑐
𝑖
𝑗

, 𝑑
𝑖
𝑗

]⟩} (𝑗 =

1, 2, . . . , 𝑛) be a collection of HIVIFNs and let 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
) be the weight vector of 𝐴

𝑗
(𝑗 = 1, 2, . . . , 𝑛),

with 𝑤
𝑗
≥ 0 (𝑗 = 1, 2, . . . , 𝑛) and ∑

𝑛

𝑗=1
𝑤
𝑗
= 1. Then, the

aggregated result using the HIVIFNWAG operator is also a
HIVIFN, and

𝐻𝐼𝑉𝐼𝐹𝑁𝑊𝐴𝐺
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

𝑙
−1
(
1

2
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(2𝑙 (𝑎

𝑖
𝑗

)))))) , 𝑙
−1
(
1

2
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(2𝑙 (𝑏

𝑖
𝑗

))))))]

]

,

[

[

𝑘
−1
(
1

2
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(2𝑘 (𝑐

𝑖
𝑗

)))))) , 𝑘
−1
(
1

2
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(2𝑘 (𝑑

𝑖
𝑗

))))))]

]

⟩
}

}

}

.

(26)

Definition 32. Let 𝐻
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

HIVIFNs,GHIVIFNWA:HIVIFNS𝑛 → HIVIFNS, and then

GHIVIFNWA
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
) = (

𝑛

⨁
𝑗=1

𝑤
𝑗
(𝐻
𝑗
)
𝜆

)

1/𝜆

.

(27)

TheGHIVIFNWAoperator is called the generalizedHIVIFN
weighted averaging operator of dimension 𝑛, where 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
) is the weight vector of 𝐻

𝑗
(𝑗 = 1, 2, . . . , 𝑛),

with 𝑤
𝑗
> 0 (𝑗 = 1, 2, . . . , 𝑛) and ∑

𝑛

𝑗=1
𝑤
𝑗
= 1. If 𝜆 = 1,

the GHIVIFNWA operator is reduced to the HIVIFNWA
operator. If 𝜆 = 2, the GHIVIFNWA operator is reduced to
the HIVIFNWAA operator.

Theorem 33. Let 𝐻
𝑗

= {⋃
𝑛(𝐻
𝑗
)

𝑖
𝑗
=1

⟨[𝑎
𝑖
𝑗

, 𝑏
𝑖
𝑗

], [𝑐
𝑖
𝑗

, 𝑑
𝑖
𝑗

]⟩} (𝑗 =

1, 2, . . . , 𝑛) be a collection of HIVIFNs and let 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
) be the weight vector of 𝐻

𝑗
(𝑗 = 1, 2, . . . , 𝑛),

with 𝜆 > 0, 𝑤
𝑗
≥ 0 (𝑗 = 1, 2, . . . , 𝑛), and ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Then,

the aggregated result using the GHIVIFNWA operator is also a
HIVIFN, and

𝐺𝐻𝐼𝑉𝐼𝐹𝑁𝑊𝐴
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
𝑗

)))))) , 𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑏

𝑖
𝑗

))))))]

]

,

[

[

𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑐

𝑖
𝑗

)))))) , 𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑑

𝑖
𝑗

))))))]

]

⟩
}

}

}

.

(28)

Definition 34. Let 𝐻
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

HIVIFNs, GHIVIFNWG: HIVIFNS𝑛 → HIVIFNS, and
then

GHIVIFNWG
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
) =

1

𝜆
(

𝑛

⨂
𝑗=1

(𝜆𝐻
𝑗
)
𝑤
𝑗

) .

(29)

TheGHIVIFNWGoperator is called the generalizedHIVIFN
weighted geometric operator of dimension 𝑛, where 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
) is the weight vector of 𝐻

𝑗
(𝑗 = 1, 2, . . . , 𝑛),

with 𝑤
𝑗
> 0 (𝑗 = 1, 2, . . . , 𝑛) and ∑

𝑛

𝑗=1
𝑤
𝑗
= 1. If 𝜆 = 1,

the GHIVIFNWG operator is reduced to the HIVIFNWG
operator. If 𝜆 = 2, then theGHIVIFNWGoperator is reduced
to the HIVIFNWAG operator.



10 The Scientific World Journal

Theorem 35. Let 𝐻
𝑗
= {⋃
𝑛(𝐻
𝑗
)

𝑖
𝑗
=1

⟨[𝑎
𝑖
𝑗

, 𝑏
𝑖
𝑗

], [𝑐
𝑖
𝑗

, 𝑑
𝑖
𝑗

]⟩} (𝑗 = 1, 2,

. . . , 𝑛) be a collection of HIVIFNs and let𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)

be the weight vector of 𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑛), with 𝜆 > 0,

𝑤
𝑗
≥ 0 (𝑗 = 1, 2, . . . , 𝑛), and∑𝑛

𝑗=1
𝑤
𝑗
= 1.Then, the aggregated

result using the GHIVIFNWG operator is also a HIVIFN, and

𝐺𝐻𝐼𝑉𝐼𝐹𝑁𝑊𝐺
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑎

𝑖
𝑗

)))))) , 𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑏

𝑖
𝑗

))))))]

]

,

[

[

𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑐

𝑖
𝑗

)))))) , 𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (V𝐿

𝐻
𝑗

𝑑
𝑖
𝑗

))))))]

]

⟩
}

}

}

.

(30)

Note that Theorems 27–35 could be proved by using the
mathematical induction method and are omitted here.

Based on these hesitant interval-valued intuitionistic
fuzzy aggregation operators, it is easy to obtain the following
properties.

Property 1 (idempotency). Let 𝐻
𝑗

= {⋃
𝑛(𝐻
𝑗
)

𝑖
𝑗
=1

⟨[𝑎
𝑖
𝑗

, 𝑏
𝑖
𝑗

],

[𝑐
𝑖
𝑗

, 𝑑
𝑖
𝑗

]⟩} (𝑗 = 1, 2, . . . , 𝑛) be a collection of HIVIFNs. If

𝐻
𝑗
= 𝐻 = {⋃

𝑛(𝐻)

𝑖=1
⟨[𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]⟩} for all 𝑖 = 1, 2, . . . , 𝑛, then

GHIVIFNWA (𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
) = 𝐻,

GHIVIFNWG (𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
) = 𝐻.

(31)

Proof. According to Theorem 33 and 𝐻
𝑗

= 𝐻 =

{⋃
𝑛(𝐻)

𝑖=1
⟨[𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]⟩} for all 𝑖 = 1, 2, . . . , 𝑛,

GHIVIFNWA
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
𝑗

)))))) , 𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑏

𝑖
𝑗

))))))]

]

,

[

[

𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑐

𝑖
𝑗

)))))) , 𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑑

𝑖
𝑗

))))))]

]

⟩
}

}

}

=

𝑛(𝐻)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻)

⋃
𝑖=1

{

{

{

⟨[

[

𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
)))))) , 𝑘

−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑏

𝑖
))))))]

]

,

[

[

𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑐
𝑖
)))))) , 𝑙

−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑑

𝑖
))))))]

]

⟩
}

}

}

.

(32)

Since ∑𝑛
𝑗=1

𝑤
𝑗
= 1,

𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
))))))

= 𝑘
−1
(
1

𝜆
𝑘 (𝑙
−1
(𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
))))))

= 𝑘
−1
(
1

𝜆
𝑘 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
))))

= 𝑘
−1
(
1

𝜆
(𝜆𝑘 (𝑎

𝑖
))) = 𝑘

−1
(
1

𝜆
𝜆𝑘 (𝑎
𝑖
)) = 𝑘

−1
(𝑘 (𝑎
𝑖
)) = 𝑎

𝑖
,

𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑏

𝑖
)))))) = 𝑏

𝑖
,

𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑐
𝑖
)))))) = 𝑐

𝑖
,

𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑑

𝑖
)))))) = 𝑑

𝑖
.

(33)
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Hence, GHIVIFNWA
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
) = ⋃

𝑛(𝐻)

𝑖=1
{⟨[𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
,

𝑑
𝑖
]⟩} = 𝐻.
Similarly, GHIVIFNWG(𝐻

1
, 𝐻
2
, . . . , 𝐻

𝑛
) = 𝐻.

Property 2 (commutativity). Let 𝐻
𝑗

= {⋃
𝑛(𝐻
𝑗
)

𝑖
𝑗
=1

⟨[𝑎
𝑖
𝑗

, 𝑏
𝑖
𝑗

],

[𝑐
𝑖
𝑗

, 𝑑
𝑖
𝑗

]⟩} (𝑗 = 1, 2, . . . , 𝑛) be a collection of HIVIFNs and

let �̃�
𝑗
= {⋃
𝑛(�̃�
𝑗
)

𝑖
𝑗
=1

⟨[𝑎
𝑖
𝑗

, �̃�
𝑖
𝑗

], [𝑐
𝑖
𝑗

, 𝑑
𝑖
𝑗

]⟩} (𝑗 = 1, 2, . . . , 𝑛) be any
permutation of𝐻

𝑗
, and then

GHIVIFNWA (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= GHIVIFNWA (𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
) ,

GHIVIFNWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= GHIVIFNWG (𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
) .

(34)

Proof. Since �̃�
𝑗
= {⋃
𝑛(�̃�
𝑗
)

𝑖
𝑗
=1

⟨[𝑎
𝑖
𝑗

, �̃�
𝑖
𝑗

], [𝑐
𝑖
𝑗

, 𝑑
𝑖
𝑗

]⟩} (𝑗 = 1, 2, . . . , 𝑛)

is any permutation of𝐻
𝑗
,

GHIVIFNWA
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(�̃�
1
)

⋃
𝑖
1
=1

𝑛(𝐻
2
)

⋃
𝑖
2
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(𝑤
1
𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
1

))) +

𝑛

∑
𝑗=2

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
𝑗

)))))) ,

𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(𝑤
1
𝑙 (𝑘
−1
(𝜆𝑘 (�̃�

𝑖
1

))) +

𝑛

∑
𝑗=2

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑏

𝑖
𝑗

))))))]

]

,

[

[

𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(𝑤
1
𝑘 (𝑙
−1
(𝜆𝑙 (𝑐
𝑖
1

))) +

𝑛

∑
𝑗=2

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑐

𝑖
𝑗

)))))) ,

𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(𝑤
1
𝑘 (𝑙
−1
(𝜆𝑙 (𝑑

𝑖
1

))) +

𝑛

∑
𝑗=2

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑑

𝑖
𝑗

))))))]

]

⟩
}

}

}

,

=

𝑛(�̃�
1
)

⋃
𝑖
1
=1

𝑛(�̃�
2
)

⋃
𝑖
2
=1

𝑛(𝐻
3
)

⋃
𝑖
3
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(𝑤
1
𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
1

))) + 𝑤
2
𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
2

))) +

𝑛

∑
𝑗=2

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
𝑗

)))))) ,

𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(𝑤
1
𝑙 (𝑘
−1
(𝜆𝑘 (�̃�

𝑖
1

))) + 𝑤
2
𝑙 (𝑘
−1
(𝜆𝑘 (�̃�

𝑖
2

))) +

𝑛

∑
𝑗=3

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑏

𝑖
𝑗

))))))]

]

,

[

[

𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(𝑤
1
𝑘 (𝑙
−1
(𝜆𝑙 (𝑐
𝑖
1

))) + 𝑤
2
𝑘 (𝑙
−1
(𝜆𝑙 (𝑐
𝑖
2

))) +

𝑛

∑
𝑗=3

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑐

𝑖
𝑗

)))))) ,

𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(𝑤
1
𝑘 (𝑙
−1
(𝜆𝑙 (𝑑

𝑖
1

))) + 𝑤
2
𝑘 (𝑙
−1
(𝜆𝑙 (𝑑

𝑖
2

))) +

𝑛

∑
𝑗=3

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑑

𝑖
𝑗

))))))]

]

⟩
}

}

}

= ⋅ ⋅ ⋅ =

𝑛(�̃�
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(�̃�
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[𝑘
−1
(
1

𝜆
𝑘 (𝑙
−1
(𝑤
1
𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
1

))) + 𝑤
2
𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
2

))) + ⋅ ⋅ ⋅ + 𝑤
𝑛
𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑖
𝑛

)))))) ,

𝑘
−1
(
1

𝜆
𝑘 (𝑙
−1
(𝑤
1
𝑙 (𝑘
−1
(𝜆𝑘 (�̃�

𝑖
1

))) + 𝑤
2
𝑙 (𝑘
−1
(𝜆𝑘 (�̃�

𝑖
2

))) + ⋅ ⋅ ⋅ + 𝑤
𝑛
𝑙 (𝑘
−1
(𝜆𝑘 (�̃�

𝑖
𝑛

))))))] ,

[𝑙
−1
(
1

𝜆
𝑙 (𝑘
−1
(𝑤
1
𝑘 (𝑙
−1
(𝜆𝑙 (𝑐
𝑖
1

))) + 𝑤
2
𝑘 (𝑙
−1
(𝜆𝑙 (𝑐
𝑖
2

))) + ⋅ ⋅ ⋅ + 𝑤
𝑛
𝑘 (𝑙
−1
(𝜆𝑙 (𝑐
𝑖
𝑛

)))))) ,

𝑙
−1
(
1

𝜆
𝑙 (𝑘
−1
(𝑤
1
𝑘 (𝑙
−1
(𝜆𝑙 (𝑑

𝑖
1

))) + 𝑤
2
𝑘 (𝑙
−1
(𝜆𝑙 (𝑑

𝑖
2

))) + ⋅ ⋅ ⋅ + 𝑤
𝑛
𝑘 (𝑙
−1
(𝜆𝑙 (𝑑

𝑖
𝑛

))))))]⟩
}

}

}

= GHIVIFNWA
𝑤
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) .

(35)
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Similarly, GHIVIFNWG(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) =

GHIVIFNWG(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
).

Property 3 (boundary). Let 𝐻
𝑗
= {⋃
𝑛(𝐻
𝑗
)

𝑖
𝑗
=1

⟨[𝑎
𝑖
𝑗

, 𝑏
𝑖
𝑗

], [𝑐
𝑖
𝑗

, 𝑑
𝑖
𝑗

]⟩}

(𝑗 = 1, 2, . . . , 𝑛) be a collection of HIVIFNs, and then

𝐻
−
≤ GHIVIFAWA (𝐻

1
, 𝐻
2
, . . . , 𝐻

𝑛
) ≤ 𝐻

+
,

𝐻
−
≤ GHIVIFAWG (𝐻

1
, 𝐻
2
, . . . , 𝐻

𝑛
) ≤ 𝐻

+
,

(36)

where𝐻− = {([0, 0], [1, 1])} and𝐻+ = {([1, 1], [0, 0])}.

Proof. The process is omitted here.

4.2. HIVIFN Algebraic Aggregation Operators and HIV-
IFN Einstein Aggregation Operators. Obviously, different 𝑡-
conorms and 𝑡-norms may lead to different aggregation
operators. In the following, HIVIFN algebraic aggregation
operators and Einstein aggregation operators are presented
based on algebraic norms and Einstein norms.

Theorem 36. Let 𝐻
𝑗
= {⋃
𝑛(𝐻
𝑗
)

𝑖
𝑗
=1

⟨[𝑎
𝑖
𝑗

, 𝑏
𝑖
𝑗

], [𝑐
𝑖
𝑗

, 𝑑
𝑖
𝑗

]⟩} (𝑗 = 1, 2,

. . . , 𝑛) be a collection of HIVIFNs, let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇

be the weight vector of 𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑛), with 𝜆 > 0,

𝑤
𝑗
≥ 0 (𝑗 = 1, 2, . . . , 𝑛), and∑𝑛

𝑗=1
𝑤
𝑗
= 1, 𝑘(𝑥) = − ln(𝑥), and

𝑘
−1
(𝑥) = 𝑒

−𝑥
, 𝑙(𝑥) = − ln(1−𝑥), 𝑙−1(𝑥) = 1−𝑒

−𝑥
, 𝑇(𝑥, 𝑦) = 𝑥𝑦,

and 𝑆(𝑥, 𝑦) = 1 − ((1 − 𝑥)(1 − 𝑦)) be algebraic 𝑡-conorm and
𝑡-norm. Then, some HIVIFN algebraic aggregation operators
could be obtained as follows.

(1) Hesitant interval-valued intuitionistic fuzzy number
algebraic weighted averaging operator is as follows:

HIVIFNAWA
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

1 −

𝑛

∏
𝑗=1

(1 − 𝑎
𝑖
𝑗

)
𝑤
𝑗

, 1 −

𝑛

∏
𝑗=1

(1 − 𝑏
𝑖
𝑗

)
𝑤
𝑗

]

]

,

[

[

𝑛

∏
𝑗=1

(𝑐
𝑖
𝑗

)
𝑤
𝑗

,

𝑛

∏
𝑗=1

(𝑑
𝑖
𝑗

)
𝑤
𝑗

]

]

⟩
}

}

}

.

(37)

(2) Hesitant interval-valued intuitionistic fuzzy number
algebraic weighted geometric operator is as follows:

HIVIFNAWG
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

𝑛

∏
𝑗=1

(𝑎
𝑖
𝑗

)
𝑤
𝑗

,

𝑛

∏
𝑗=1

(𝑏
𝑖
𝑗

)
𝑤
𝑗

]

]

,

[

[

1 −

𝑛

∏
𝑗=1

(1 − 𝑐
𝑖
𝑗

)
𝑤
𝑗

,

1 −

𝑛

∏
𝑗=1

(1 − 𝑑
𝑖
𝑗

)
𝑤
𝑗

]

]

⟩
}

}

}

.

(38)

(3) Hesitant interval-valued intuitionistic fuzzy num-
ber algebraic weighted arithmetic averaging operator is as
follows:

𝐻𝐼𝑉𝐼𝐹𝑁𝐴𝑊𝐴𝐴
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

(1 −

𝑛

∏
𝑗=1

(1 − (𝑎
𝑖
𝑗

)
2

)
𝑤
𝑗

)

1/2

, (1 −

𝑛

∏
𝑗=1

(1 − (𝑏
𝑖
𝑗

)
2

)
𝑤
𝑗

)

1/2

]

]

,

[

[

1 − (1 −

𝑛

∏
𝑗=1

(1 − (1 − 𝑐
𝑖
𝑗

)
2

)
𝑤
𝑗

)

1/2

, 1 − (1 −

𝑛

∏
𝑗=1

(1 − (1 − 𝑑
𝑖
𝑗

)
2

)
𝑤
𝑗

)

1/2

]

]

⟩
}

}

}

.

(39)

(4) Hesitant interval-valued intuitionistic fuzzy number alge-
braic weighted arithmetic geometric operator is as follows:

HIVIFNAWAG
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

1 − (1 −

𝑛

∏
𝑗=1

(1 − (1 − 𝑎
𝑖
𝑗

)
2

)
𝑤
𝑗

)

1/2

,

1 − (1 −

𝑛

∏
𝑗=1

(1 − (1 − 𝑏
𝑖
𝑗

)
2

)
𝑤
𝑗

)

1/2

]

]

,

[

[

(1 −

𝑛

∏
𝑗=1

(1 − (𝑐
𝑖
𝑗

)
2

)
𝑤
𝑗

)

1/2

,

(1 −

𝑛

∏
𝑗=1

(1 − (𝑑
𝑖
𝑗

)
2

)
𝑤
𝑗

)

1/2

]

]

⟩
}

}

}

.

(40)

(5) Generalized hesitant interval-valued intuitionistic
fuzzy number algebraic weighted averaging operator is as
follows:
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GHIVIFNAWA
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

(1 −

𝑛

∏
𝑗=1

(1 − (1 − 𝑎
𝑖
𝑗

)
𝜆

)

𝑤
𝑗

)

1/𝜆

, (1 −

𝑛

∏
𝑗=1

(1 − (1 − 𝑏
𝑖
𝑗

)
𝜆

)

𝑤
𝑗

)

1/𝜆

]

]

,

[

[

1 − (1 −

𝑛

∏
𝑗=1

(1 − (1 − 𝑐
𝑖
𝑗

)
𝜆

)

𝑤
𝑗

)

1/𝜆

, 1 − (1 −

𝑛

∏
𝑗=1

(1 − (1 − 𝑑
𝑖
𝑗

)
𝜆

)

𝑤
𝑗

)

1/𝜆

]

]

⟩
}

}

}

.

(41)

(6) Generalized hesitant interval-valued intuitionistic fuzzy
number algebraic weighted geometric operator is as follows:

GHIVIFNAWG
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{

{

{

⟨[

[

1 − (1 −

𝑛

∏
𝑗=1

(1 − (1 − 𝑎
𝑖
𝑗

)
𝜆

)

𝑤
𝑗

)

1/𝜆

,

1 − (1 −

𝑛

∏
𝑗=1

(1 − (1 − 𝑏
𝑖
𝑗

)
𝜆

)

𝑤
𝑗

)

1/𝜆

]

]

,

[

[

(1 −

𝑛

∏
𝑗=1

(1 − (𝑐
𝑖
𝑗

)
𝜆

)

𝑤
𝑗

)

1/𝜆

,

(1 −

𝑛

∏
𝑗=1

(1 − (𝑑
𝑖
𝑗

)
𝜆

)

𝑤
𝑗

)

1/𝜆

]

]

⟩
}

}

}

.

(42)

In particular, if 𝜆 = 1, then (41) is reduced to (37) and (42) is
reduced to (38); if 𝜆 = 2, then (41) is reduced to (39) and (42)
is reduced to (40).

Example 37. Let𝐻
1
= {⟨[0.2, 0.3], [0.1, 0.2]⟩, ⟨[0.4, 0.5], [0.2,

0.3]⟩} and𝐻
2
= {⟨[0.1, 0.3], [0.2, 0.4]⟩} be two HIVIFNs, and

let 𝑤 = (0.4, 0.6) be the weight of them, and 𝜆 = 1, 2, 5.
According toTheorem 36, the following can be calculated.

(1) HIVIFNAWA
𝑤
(𝐻
1
, 𝐻
2
) = {⟨[1 − (1 − 0.2)

0.4
×

(1 − 0.1)
0.6
, 1−(1 − 0.3)

0.4
×(1 − 0.3)

0.6
], [0.1

0.4
×0.2
0.6
, 0.2
0.4
×

0.4
0.6
], [1 − (1 − 0.4)

0.4
× (1 − 0.1)

0.6
, 1 − (1 − 0.5)

0.4
×

(1 − 0.3)
0.6
], [0.2

0.4
× 0.2
0.6
, 0.3
0.4

× 0.4
0.6
]⟩} = {⟨[0.1414,

0.3000], [0.1516, 0.3031]⟩, ⟨[0.2347, 0.3881], [0.2000,

0.3565]⟩}, Consider

HIVIFNAWG
𝑤
(𝐻
1
, 𝐻
2
)

= {⟨[0.1320, 0.3000] , [0.1614, 0.3268]⟩ ,

⟨[0.1741, 0.3680] , [0.2000, 0.3618]⟩} .

(43)

According to Definitions 24, 6, and 8, Consider the following:

𝑆 (HIVIFNAWA
𝑤
(𝐻
1
, 𝐻
2
))

= {⟨[0.1881, 0.3441] , [0.1758, 0.3298]⟩} ,

𝑆 (HIVIFNAWG
𝑤
(𝐻
1
, 𝐻
2
))

= {⟨[0.1531, 0.3340] , [0.1807, 0.3443]⟩} .

(44)

𝐿(𝑆(HIVIFNAWA
𝑤
(𝐻
1
, 𝐻
2
))) =

0.0866, 𝐿(𝑆(HIVIFNAWG
𝑤
(𝐻
1
, 𝐻
2
))) = 0.0524. Thus,

HIVIFNAWA
𝑤
(𝐻
1
, 𝐻
2
) > HIVIFNAWG

𝑤
(𝐻
1
, 𝐻
2
) . (45)

(2) HIVIFNAWAA
𝑤
(𝐻
1
, 𝐻
2
) =

{⟨[0.1487, 0.3000], [0.1508, 0.2989]⟩, ⟨[0.2701, 0.3972],
[0.2000, 0.3554]⟩};

HIVIFNAWAG
𝑤
(𝐻
1
, 𝐻
2
)

= {⟨[0.1313, 0.3000] , [0.1677, 0.3375]⟩ ,

⟨[0.1686, 0.3637] , [0.2000, 0.3642]⟩} .

(46)

According to Definitions 22, 5, and 6, Consider the following:

𝑆 (HIVIFNAWAA
𝑤
(𝐻
1
, 𝐻
2
))

= {⟨[0.2094, 0.3486] , [0.1754, 0.3272]⟩} ,

𝑆 (HIVIFNAWAG
𝑤
(𝐻
1
, 𝐻
2
))

= {⟨[0.1500, 0.3319] , [0.1839, 0.3509]⟩} .

(47)

Consider 𝐿(𝑆(HIVIFNAWAA
𝑤
(𝐻
1
, 𝐻
2
))) = 0.1031,

𝐿(𝑆(HIVIFNAWAG
𝑤
(𝐻
1
, 𝐻
2
))) = 0.0456. Thus,

HIVIFNAWAA
𝑤
(𝐻
1
, 𝐻
2
) > HIVIFNAWAG

𝑤
(𝐻
1
, 𝐻
2
) .

(48)

(3) GHIVIFNAWA
𝑤
(𝐻
1
, 𝐻
2
) = {⟨[0.1680, 0.3000],

[0.1481, 0.2847]⟩, ⟨[0.3333, 0.4262], [0.2000, 0.3512]⟩};

GHIVIFNAWG
𝑤
(𝐻
1
, 𝐻
2
)

= {⟨[0.1292, 0.3000] , [0.1813, 0.3628]⟩ ,

⟨[0.1540, 0.3502] , [0.2000, 0.3720]⟩} .

(49)
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According to Definitions 22, 5, and 6,

𝑆 (GHIVIFNAWA
𝑤
(𝐻
1
, 𝐻
2
))

= {⟨[0.2507, 0.3631] , [0.1741, 0.3180]⟩} ,

𝑆 (GHIVIFNAWG
𝑤
(𝐻
1
, 𝐻
2
))

= {⟨[0.1416, 0.3251] , [0.1907, 0.3674]⟩} .

(50)

Consider 𝐿(𝑆(GHIVIFNAWA
𝑤
(𝐻
1
, 𝐻
2
))) = 0.1404,

𝐿(𝑆(GHIVIFNAWG
𝑤
(𝐻
1
, 𝐻
2
))) = 0.0459. Thus,

GHIVIFNAWA
𝑤
(𝐻
1
, 𝐻
2
) > GHIVIFNAWG

𝑤
(𝐻
1
, 𝐻
2
) .

(51)

In the three cases listed above, the aggregation results
by using the GHIVIFNAWA operator are greater than the
aggregation results by utilizing the GHIVIFNAWG operator.

Theorem 38. Let 𝐻
𝑗

= {⋃
𝑛(𝐻
𝑗
)

𝑖
𝑗
=1

⟨[𝑎
𝑖
𝑗

, 𝑏
𝑖
𝑗

], [𝑐
𝑖
𝑗

, 𝑑
𝑖
𝑗

]⟩} (𝑗 =

1, 2, . . . , 𝑛) be a collection of HIVIFNs, and let 𝑤 = (𝑤
1
, 𝑤
2
,

. . . , 𝑤
𝑛
)
𝑇 be the weight vector of 𝐴

𝑗
(𝑗 = 1, 2, . . . , 𝑛), with 𝜆 >

0, 𝑤
𝑗
≥ 0 (𝑗 = 1, 2, . . . , 𝑛), and ∑𝑛

𝑗=1
𝑤
𝑗
= 1, 𝑘(𝑥) = ln((2 −

𝑥)/𝑥), and 𝑘−1(𝑥) = 2/(𝑒
𝑥
+1), 𝑙(𝑥) = ln((2−(1−𝑥))/(1−𝑥)),

𝑙
−1
(𝑥) = 1 − (2/(𝑒

𝑥
+ 1)),𝑇(𝑥, 𝑦) = 𝑥𝑦/(1 + (1 − 𝑥)(1 − 𝑦)),

and 𝑆(𝑥, 𝑦) = (𝑥 + 𝑦)/(1 + 𝑥𝑦) be the Einstein 𝑡-conorm and
𝑡-norm, respectively. Then, some HIVIFN Einstein aggregation
operators could be obtained as follows.

(1) Hesitant interval-valued intuitionistic fuzzy number
Einstein weighted averaging operator is as follows:

𝐻𝐼𝑉𝐼𝐹𝑁𝐸𝑊𝐴
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{{

{{

{

[
[

[

∏
𝑛

𝑗=1
((1 + 𝑎

𝑖
𝑗

) / (1 − 𝑎
𝑖
𝑗

))
𝑤
𝑗

− 1

∏
𝑛

𝑗=1
((1 + 𝑎

𝑖
𝑗

) / (1 − 𝑎
𝑖
𝑗

))
𝑤
𝑗

+ 1

,

∏
𝑛

𝑗=1
((1 + 𝑏

𝑖
𝑗

) / (1 − 𝑏
𝑖
𝑗

))
𝑤
𝑗

− 1

∏
𝑛

𝑗=1
((1 + 𝑏

𝑖
𝑗

) / (1 − 𝑏
𝑖
𝑗

))
𝑤
𝑗

+ 1

]
]

]

,

[
[

[

2

∏
𝑛

𝑗=1
((2 − 𝑐

𝑖
𝑗

) /𝑐
𝑖
𝑗

)
𝑤
𝑗

+ 1

,

2

∏
𝑛

𝑗=1
((2 − 𝑑

𝑖
𝑗

) /𝑑
𝑖
𝑗

)
𝑤
𝑗

+ 1

]
]

]

}}

}}

}

.

(52)

(2) Hesitant interval-valued intuitionistic fuzzy number
Einstein weighted geometric operator is as follows:

𝐻𝐼𝑉𝐼𝐹𝑁𝐸𝑊𝐺
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{{

{{

{

[
[

[

2

∏
𝑛

𝑗=1
((2 − 𝑎

𝑖
𝑗

) /𝑎
𝑖
𝑗

)
𝑤
𝑗

+ 1

,

2

∏
𝑛

𝑗=1
((2 − 𝑏

𝑖
𝑗

) /𝑏
𝑖
𝑗

)
𝑤
𝑗

+ 1

]
]

]

,

[
[

[

∏
𝑛

𝑗=1
((1 + 𝑐

𝑖
𝑗

) / (1 − 𝑐
𝑖
𝑗

))
𝑤
𝑗

− 1

∏
𝑛

𝑗=1
((1 + 𝑐

𝑖
𝑗

) / (1 − 𝑐
𝑖
𝑗

))
𝑤
𝑗

+ 1

,

∏
𝑛

𝑗=1
((1 + 𝑑

𝑖
𝑗

) / (1 − 𝑑
𝑖
𝑗

))
𝑤
𝑗

− 1

∏
𝑛

𝑗=1
((1 + 𝑑

𝑖
𝑗

) / (1 − 𝑑
𝑖
𝑗

))
𝑤
𝑗

+ 1

]
]

]

}}

}}

}

.

(53)

(3) Hesitant interval-valued intuitionistic fuzzy number
Einstein weighted arithmetic averaging operator is as follows:

𝐻𝐼𝑉𝐼𝐹𝑁𝐸𝑊𝐴𝐴
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{{

{{

{

[
[

[

2

((∏
𝑛

𝑗=1
𝛼
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
𝛼
𝑤
𝑗

𝑖
𝑗

− 1))
1/2

+ 1

,
2

((∏
𝑛

𝑗=1
𝛽
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
𝛽
𝑤
𝑗

𝑖
𝑗

− 1))
1/2

+ 1

]
]

]

,

[
[

[

1 −
2

((∏
𝑛

𝑗=1
𝜇
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
𝜇
𝑤
𝑗

𝑖
𝑗

− 1))
1/2

+ 1

, 1 −
2

((∏
𝑛

𝑗=1
]
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
]
𝑤
𝑗

𝑖
𝑗

− 1))
1/2

+ 1

]
]

]

}}

}}

}

,

(54)

where

𝛼
𝑖
𝑗

= (
𝑎
2

𝑖
𝑗

− 𝑎
𝑖
𝑗

+ 1

1 − 𝑎
𝑖
𝑗

) , 𝛽
𝑖
𝑗

= (
𝑏
2

𝑖
𝑗

− 𝑏
𝑖
𝑗

+ 1

1 − 𝑏
𝑖
𝑗

) ,

𝜇
𝑖
𝑗

= (
𝑐
2

𝑖
𝑗

− 𝑐
𝑖
𝑗

+ 1

𝑐
𝑖
𝑗

) , ]
𝑖
𝑗

= (
𝑑
2

𝑖
𝑗

− 𝑑
𝑖
𝑗

+ 1

𝑑
𝑖
𝑗

) .

(55)

(4) Hesitant interval-valued intuitionistic fuzzy number
Einstein weighted arithmetic geometric operator is as follows:



The Scientific World Journal 15

𝐻𝐼𝑉𝐼𝐹𝑁𝐸𝑊𝐴𝐺
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{{

{{

{

[
[

[

1 −
2

((∏
𝑛

𝑗=1
𝜇
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
𝜇
𝑤
𝑗

𝑖
𝑗

− 1))
1/2

+ 1

, 1 −
2

((∏
𝑛

𝑗=1
]
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
]
𝑤
𝑗

𝑖
𝑗

− 1))
1/2

+ 1

]
]

]

,

[
[

[

2

((∏
𝑛

𝑗=1
𝛼
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
𝛼
𝑤
𝑗

𝑖
𝑗

− 1))
1/2

+ 1

,
2

((∏
𝑛

𝑗=1
𝛽
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
𝛽
𝑤
𝑗

𝑖
𝑗

− 1))
1/2

+ 1

]
]

]

}}

}}

}

,

(56)

where

𝜇
𝑖
𝑗

= (
𝑎
2

𝑖
𝑗

− 𝑎
𝑖
𝑗

+ 1

𝑎
𝑖
𝑗

) , ]
𝑖
𝑗

= (
𝑏
2

𝑖
𝑗

− 𝑏
𝑖
𝑗

+ 1

𝑏
𝑖
𝑗

) ,

𝛼
𝑖
𝑗

= (
𝑐
2

𝑖
𝑗

− 𝑐
𝑖
𝑗

+ 1

1 − 𝑐
𝑖
𝑗

) , 𝛽
𝑖
𝑗

= (
𝑑
2

𝑖
𝑗

− 𝑑
𝑖
𝑗

+ 1

1 − 𝑑
𝑖
𝑗

) .

(57)

(5) Generalized hesitant interval-valued intuitionistic
fuzzy number Einstein weighted averaging operator is as
follows:

𝐺𝐻𝐼𝑉𝐼𝐹𝑁𝐸𝑊𝐴
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{{

{{

{

[
[

[

2

((∏
𝑛

𝑗=1
𝛼
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
𝛼
𝑤
𝑗

𝑖
𝑗

− 1))
1/𝜆

+ 1

,
2

((∏
𝑛

𝑗=1
𝛽
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
𝛽
𝑤
𝑗

𝑖
𝑗

− 1))
1/𝜆

+ 1

]
]

]

,

[
[

[

1 −
2

((∏
𝑛

𝑗=1
𝜇
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
𝜇
𝑤
𝑗

𝑖
𝑗

− 1))
1/𝜆

+ 1

, 1 −
2

((∏
𝑛

𝑗=1
]
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
]
𝑤
𝑗

𝑖
𝑗

− 1))
1/𝜆

+ 1

]
]

]

}}

}}

}

,

(58)

where

𝛼
𝑖
𝑗

= (

1 + (2/ (((2 − 𝑎
𝑖
𝑗

) /𝑎
𝑖
𝑗

)
𝜆

+ 1))

1 − (2/ (((2 − 𝑎
𝑖
𝑗

) /𝑎
𝑖
𝑗

)
𝜆

+ 1))

) ,

𝛽
𝑖
𝑗

= (

1 + (2/ (((2 − 𝑏
𝑖
𝑗

) /𝑏
𝑖
𝑗

)
𝜆

+ 1))

1 − (2/ (((2 − 𝑏
𝑖
𝑗

) /𝑏
𝑖
𝑗

)
𝜆

+ 1))

) ,

𝜇
𝑖
𝑗

= (

1 + (2/ (((1 + 𝑐
𝑖
𝑗

) / (1 − 𝑐
𝑖
𝑗

))
𝜆

+ 1))

1 − (2/ (((1 + 𝑐
𝑖
𝑗

) / (1 − 𝑐
𝑖
𝑗

))
𝜆

+ 1))

) ,

]
𝑖
𝑗

= (

1 + (2/ (((1 + 𝑑
𝑖
𝑗

) / (1 − 𝑑
𝑖
𝑗

))
𝜆

+ 1))

1 − (2/ (((1 + 𝑑
𝑖
𝑗

) / (1 − 𝑑
𝑖
𝑗

))
𝜆

+ 1))

) .

(59)

(6) Generalized hesitant interval-valued intuitionistic
fuzzy number Einstein weighted geometric operator is as
follows:
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𝐺𝐻𝐼𝑉𝐼𝐹𝑁𝐸𝑊𝐺
𝑤
(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖
1
=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖
𝑛
=1

{{

{{

{

[
[

[

1 −
2

((∏
𝑛

𝑗=1
𝜇
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
𝜇
𝑤
𝑗

𝑖
𝑗

− 1))
1/𝜆

+ 1

, 1 −
2

((∏
𝑛

𝑗=1
]
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
]
𝑤
𝑗

𝑖
𝑗

− 1))
1/𝜆

+ 1

]
]

]

,

[
[

[

2

((∏
𝑛

𝑗=1
𝛼
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
𝛼
𝑤
𝑗

𝑖
𝑗

− 1))
1/𝜆

+ 1

,
2

((∏
𝑛

𝑗=1
𝛽
𝑤
𝑗

𝑖
𝑗

+ 3) / (∏
𝑛

𝑗=1
𝛽
𝑤
𝑗

𝑖
𝑗

− 1))
1/𝜆

+ 1

]
]

]

}}

}}

}

,

(60)

where

𝜇
𝑖
𝑗

= (

1 + (2/ (((1 + 𝑎
𝑖
𝑗

) / (1 − 𝑎
𝑖
𝑗

))
𝜆

+ 1))

1 − (2/ (((1 + 𝑎
𝑖
𝑗

) / (1 − 𝑎
𝑖
𝑗

))
𝜆

+ 1))

) ,

]
𝑖
𝑗

= (

1 + (2/ (((1 + 𝑏
𝑖
𝑗

) / (1 − 𝑏
𝑖
𝑗

))
𝜆

+ 1))

1 − (2/ (((1 + 𝑏
𝑖
𝑗

) / (1 − 𝑏
𝑖
𝑗

))
𝜆

+ 1))

) ,

𝛼
𝑖
𝑗

= (

1 + (2/ (((2 − 𝑐
𝑖
𝑗

) /𝑐
𝑖
𝑗

)
𝜆

+ 1))

1 − (2/ (((2 − 𝑐
𝑖
𝑗

) /𝑐
𝑖
𝑗

)
𝜆

+ 1))

) ,

𝛽
𝑖
𝑗

= (

1 + (2/ (((2 − 𝑑
𝑖
𝑗

) /𝑑
𝑖
𝑗

)
𝜆

+ 1))

1 − (2/ (((2 − 𝑑
𝑖
𝑗

) /𝑑
𝑖
𝑗

)
𝜆

+ 1))

) .

(61)

In particular, if 𝜆 = 1, then (58) is reduced to (52) and (60) is
reduced to (53); if 𝜆 = 2, then (58) is reduced to (54) and (60)
is reduced to (56).

4.3. The MCDM Approach Based on the GHIVIFNWA and
GHIVIFNWG Operators. Let 𝐴 = {𝑎

1
, 𝑎
2
, . . .,𝑎
𝑚
} be a finite

set of alternatives, and let 𝐶 = {𝑐
1
, 𝑐
2
, . . .,𝑐
𝑛
} be a finite set of

criteria, whose criteria weight vector is 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
),

where 𝑤
𝑗
≥ 0 (𝑗 = 1, 2, . . . , 𝑛), ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Let 𝑅 = (�̃�

𝑖𝑗
)
𝑚×𝑛

be the hesitant interval-valued intuitionistic fuzzy decision
matrix, where �̃�

𝑖𝑗
is a criterion value, denoted by HIVIFNs.

The characteristics of the alternatives 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑚) with

respect to the attributes 𝑐
𝑗
(𝑗 = 1, 2, . . . , 𝑛) can be denoted

by �̃�
𝑖𝑗
= {⋃
𝑛(�̃�
𝑖𝑗
)

𝑟=1
⟨[𝑎
𝑟

�̃�
𝑖𝑗

, 𝑏
𝑟

�̃�
𝑖𝑗

], [𝑐
𝑟

�̃�
𝑖𝑗

, 𝑑
𝑟

�̃�
𝑖𝑗

]⟩}. In the following, we
propose one approach to rank and select the most desirable
alternative(s). The procedure of this approach is shown as
follows.

Step 1. Aggregate the HIVIFNs �̃�
𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑛, 𝑗 =

1, 2, . . . , 𝑛) of the alternative 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑚).

Utilize the GHIVIFNWA or GHIVIFNWG operator to
obtain the overall values 𝑦

𝑖
for the alternatives 𝑎

𝑖
(𝑖 =

1, 2, . . . , 𝑚), respectively; that is,

𝑦
𝑖
= GHIVIFNWA

𝑤
(�̃�
𝑖1
, �̃�
𝑖2
, . . . , �̃�

𝑖𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖1=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖𝑛=1

{

{

{

⟨[

[

𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑎

𝑟

𝑖𝑗
)))))) , 𝑘

−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑏

𝑟

𝑖𝑗
))))))]

]

,

[

[

𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑐

𝑟

𝑖𝑗
)))))) , 𝑙

−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑑

𝑟

𝑖𝑗
))))))]

]

⟩
}

}

}

(62)

or
𝑦
𝑖
= GHIVIFNWG

𝑤
(�̃�
𝑖1
, �̃�
𝑖2
, . . . , �̃�

𝑖𝑛
)

=

𝑛(𝐻
1
)

⋃
𝑖1=1

⋅ ⋅ ⋅

𝑛(𝐻
𝑛
)

⋃
𝑖𝑛=1

{

{

{

⟨[

[

𝑙
−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑎

𝑟

𝑖𝑗
)))))) , 𝑙

−1
(
1

𝜆
𝑙(𝑘
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑘 (𝑙
−1
(𝜆𝑙 (𝑏

𝑟

𝑖𝑗
))))))]

]

,

[

[

𝑘
−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑐

𝑟

𝑖𝑗
)))))) , 𝑘

−1
(
1

𝜆
𝑘(𝑙
−1
(

𝑛

∑
𝑗=1

𝑤
𝑗
𝑙 (𝑘
−1
(𝜆𝑘 (𝑑

𝑟

𝑖𝑗
))))))]

]

⟩
}

}

}

.

(63)
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Step 2. Calculate the score values. According to
Definition 22, the score of overall values 𝑆(𝑦

𝑖
) (𝑖 = 1, 2, . . . , 𝑚)

could be calculated.

Step 3. Rank the preference order of all alternatives 𝑎
𝑖
(𝑖 =

1, 2, . . . , 𝑚). 𝐿(𝑆(𝑦
𝑖
)) (𝑖 = 1, 2, . . . , 𝑚) could be obtained

according to Definition 5. The greater the value of 𝐿(𝑆(𝑦
𝑖
))

is, the better the alternative 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑚) will be.

Step 4. Select the optimal one(s).

5. Illustrative Example

In this section, the proposed approach and one existing
method are utilized to evaluate four companies with hesitant
interval-valued intuitionistic fuzzy information.

The enterprise’s board of directors intends to find an
automobile company and establish a foundation for deeper
and more extensive cooperation with it in the following five
years. Suppose there are four possible projects 𝑎

𝑖
(𝑖 = 1, 2, 3, 4)

to be evaluated. It is necessary to compare these companies
and rank them in terms of their importance. Four criteria,
suggested by the Balanced Scorecard methodology, could
be taken into account (it should be noted that all of them

are of the maximization type): 𝑐
1
: economy, 𝑐

2
: comfort, 𝑐

3
:

design, and 𝑐
4
: safety. And suppose that the weight vector of

the criteria is 𝑤 = (0.2, 0.3, 0.15, 0.35). The decision-makers
are required to provide their evaluation of the company 𝑎

𝑖

under the criterion 𝑐
𝑗
(𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, 3, 4). The

hesitant interval-valued intuitionistic fuzzy decision matrix
𝑅 = (�̃�

𝑖𝑗
)
4×4

is shown in Table 1, where �̃�
𝑖𝑗
(𝑖 = 1, 2, 3, 4,

𝑗 = 1, 2, 3, 4) are in the form of HIVIFNs.

5.1. Illustration of the Proposed Approach. In order to get the
optimal alternative(s), the following steps are involved.

Step 1. Aggregate the HIVIFNs �̃�
𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑛, 𝑗 =

1, 2, . . . , 𝑛) of the alternative 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑚).

For the convenience of analysis and computation, we
use hesitant interval-valued intuitionistic fuzzy algebraic
aggregation operators to fuse the attribute values which are
represented in the form of HIVIFNs in MCDM problems.
Let 𝑘(𝑥) = − ln(𝑥), and let 𝑘−1(𝑥) = 𝑒

−𝑥
, 𝑙(𝑥) = − ln(1 −

𝑥), 𝑙
−1
(𝑥) = 1 − 𝑒

−𝑥, and 𝑇(𝑥, 𝑦) = 𝑥𝑦, and 𝑆(𝑥, 𝑦) = 1 −

((1 − 𝑥)(1 − 𝑦)) be algebraic 𝑡-conorm and 𝑡-norm.Then, the
GHIVIFNWA or GHIVIFNWG operators are, respectively,
reduced to the GHIVIFNAWA or GHIVIFNAWG operators,
and (62) and (63) are reduced to the following expression; that
is,

𝑦
𝑖
= GHIVIFNAWA (�̃�

𝑖1
, �̃�
𝑖2
, �̃�
𝑖3
, �̃�
𝑖4
)

=

𝑛(�̃�
𝑖1
)

⋃
𝑖1=1

⋅ ⋅ ⋅

𝑛(�̃�
𝑖4
)

⋃
𝑖4=1

{

{

{

⟨[

[

(1 −

4

∏
𝑗=1

(1 − (𝑎
𝑘

𝑖𝑗
)
𝜆

)
𝑤
𝑗

)

1/𝜆

, (1 −

4

∏
𝑗=1

(1 − (𝑏
𝑘

𝑖𝑗
)
𝜆

)
𝑤
𝑗

)

1/𝜆

]

]

,

[

[

1 − (1 −

4

∏
𝑗=1

(1 − (1 − 𝑐
𝑘

𝑖𝑗
)
𝜆

)
𝑤
𝑗

)

1/𝜆

, 1 − (1 −

4

∏
𝑗=1

(1 − (1 − 𝑑
𝑘

𝑖𝑗
)
𝜆

)
𝑤
𝑗

)

1/𝜆

]

]

⟩
}

}

}

(𝑖 = 1, 2, 3, 4) ,

(64)

or

𝑦
𝑖
= GHIVIFAWG (�̃�

𝑖1
, �̃�
𝑖2
, �̃�
𝑖3
, �̃�
𝑖4
)

=

𝑛(�̃�
𝑖1
)

⋃
𝑖1=1

⋅ ⋅ ⋅

𝑛(�̃�
𝑖4
)

⋃
𝑖4=1

{

{

{

⟨[

[

1 − (1 −

4

∏
𝑗=1

(1 − (1 − 𝑎
𝑘

𝑖𝑗
)
𝜆

)
𝑤
𝑗

)

1/𝜆

, 1 − (1 −

4

∏
𝑗=1

(1 − (1 − 𝑏
𝑘

𝑖𝑗
)
𝜆

)
𝑤
𝑗

)

1/𝜆

]

]

,

[

[

(1 −

4

∏
𝑗=1

(1 − (𝑐
𝑘

𝑖𝑗
)
𝜆

)
𝑤
𝑗

)

1/𝜆

, (1 −

4

∏
𝑗=1

(1 − (𝑑
𝑘

𝑖𝑗
)
𝜆

)
𝑤
𝑗

)

1/𝜆

]

]

⟩
}

}

}

(𝑖 = 1, 2, 3, 4) .

(65)

Let 𝜆 = 2, and according to the formula listed above, the
overall HIVIFNs 𝑦

𝑖
of the alternatives 𝑎

𝑖
(𝑖 = 1, 2, 3, 4) could

be obtained and shown in Table 2.

Step 2. Based on Definition 22 and Table 2, the score values
of overall HIVIFNs 𝑆(𝑦

𝑖
) (𝑖 = 1, 2, 3, 4) can be obtained and

shown in Table 3.
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Table 1: Hesitant interval-valued intuitionistic fuzzy decision matrix 𝑅 = (�̃�
𝑖𝑗
)
4×4

.

𝑐
1

𝑐
2 𝑐

3
𝑐
4

𝑎
1

{⟨[0.4, 0.5], [0.2, 0.3]⟩} {⟨[0.1, 0.2], [0.3, 0.4]⟩, ⟨0.7, 0.3⟩} {⟨[0.5, 0.6], [0.3, 0.4]⟩} {⟨0.4, 0.2⟩}

𝑎
2

{⟨[0.7, 0.8], [0.1, 0.2]⟩} {⟨[0.3, 0.4], [0.2, 0.3]⟩, ⟨[0.6, 0.7], [0.1, 0.3]⟩} {⟨[0.5, 0.6], [0.2, 0.4]⟩} {⟨[0.6, 0.7], [0.1, 0.3]⟩}

𝑎
3

{⟨[0.4, 0.5], [0.3, 0.4]⟩} {⟨[0.4, 0.5], [0.2, 0.3]⟩} {⟨[0.7, 0.8], [0.1, 0.2]⟩} {⟨[0.6, 0.7], [0.1, 0.3]⟩}

𝑎
4

{⟨[0.5, 0.6], [0.2, 0.3]⟩} {⟨0.6, 0.3⟩}
{⟨[0.2, 0.3], [0.1, 0.2]⟩,
⟨[0.5, 0.6], [0.2, 0.3]⟩}

{⟨[0.7, 0.8], [0.1, 0.2]⟩}

Table 2: The overall HIVIFNs of alternatives.

𝜆 = 2 GHIVIFAWA (HIVIFAWA) GHIVIFNWG (HIVIFAWG)

𝑦
1

{⟨[0.3925, 0.4601], [0.1712, 0.2389]⟩,
⟨[0.5376, 0.5668], [0.2391, 0.2700]⟩}

{⟨[0.3373, 0.4415], [0.1971, 0.2628]⟩,
⟨[0.4788, 0.5150], [0.2507, 0.2896]⟩}

𝑦
2

{⟨[0.5513, 0.6545], [0.1359, 0.2874]⟩,
⟨[0.6113, 0.7126], [0.1107, 0.2874]⟩}

{⟨[0.4732, 0.5731], [0.1537, 0.3020]⟩,
⟨[0.5990, 0.6980], [0.1207, 0.3020]⟩}

𝑦
3 {⟨[0.5398, 0.6427], [0.1517, 0.2975]⟩} {⟨[0.4921, 0.5911], [0.1884, 0.3118]⟩}

𝑦
4

{⟨[0.5929, 0.6696], [0.1576, 0.2440]⟩,
⟨[0.6125, 0.6905], [0.1751, 0.2594]⟩}

{⟨[0.5880, 0.6539], [0.2123, 0.2698]⟩,
⟨[0.4938, 0.5348], [0.2016, 0.2556]⟩}

Step 3. Rank all the alternatives 𝑎
𝑖
(𝑖 = 1, 2, 3, 4) in accor-

dance with the scores 𝑆(𝑦
𝑖
) (𝑖 = 1, 2, 3, 4) of the aggregated

hesitant interval-valued intuitionistic fuzzy values by using
Definitions 5 and 6. From Table 3, the following results can
be obtained.

Case 1. The GHIVIFAWA operator is as follows:

𝐿 (𝑆 (𝑦
1
)) = 0.3725, 𝐿 (𝑆 (𝑦

2
)) = 0.5612,

𝐿 (𝑆 (𝑦
3
)) = 0.5032, 𝐿 (𝑆 (𝑦

4
)) = 0.5681.

(66)

So the final ranking of alternatives is 𝑎
4
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
1
.

Case 2. The GHIVIFAWG operator is as follows:

𝐿 (𝑆 (𝑦
1
)) = 0.3049, 𝐿 (𝑆 (𝑦

2
)) = 0.4990,

𝐿 (𝑆 (𝑦
3
)) = 0.4300; 𝐿 (𝑆 (𝑦

4
)) = 0.4669.

(67)

So the final ranking of alternatives is 𝑎
2
≻ 𝑎
4
≻ 𝑎
3
≻ 𝑎
1
.

Step 4. Select the best one(s). In Step 3, if the GHIVIFNAWA
operator is utilized, then the optimal alternative is 𝑎

2
while the

worst alternative is 𝑎
1
; if the GHIVIFNAWGoperator is used,

then the optimal alternative is 𝑎
4
while the worst alternative

is 𝑎
1
.

5.2. Sensitivity Analysis. In Step 1, two aggregation operators
can be used and the sensitivity analysis will be conducted in
these following cases.

(1)The hesitant interval-valued intuitionistic fuzzy alge-
braic aggregation operators in Step 1 are illustrated as follows.

In order to investigate the influence of 𝜆 on the ranking
of alternatives, different 𝜆 are utilized.The ranking results are
shown in Tables 4 and 5.

From Tables 4 and 5, the GHIVIFNAWA and GHIV-
IFNAWG operators have produced different rankings of
the alternatives. However, for each operator, the rankings
obtained are consistent as 𝜆 changes. Moreover, 𝑎

4
or 𝑎
2
is

always the optimal one while the worst one is always 𝑎
1
.

(2) The hesitant interval-valued intuitionistic fuzzy Ein-
stein aggregation operators in Step 1 are illustrated as follows.

Let 𝑘(𝑥) = ln((2 − 𝑥)/𝑥), and let 𝑘−1(𝑥) = 2/(𝑒
𝑥
+

1), 𝑙(𝑥) = ln((2 − (1 − 𝑥))/(1 − 𝑥)), 𝑙−1(𝑥) = 1 − (2/(𝑒
𝑥
+

1)), 𝑇(𝑥, 𝑦) = 𝑥𝑦/(1 + (1 − 𝑥)(1 − 𝑦)), and 𝑆(𝑥, 𝑦) =

(𝑥 + 𝑦)/(1 + 𝑥𝑦) be the Einstein 𝑡-conorm and 𝑡-norm,
respectively. Then, the GHIVIFNWA and GHIVIFNWG
operators are, respectively, reduced to the GHIVIFNEWA
and GHIVIFNEWG operators. According to (58) and (60),
the following results could be obtained and shown in Tables
6 and 7.

From Tables 6 and 7, the GHIVIFNEWA and GHIV-
IFNEWG operators have produced different rankings of the
alternatives. Furthermore, for each operator, the aggrega-
tion parameter 𝜆 also leads to different aggregation results,
but the final rankings of alternatives are the same as the
parameter changes. What is more, regardless of using the
GHIVIFNEWA and GHIVIFNEWG operators, is that 𝑎

4
or

𝑎
2
is always the optimal one while the worst one is always 𝑎

1
.

It can be concluded from the sensitivity analysis that
different 𝑡-conorms and 𝑡-norms could lead to different
aggregation results. However, the rankings using each opera-
tor are consistent.

5.3. Comparison Analysis. Based on the same decision-
making problem, if the method of Chen et al. [16] is
employed, HIVIFNs are transformed to IVIFNs by using the
score function firstly, and then IVIFNs could be aggregated by
the interval-valued intuitionistic fuzzy weighted aggregation
operators, proposed by Chen et al. [16].
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Table 3: The score values of overall HIVIFNs.

GHIVIFAWA 𝜆 = 2 (HIVIFAWA) GHIVIFAWG 𝜆 = 2 (HIVIFAWG)
𝑆(𝑦
1
) {⟨[0.4651, 0.5135], [0.2052, 0.2545]⟩} 𝑆(𝑦

1
) {⟨[0.4081, 0.4783], [0.2239, 0.2762]⟩}

𝑆(𝑦
2
) {⟨[0.5813, 0.6836], [0.1233, 0.2874]⟩} 𝑆(𝑦

2
) {⟨[0.5361, 0.6356], [0.1372, 0.3020]⟩}

𝑆(𝑦
3
) {⟨[0.5398, 0.6427], [0.1517, 0.2975]⟩} 𝑆(𝑦

3
) {⟨[0.4921, 0.5911], [0.1884, 0.3118]⟩}

𝑆(𝑦
4
) {⟨[0.6027, 0.6801], [0.1664, 0.2517]⟩} 𝑆(𝑦

4
) {⟨[0.5409, 0.5944], [0.2070, 0.2627]⟩}

Table 4: Rankings obtained using the GHIVIFNAWA operator.

𝜆 𝑎
1

𝑎
2

𝑎
3

𝑎
4

Rankings
𝜆 = 1 0.3627 0.5529 0.4927 0.5581 𝑎

4
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 2 0.3725 0.5612 0.5032 0.5681 𝑎
4
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 5 0.3914 0.5836 0.5363 0.5940 𝑎
4
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 10 0.4493 0.6105 0.5804 0.6263 𝑎
4
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 20 0.4949 0.6443 0.6287 0.6624 𝑎
4
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 30 0.5152 0.6642 0.6537 0.6788 𝑎
4
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
1

Based on Definition 3 and ∑
4

𝑖=1
𝑤
𝑖
= 1, the interval-

valued intuitionistic fuzzy weighted average values of all
alternatives could be obtained as follows:

IVIFWA
𝑤
(𝑎
11
, 𝑎
12
, 𝑎
13
, 𝑎
14
)

=
∑
4

𝑖=1
[[𝑎
1𝑖
, 𝑏
1𝑖
] , [1 − 𝑑

1𝑖
, 1 − 𝑐
1𝑖
]] × 𝑤

𝑖

∑
𝑛

𝑖=1
𝑤
𝑖

= [[

4

∑
𝑖=1

𝑎
1𝑖
𝑤
𝑖
,

4

∑
𝑖=1

𝑏
1𝑖
𝑤
𝑖
] , [

𝑛

∑
𝑖=1

(1 − 𝑑
1𝑖
) 𝑤
𝑖
,

𝑛

∑
𝑖=1

(1 − 𝑐
1𝑖
) 𝑤
𝑖
]]

= [[0.4 × 0.2 +
0.3 + 0.7

2
× 0.3 + 0.5 × 0.15 + 0.4 × 0.35,

0.5 × 0.2 +
0.4 + 0.7

2
× 0.3 + 0.6 × 0.15 + 0.4 × 0.35] ,

[(1 − 0.3) × 0.2 + (1 −
0.2 + 0.3

2
) × 0.3 + (1 − 0.4)

× 0.15 + (1 − 0.2) × 0.35, (1 − 0.2) × 0.2

+ (1 −
0.1 + 0.3

2
) × 0.3 + (1 − 0.3) × 0.15

+ (1 − 0.2) × 0.35]]

= [[0.445, 0.495] , [0.735, 0.785]]

= ⟨[0.445, 0.495] , [1 − 0.785, 1 − 0.735]⟩

= ⟨[0.445, 0.495] , [0.215, 0.265]⟩ ,

IVIFWA
𝑤
(𝑎
21
, 𝑎
22
, 𝑎
23
, 𝑎
24
)

= [[0.560, 0.660] , [0.635, 0.87]]

= ⟨[0.560, 0.660] , [0.13, 0.365]⟩ ,

IVIFWA
𝑤
(𝑎
31
, 𝑎
32
, 𝑎
33
, 𝑎
34
)

= [[0.515, 0.615] , [0.695, 0.830]]

= ⟨[0.515, 0.615] , [0.170, 0.305]⟩ ,

IVIFWA
𝑤
(𝑎
41
, 𝑎
42
, 𝑎
43
, 𝑎
44
)

= [[0.578, 0.648] , [0.743, 0.813]]

= ⟨[0.578, 0.648] , [0.187, 0.257]⟩ .

(68)

According to Definitions 5 and 6,

𝐿 (IVIFWA
𝑤
(𝑎
11
, 𝑎
12
, 𝑎
13
, 𝑎
14
)) = 0.343,

𝐿 (IVIFWA
𝑤
(𝑎
21
, 𝑎
22
, 𝑎
23
, 𝑎
24
)) = 0.519,

𝐿 (IVIFWA
𝑤
(𝑎
31
, 𝑎
32
, 𝑎
33
, 𝑎
34
)) = 0.486,

𝐿 (IVIFWA
𝑤
(𝑎
41
, 𝑎
42
, 𝑎
43
, 𝑎
44
)) = 0.528.

(69)

So 𝑎
4

≻ 𝑎
2

≻ 𝑎
3

≻ 𝑎
1
and the best optimal one is

𝑎
4
. The ranking here is the same as the result using the

GHIVIFNAWA and GHIVIFNAWA operators.
According to the calculation results, although the existing

method can produce the same result as the proposedmethod,
the method being compared has a problem that how to trans-
form HIVIFNs to IVIFNs in the first step could avoid infor-
mation loss in the process of transformation. By contrast,
the proposed approach based on different 𝑡-conorms and 𝑡-
norms can be used to deal with different relationships among
the aggregated arguments, could handle MCDM problems
in a flexible and objective manner under hesitant interval-
valued intuitionistic fuzzy environment, and can provide
more choices for decision-makers. Additionally, different 𝑡-
conorms and 𝑡-norms and aggregation operators could be
chosen in the practical decision-making process. At the same
time, different results may be produced, which reflected
the preferences of decision-makers. Therefore, the developed
approach can produce better results than the existingmethod.



20 The Scientific World Journal

Table 5: Rankings obtained using the GHIVIFNAWG operator.

𝜆 𝑎
1

𝑎
2

𝑎
3

𝑎
4

Rankings
𝜆 = 1 0.3291 0.5148 0.4329 0.4482 𝑎

2
≻ 𝑎
4
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 2 0.3049 0.4990 0.4300 0.4669 𝑎
2
≻ 𝑎
4
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 5 0.2819 0.4517 0.3804 0.4076 𝑎
2
≻ 𝑎
4
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 10 0.2428 0.3995 0.2877 0.3338 𝑎
2
≻ 𝑎
4
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 20 0.2071 0.3523 0.2824 0.2993 𝑎
2
≻ 𝑎
4
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 30 0.1858 0.3372 0.2608 0.2699 𝑎
2
≻ 𝑎
4
≻ 𝑎
3
≻ 𝑎
1

Table 6: Rankings obtained using the GHIVIFNEWA operator.

𝜆 𝑎
1

𝑎
2

𝑎
3

𝑎
4

Rankings
𝜆 = 1 0.4143 0.5478 0.4864 0.5515 𝑎

4
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 2 0.3708 0.5586 0.4994 0.5641 𝑎
4
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 5 0.2752 0.5955 0.5559 0.6075 𝑎
4
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 10 0.4751 0.6317 0.6113 0.6505 𝑎
4
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 20 0.5146 0.6669 0.6571 0.6812 𝑎
4
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 30 0.5295 0.6825 0.6759 0.6925 𝑎
4
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
1

Table 7: Rankings obtained using the GHIVIFNEWG operator.

𝜆 𝑎
1

𝑎
2

𝑎
3

𝑎
4

Rankings
𝜆 = 1 0.3342 0.5213 0.4551 0.5127 𝑎

2
≻ 𝑎
4
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 2 0.3156 0.4967 0.4093 0.4274 𝑎
2
≻ 𝑎
4
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 5 0.2669 0.4315 0.3622 0.3760 𝑎
2
≻ 𝑎
4
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 10 0.2262 0.3767 0.3048 0.3184 𝑎
2
≻ 𝑎
4
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 20 0.1951 0.3414 0.2905 0.2986 𝑎
2
≻ 𝑎
4
≻ 𝑎
3
≻ 𝑎
1

𝜆 = 30 0.1745 0.3034 0.2578 0.2602 𝑎
2
≻ 𝑎
4
≻ 𝑎
3
≻ 𝑎
1

6. Conclusion

HFSs are the extension of traditional fuzzy sets, and their
membership degree of an element is a set of several possible
values between 0 and 1. IVIFSs can describe the fuzzy
concept “neither this nor that,” and the membership degrees
and nonmembership degrees of IVIFSs are not only real
numbers but interval values, respectively. Precise numerical
values in HFSs can be replaced by IVIFSs, which provide
more preference information for decision-makers. In this
paper, the definition of HIVIFSs was developed and applied
to the MCDM problems, in which the evaluation values
of alternatives on criteria were expressed with HIVIFNs.
Furthermore, based on 𝑡-conorms and 𝑡-norms, some aggre-
gation operators, namely, the HIVIFNWA and HIVIFNWG,
HIVIFNWAA and HIVIFNWGA, and GHIVIFNWA and
GHIVIFNWG operators, were proposed, respectively. Their
properties were discussed in detail as well. In particular, the
corresponding hesitant interval-valued intuitionistic fuzzy
algebraic aggregation operators based on algebraic 𝑡-conorm
and 𝑡-norm and hesitant interval-valued intuitionistic fuzzy
Einstein aggregation operators based on Einstein 𝑡-conorm
and 𝑡-normwere presented. In addition, different aggregation
operators were utilized to fuse the hesitant interval-valued
intuitionistic fuzzy information to get the overall HIVIFNs of

alternatives and the ranking of all given alternatives. At last,
the example was presented to illustrate the fuzzy decision-
making process, and the sensitivity analysis and comparison
analysis were conducted to enrich the paper. The prominent
feature of the proposed method is that it could provide
a useful and flexible way to efficiently facilitate decision-
makers under a hesitant interval-valued intuitionistic fuzzy
environment, and the related calculations are simple. Hence,
it has enriched and developed the theories and methods
of MCDM problems and also has provided a new idea for
solvingMCDMproblems. In the future research, the distance
and similarity measure of HIVIFSs will be studied to solve
MCDM problems.
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