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Abstract

Purpose of review—The association between obesity and insulin resistance is an area of much

interest and enormous public health impact, with hundreds of articles being published in the last

year focused on the possible mechanisms that underlie this association. The purpose to this review

is to highlight some of the key recent literature with emphasis on emerging concepts.

Recent findings—The specific link between visceral adipose tissue accumulation and insulin

resistance continues to be discerned. Visceral adiposity is correlated with accumulation of excess

lipid in liver, and results in cell autonomous impairment in insulin signaling. Visceral adipose

tissue is also prone to inflammation and inflammatory cytokine production, which also contribute

to impairment in insulin signaling. The expansion of visceral adipose tissue and excess lipid

accumulation in liver and muscle may result from limited expandability of subcutaneous adipose

tissue, due to the properties of its extracellular matrix and capacity for capillary growth.

Summary—Recent studies underscore the need to better understand the mechanisms linking

visceral adiposity with liver fat accumulation, the mechanisms by which ectopic fat accumulation

cause insulin resistance, and the mechanisms by which the size of adipose tissue depots is

determined.
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INTRODUCTION

Insulin resistance is a requisite precursor for the development of type 2 diabetes mellitus

(T2DM), and is associated with hypertension and dyslipidemia [1]. Epidemiological data

link T2DM with obesity, and a causal relationship between insulin resistance and weight
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gain has been gleaned from classical studies in which lean individuals with no previous

history of obesity or diabetes became insulin resistant upon experimental overnutrition [2].

These facts reinforce the great importance of understanding the physiological basis for

insulin resistance in obesity.

NOT ALL FORMS OF OBESITY RESULT IN INSULIN RESISTANCE

Obesity is the excessive growth of adipose tissue depots arising from the chronic

consumption of calories in excess of the energetic needs of the individual. In humans, the

expansion of adipose depots results from increased numbers of individual adipocytes

(hyperplasia), and from the hypertrophy of adipocytes, in a depot-dependent fashion [3].

Importantly, there is a large individual variation in the size and expandability of different

adipose tissue depots in humans. This factor is critically important in understanding the

relationship between obesity and insulin resistance, as expansion of some depots is

associated with increased risk, whereas expansion of others is associated with decreased risk

[4]. Each standard deviation (SD) increase in subcutaneous adipose tissue mass decreases

the odds of insulin resistance by 48%, whereas a SD increase in visceral adipose tissue mass

increases the odds of insulin resistance by 80% [5▪]. These findings can explain the

existence of ‘benign’ and ‘malign’ obesity wherein insulin resistance is not observed in all

individuals with high BMIs. They may also explain the very high incidence of insulin

resistance and diabetes in ethnic populations that display relatively low BMIs associated

with high waist circumferences or waist-to-hip ratios, reflecting elevated visceral obesity

[6].

In this context, the mechanisms that control the expandability of subcutaneous adipose

tissue, including its high capacity for adipocyte differentiation and lipid storage may be key

factors in determining diabetes risk in obesity [7]. The enhanced capacity for formation of

adipocytes, inferred by the presence of hyperplasia in subcutaneous adipose tissue [8],

correlates with decreased risk of glucose and insulin abnormalities. Furthermore, the gene

expression patterns of subcutaneous adipose tissue differ more than the gene expression

patterns of skeletal muscle when comparing insulin-sensitive versus insulin-resistant

individuals. These results are consistent with variations in subcutaneous adipose tissue being

a key factor in determining metabolic disease risk. These differences were found to include

genes related to lipid and fatty acid metabolism, inflammation, and cell-cycle regulation [9▪].

Why is visceral fat accumulation associated with insulin resistance? One possibility is that

visceral fat itself is inherently diabetogenic, for example, it secretes adipokines that impair

insulin sensitivity in tissues such as liver and muscle, which increase upon expansion of this

depot (Fig. 1a). Another possibility is that the accumulation of visceral fat is a surrogate

indicator of ectopic lipid accumulation and lipotoxicity, which occur in parallel in liver and

muscle, causing insulin resistance in these tissues (Fig. 1b). A third possibility is that excess

lipid accumulation in visceral adipose tissue actually causes its acquisition of diabetogenic

properties (Fig. 1c); visceral adipose tissue indeed accumulates macrophages that release

inflammatory cytokines, which can impair insulin sensitivity. A fourth possibility is one in

which lipotoxicity in peripheral tissues and visceral adipose tissue cytokine production, both
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contribute to systemic insulin resistance (Fig. 1d). Recent data related to these models are

reviewed below.

DEFINITION OF INSULIN RESISTANCE

Systemic insulin resistance can be measured as a decreased glucose disposal rate in rodents

and humans in response to defined concentrations of insulin [1]. Systemic insulin resistance

can result from impaired insulin action in metabolically active organs and tissues, including

skeletal muscle, the liver, and adipose tissue. The degree to which systemic insulin

resistance is due to impaired insulin action in skeletal muscle, liver, or adipose tissue may

vary among individuals.

In skeletal muscle, insulin resistance is manifested as a decrease in glucose transport and a

decline in muscle glycogen synthesis in response to circulating insulin. Insulin sensitivity is

decreased in myocytes obtained from obese individuals, or cultured myocytes in the

presence of adipocyte-derived lipids [10], supporting the concept that accumulation of

excess lipids or their metabolic derivatives cause decreased insulin signaling in skeletal

muscle [11,12]. Recently, muscle insulin resistance in obese diabetic humans has also been

correlated with decreased transcapillary insulin transport [13▪], and found to be present in

mice harboring endothelial cell-specific insulin signaling defects [14▪]. It remains to be

determined whether obesity causes endothelial cell insulin resistance in muscle. Insulin

resistance is also correlated with mitochondrial respiratory chain deficiency in muscle [15],

but this may be a consequence, rather than a cause of insulin resistance [16▪].

In the liver, insulin resistance is selective in that insulin fails to suppress gluconeogenesis,

but continues to stimulate fatty acid synthesis [17]. Thus, the point at which insulin

signaling is disrupted in obesity is downstream of insulin receptor activation. A critical role

of the mammalian target of rapamycin complex (mTORC) in hepatic lipogenesis [18], as

well as other mechanisms downstream of the serine-threonine protein kinase Akt2 [19▪] may

be responsible for this uncoupling of glucose and lipid metabolism in the insulin signaling

pathway, which ultimately manifests as hyperglycemia and hyper-triglyceridemia.

In adipose tissue, insulin resistance is manifested as impaired insulin-stimulated glucose

transport, as well as impaired inhibition of lipolysis. As in liver, adipocytes exhibit a

divergence in insulin signaling whereby the insulin effect on glucose transporter-4

trafficking is blunted, yet its effect on Forkhead box O-1 (FoxO1) nuclear exclusion is

preserved [20]. Obesity may produce adipocyte insulin resistance through cell autonomous

mechanisms, or as detailed below, through the interactions between the adipocyte and

mediators of inflammation.

VISCERAL ADIPOSE TISSUE CYTOKINE PRODUCTION AND INSULIN

RESISTANCE

Visceral adipocytes secrete adipose-specific cytokines such as leptin and adiponectin but

also inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-6. Recent

experiments suggest that an increase in the abundance of adipose tissue draining into the
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portal vein can cause liver and systemic insulin resistance [21▪]. In this study, the capacity of

adipose tissue grafted onto the mesentery to induce insulin resistance depended on IL-6

production. The size of the visceral adipose depot and adipocyte size in humans is linked to

systemic insulin resistance, as well as increased expression of chemokines and cytokines by

immune cells in the tissue [22]. A recent study also revealed a correlation between increased

amounts of visceral fat, adipocyte hypertrophy, insulin resistance, and elevated expression

of autophagy genes in human omental adipose tissue [23]. These results suggest that the

propensity of visceral adipose tissue for increased inflammation, and the subsequent

secretion of cytokines that impair insulin signaling may significantly contribute to systemic

insulin resistance in central obesity.

Circulating levels of the macrophage-derived apoptosis inhibitor of macrophage protein are

also increased with obesity, stimulate lipolysis in adipose tissue, and appear to be necessary

for the local recruitment of adipose tissue macrophages [24]. Interleukin-1 receptor

1(IL-1R1) partially mediates the inflammatory signals responsible for adipose inflammation

because adipose tissue from IL-1R1(−/−) mice fed a high-fat diet display increased insulin

sensitivity, and lower cytokine secretion when compared with wild-type mice [25]. Recent

evidence implicates a role for the nucleotide-binding domain, leucine-rich containing

family, pyrin domain containing-3 (Nlrp3) inflammasome, an innate immune cell sensor that

responds to metabolic danger signals such as lipids and ceramides. A reduction in adipose

tissue expression of Nlrp3 is associated with decreased inflammation and an improvement in

insulin sensitivity. Mice lacking Nlrp3 display enhanced insulin sensitivity and reduced

inflammasome activation, even in the setting of diet-induced obesity [26▪]. Consistent with

the concept that mild inflammation is causal in development of insulin resistance, treatment

of obese mice with resolvins, endogenous lipid mediators that promote inflammatory

resolution, improves glucose tolerance, decreases fasting blood glucose levels, and enhances

insulin signaling in adipose tissue [27]. Positive effects of anti-inflammatory agents on

controlling glucose levels in human diabetics further reinforces this thinking [28].

EXCESSIVE AND ECTOPIC LIPID DEPOSITION AND INSULIN RESISTANCE

The ability to store calories in excess of immediate energy needs is a biological adaptation

with great evolutionary advantage. Many organisms, from worms to mammals store excess

calories in the form of triglyceride droplets, which accumulate in diverse cells and tissue

types, such as the gut, fat body, and the liver [29,30]. Adipose tissue first appears in

evolution surrounding the gut and internal organs, possibly serving to maintain temperature

as recent evidence indicates that adipose tissue surrounding the aorta is of brown adipose

origin [31]. This suggests that these adipose depots fulfill protective and biomechanical

roles. The formation of large subcutaneous adipose depots appears later in evolution, and is

critical for storage of large amounts of fat in times of excess calories.

Despite a highly evolved ability to sequester fat, the storage capacity of single adipocytes is

finite. Enlarged adipocytes display insulin resistance without much macrophage infiltration

into adipose tissue following a short-term high-fat diet [32▪]. Thus, even without

inflammatory responses, excess lipid in adipose cells results in insulin resistance. One

plausible hypothesis is that excess lipid accumulation in adipocytes, and ectopic lipid
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accumulation in liver and muscle may lead to insulin resistance through the formation of

metabolically toxic products. For example, saturated fatty acids have been shown to increase

ceramide production, which appears to contribute to insulin resistance [33]. Lipids such as

triacylglycerols are converted to diacylglyerols by adipose triglyceride lipase (ATGL) then

hydrolyzed by hormone sensitive lipase (HSL). The expression of ATGL and HSL in

skeletal muscle appears to increase the accumulation of intracellular diacylgyercerols that

negatively impacts insulin signaling [34]. Hepatic diacylglycerol content shows a strong

correlation with systemic insulin resistance especially when present in the setting of

nonalcoholic fatty liver disease [35▪]. These lipids may activate signaling pathways, for

example, one or more of the protein kinase C proteins that negatively impact upon insulin

signal transduction. The products of incomplete fatty acid oxidation may also impair one or

more steps in the insulin signaling cascade or in the pathways it regulates.

ADIPOSE TISSUE EXPANDABILITY AND PROTECTION FROM INSULIN

RESISTANCE

Impaired storage capability of individual adipose cells leads to ectopic lipid deposition in

critical organs including visceral adipose tissue, liver, and muscle [36]. Thus, a critical

factor in protecting against insulin resistance is the expandability of adipose tissue, defined

as the capacity to form new adipocytes that can accumulate excess energy and protect from

adipocyte hypertrophy and ectopic lipid accumulation. The mechanisms that determine

adipose tissue expandability are not known, but, like any growing tissue, the capacity to

remodel the extracellular matrix, and to adequately increase capillary vascularization to

enable oxygen and nutrient supply are necessarily involved.

Several studies have shown the existence of hypoxia in adipose tissue from obese humans

[37,38▪], and recent microdialysis of abdominal subcutaneous adipose tissue in humans

showed that obesity is associated with lower adipose tissue blood flow [39▪], although

evidence of hypoxia was not found in this study. Hypoxic stress in adipose tissue may lead

to aberrant remodeling of the extracellular matrix leading to fibrosis and inflammation [40].

Thus, the expansion of capillary networks may be essential to prevent hypoxia, fibrosis, and

inflammation in expanding adipose tissue. A recent study in morbidly obese individuals

reveals a positive correlation between the angiogenic capacity of subcutaneous tissue and

insulin sensitivity, suggesting that insufficient angiogenic growth of subcutaneous adipose

tissue may play a role in the pathogenesis of metabolic disease [41]. Elucidating the factors

that promote adipose tissue angiogenic expansion is an important area of future research.

On the basis of the above considerations, it is of high importance to elucidate the factors that

determine the ability of the individual to expand subcutaneous adipose tissue. One

possibility to consider is the natural variation in the number of adipocyte progenitors. These

cells have been identified in the mouse adipose tissue stromovascular fraction [42]. In early

development, factors such as matrix–cell and cell–cell interactions, as well as angiogenesis

are essential for adipocyte differentiation from progenitor cells [43]. More work is required

to further characterize the properties of these cells in specific adipose tissue depots in

humans.
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SUCCESSFUL THERAPEUTIC STRATEGIES HELP ELUCIDATE

MECHANISMS OF INSULIN RESISTANCE

Ongoing research into successful therapeutic strategies for improving insulin sensitivity can

provide an insight into the mechanisms linking insulin resistance and obesity. Bariatric

surgery is a highly effective therapy for obesity and obesity-related comorbidities. The most

commonly performed bariatric procedure, Roux-en-Y gastric bypass, results in resolution of

T2DM in approximately 80% of patients [44▪]. A recent study using hyperinsulinemic

euglycemic clamps in humans demonstrated an improvement in adipose tissue insulin

sensitivity with significant suppression of lipolysis after the Roux-en-Y gastric bypass

procedure [45]. Although the mechanisms leading to the dramatic improvement in glucose

homeostasis are not well understood, it appears that they involve both weight-dependent and

independent processes. The procedure results in altered gut anatomy leading to caloric

restriction and malabsorption, which both contribute to the sustained weight loss effects.

However, this cannot explain the immediate improvement in glycemic control that occurs

within a few days after the surgical procedure. Although this is still an active, unresolved

area of research, the leading theories involve an incretin effect on insulin action that occurs

as a result of bypassing the upper gastrointestinal tract [44▪]. This immediate effect of

improvement in glucose homeostasis is not seen in other bariatric procedures that do not

include a component of gastrointestinal bypass. Similarly, partial removal of the

subcutaneous (liposuction) or visceral (omentectomy) adipose depots do not improve insulin

sensitivity [45,46].

Dietary changes are common approaches to weight loss, and although most attempts are

unsuccessful due to patient noncompliance, there still remains significant controversy

surrounding the best dietary approach. A recent review of several dietary interventions

suggests that insulin-resistant individuals derive the most short-term benefit from a low-

carbohydrate diet compared with a low-fat diet, likely due to the adverse effect that high

levels of carbohydrates have on postprandial insulin and triglyceride levels [47]. Although

caloric restriction has been shown to decrease the amounts of adipose cells in skeletal

muscle and visceral adipose tissue itself, these effects are almost doubled when weight loss

is due to exercise in sedentary overweight patients [48▪]. Rodent studies provide mechanistic

insight into the improvements of insulin resistance associated with exercise. Both acute and

chronic exercise in a diet-induced obesity rat model lead to suppression of inflammatory

signaling in liver, muscle, and adipose tissue that subsequently improved insulin signaling

[49].

CONCLUSION

Work to elucidate the mechanisms underlying the relationship between obesity and insulin

resistance in humans continues to support the concept that visceral obesity, but not

subcutaneous, results in insulin resistance and increased risk of T2DM. The mechanisms by

which visceral obesity results in insulin resistance appear to be related to excess lipid

accumulation in liver. This may be due to excess fatty acids from visceral adipose tissue

draining into the portal vein. Excess lipid accumulation may result in impaired insulin
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signaling through cell autonomous mechanisms, or through the induction of inflammation

and the subsequent production of inflammatory cytokines by macrophages, which impair

insulin action. Storage of excess fat in subcutaneous depots mitigates the risk of insulin

resistance and T2DM, possibly by preventing accumulation of fat in visceral adipose tissue,

liver, and skeletal muscle. Thus, the mechanisms that determine the size and expandability

of subcutaneous adipose tissue depots, such as the control of extracellular matrix and

capillary expansion, may be important targets for future therapy.
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KEY POINTS

• Visceral adipose tissue increases, and subcutaneous adipose tissue decreases the

risk of insulin resistance and T2DM in humans.

• Visceral adiposity correlates with excess lipid accumulation in liver.

• Excess accumulation of lipid may cause insulin resistance through cell

autonomous mechanisms, and through the induction of inflammation, and the

consequent production of inflammatory cytokines.

• Failure to expand subcutaneous adipose tissue in parallel with chronic excess

calorie consumption may result from impaired expandability of its extracellular

matrix and capillary network, and result in ectopic lipid accumulation.
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FIGURE 1.
Potential mechanisms by which visceral adiposity might be related to insulin resistance.

Description of each model is in the text.
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