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Abstract

Osteoblast differentiation is tightly regulated by several factors including microRNAs (miRNAs).

In this paper we report that pre-mir-15b is highly expressed in differentiated osteoblasts. The

functional role of miR-15b in osteoblast differentiation was determined using miR-15b mimic/

inhibitor and the expression of osteoblast differentiation marker genes such as alkaline

phosphatase (ALP), type I collagen genes was decreased by miR-15b inhibitor. Runx2, a bone

specific transcription factor is generally required for expression of osteoblast differentiation

marker genes and in response to miR-15b inhibitor treatment, Runx2 mRNA expression was not

changed; whereas its protein expression was decreased. Even though Smurf1 (SMAD specific E3

ubiquitin protein ligase 1), HDAC4 (histone deacetylase 4), Smad7, and Crim1 were found to be

few of miR-15b’s putative target genes, there was increased expression of only Smurf1 gene at

mRNA and protein levels by miR-15b inhibitor. miR-15b mimic treatment significantly increased

and decreased expressions of Runx2 and Smurf1 proteins, respectively. We further identified that

the Smurf1 3’UTR is directly targeted by miR-15b using the luciferase reporter gene system. This

is well documented that Smurf1 interacts with Runx2 and degrades it by proteasomal pathway.

Hence, based on our results we suggest that miR-15b promotes osteoblast differentiation by

indirectly protecting Runx2 protein from Smurf1 mediated degradation. Thus, this study identified

that miR-15b can act as a positive regulator for osteoblast differentiation.
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Introduction

Mesenchymal stem cells (MSCs) have the potential to undergo self-renewal and

multilineage differentiation including osteoblastic lineage. The existence of an osteoblast is

committed through the cascade of osteoprogenitors and pre-osteoblasts; each step is tightly
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regulated by various types of growth factors, cytokines, signaling molecules, hormones,

morphogens etc (Chen et al., 2012; Liu et al., 2013; Raggatt et al., 2008; Monroe et al.,

2012; Selvamurugan et al., 2000). Any kind of modification or deficiency in these regulators

may lead to pathological effects. Runx2 is one of the major transcription factors for the

osteoblast differentiation and it activates osteoblast differentiation marker genes. Its

expression and activation are controlled by several signaling pathways including BMP

(Bone Morphogenetic Protein)/TGF-β (Transforming Growth Factor-β) signaling pathways.

In BMP/TGF-β signaling pathway, the cellular actions involve specific type-1 and type-2

(serine-threonine kinase) receptor complex and intracellular signaling through

phosphorylation of specific regulatory Smads (R-Smads; Smad-1,2,3,5,8). The activated

regulatory Smads form a complex with Smad-4 (common Smad) and translocate to the

nucleus for gene activation (Chen et al., 2012; Selvamurugan et al., 2007). The BMP

signaling increases Runx2 and alkaline phosphatase (ALP) expression and the increased

Runx2 expression suppress myogenesis with the help of Smads induced ALP expression

(Raggatt et al., 2008; Lee at al., 2000 Jensen at al., 2009). Smads and Runx2 play

indispensable role in osteoblast differentiation. SMAD specific E3 ubiquitin protein ligase 1

(Smurf1), a HECT domain E3 ubiquitin ligase mediates degradation of Runx2, type1 BMP

receptor and BMP activated Smad1 and smad5 proteins (Zhao et al., 2004; Murakami et al.,

2003; Zhu et al., 1999).

MicroRNAs (miRNAs) are endogenously expressing non-coding RNAs (~25 nt) that

regulate gene expression by targeting 3’ untranslated region (UTR) of mRNAs at

posttranscriptional level. Recent evidence shows that miRNAs play a significant role in

diverged physiological process, including cell growth, apoptosis, development, metabolism,

stress adaptation, hormone signaling, proliferation and differentiation. During skeletal

development, several miRNAs have been identified as positive (miR-20a, 210, 27, 29c,

196a) and negative (miR-138, 204, 211, 133, 135) regulators (Lian et al., 2012; Vimalraj

and Selvamurugan, 2012; Moorthi et al., 2013; Vimalraj et al., 2013). Therefore, miRNAs

are considered to be a closely related regulator of osteogenesis and bone formation.

Even though expression of several miRNAs has been reported to be MSC or osteoblast

specific, their functional role during osteoblast differentiation is not yet completely

determined. For instance, microarray profiling and real time PCR analysis of miR-15b

expression during osteoblast differentiation has been reported in previous studies (Guo et al.,

2009; Nishi et al., 2010; Gao et al., 2011), but no evidence of its functional regulation on

osteoblast differentiation has been documented to date. In this study, we investigated pre-

mir-15b expression and identified it as osteoblast differentiation related miRNA. To

determine the functional role of miR-15b in osteoblast differentiation, transient transfections

with miR-15b inhibitor/mimic, followed by real time RT-PCR and Western blot analyses

were carried out in human, mouse and rat osteoblastic cells. Our results show that inhibition

of miR-15b leads to decreased osteoblast differentiation at molecular and cellular levels.

Most importantly, miR-15b inhibitor decreased expression of Runx2 protein expression and

that could be due to increased expression of Smurf1 protein during osteoblast differentiation.

Increased expression of Runx2 protein was found by miR-15b mimic and that could be due

to decreased expression of Smurf1 protein during osteoblast differentiation.
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Materials and Methods

Cell culture and osteo differentiation

Human bone marrow stromal cells (hBMSCs) was isolated from 27 years old female and

cultured according to previously described method (Pittenger et al., 1999). The Institutional

review committee in SRM University approved the protocol for isolation of hMSCs. They

were obtained with the written consent from donor. Adult rat dissection and osteoprogenitor

cells isolation from calvaria of 2 day old rat pups were followed as described previously

(Nefussi et al., 1985). All animal procedures were approved by the University of Madras and

SRM university animal ethical committees. The primary hBMSCs and rat osteoprogenitor

cells were induced to osteo differentiation in osteogenic medium [alpha MEM (Cellgro),

15% FBS (Fetal Bovine Serum), Penicillin-Streptomycin (Invitrogen), 10−4 M L-Ascorbic

Acid, 10−8 M Dexamethasone and 1.80 mM Potassium phosphate monobasic (Sigma)]. The

medium was changed once in three days.

Transient transfection

The cells were seeded in 6-well plates with 1 × 105 cells/2 ml growth medium per well on

the day before the transfection. miR-15b inhibitor (Applied Biosystems: MH10904)

designed to bind with endogenous miR-15b, when introduced into cells, inhibits their

activities. miR-15b mimic (Applied Biosystems: MC10904) was designed to similar to that

of endogenous miR-15b. These were studied with a negative control miRNA (Applied

Biosystems: 4464076). The transfection reagent (X-treme Gene transfection reagent from

Roche, USA) was mixed with 50 nM of miR-15b inhibitor or negative control miRNA, and

transient transfection was carried out according to the manufacturer’s protocol. Rat

osteoblasts and human osteoblastic cells (MG63) or mouse MSCs, (C3H10T1/2) were

allowed 7 days for differentiation; whereas human MSCs were allowed 10 days for

differentiation.

Real-time RT-PCR analysis

Total RNA was isolated from cultured cells with Trizol reagent (Invitrogen) according to the

manufacturer’s instructions and quantitative estimation done by Qubit 2.0 Flurometer

(Invitrogen). cDNA was synthesised using GeNei AMV RT-PCR kit, according to the

manufactures’s protocol as follows: 2 µg of total RNA, 1µl of oligo(dT)18/ random hexamer

(50µM) and 1µl of dNTP Mixture (10mM) were added and made upto 14µl reverse

transcript reaction solution using RNase free water, followed by incubation at 65° C for 5

mins and subjected to fast chill using ice cubes. Then 4µl of 5X First-strand Buffer, 1µl of

Reverse Transcriptase (200U/µl) and 1µl of RNase Inhibitor (40U/µl) were added to 14µl

reverse transcript reaction solution and this reaction mixture was kept in 30° C for 10 min,

42° C for 50 min and 95 °C for 5 min in thermal cycler. The real-time PCR analysis was

performed in Bio-Rad system using Kapa sybr fast qPCR kits (Kapa Biosystem) according

to the manufacturer’s instruction. The primers for stem loop sequence of miR-15b and other

genes used in this study are given in Table 1. The Ct (threshold cycle) values were

calculated from amplification curve. ΔCt value of a gene was calculated by subtracting the

Ct value of internal control gene from the Ct value of that gene. The ΔΔCt value was

calculated by subtracting the ΔCt value of control with the ΔCt value of treated and then the
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ΔΔCt values were converted to fold change by raising 2 to the ΔΔCt power. The thermal

cycling conditions were as follows: 95° C for 5 mins as initial denaturation, followed by 40

cycles of 95° C for 30s, 58° C for 30s and 72° C for 30s, with a final extension at 72° C for

5 mins.

Western Blot Analysis

Cells were washed with cold phosphate buffered saline (PBS), and solubilized in lysis buffer

(RIPA buffer- Sigma-Aldrich, Product Number R 0278; 50 mM Tris-HCl, pH 8.0, with 150

mM sodium chloride, 1.0% Igepal CA-630 (NP-40), 0.5% sodium deoxycholate, and 0.1%

sodium dodecyl sulfate) containing a protease inhibitor mixture (Sigma-Aldrich, Cat

#P8340) (AEBSF-[4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride], Aprotinin,

Bestatin hydrochloride, E-64 - [N-(trans-Epoxysuccinyl)-L-leucine 4-guanidinobutylamide],

Leupeptin hemisulfate salt, Pepstatin A). The Cell lysates were centrifuged at 10000 rpm for

10 min at 4° C and supernatant was transferred into fresh tube followed by estimation of

total proteins by Qubit 2.0 Flurometer (Invitrogen). 20 ug of protein was loaded per well and

separated on a 12% polyacrylamide gel, followed by transfer into a nitrocellulose membrane

(Bio-Rad) by electroblotting. 5% non fat milk powder was used to block the nonspecific

binding site in the membrane and incubated with primary antibody for overnight at 4° C.

Then the membrane was probed with secondary antibody conjugated with horseradish

peroxidase. Finally the bands were visualized by adding SuperSignal West Dura Extended

Duration Substrate (Thermo scientific) according to the manufacturer’s instructions. The

obtained images were quantified by subjecting to ImageJ software (http://rsbweb.nih.gov/ij/)

as described previously (Hartig et al., 2013). A monoclonal Smurf1 antibody from Santa

Cruz Biotechnology and a polyclonal Smurf1 antibody from Abcam were used in this study.

The mouse monoclonal antibody Runx2 (1:1000), HDAC4 (1:1000), CDK2 (1:1000) and α-

tubulin (1:1000) antibodies and the secondary antibodies conjugated with horseradish

peroxidase (HRP) were obtained from Santa Cruz Biotechnology.

Mineralized matrix formation analysis

Osteoblast mineralized matrix was determined by alizarin red staining. Briefly, at the end of

transfection period, cells were washed twice with ice-cold PBS and fixed for 1 hr with 10%

formalin at room temperature. It was then rehydrated with 1 ml of distilled water for 5 min.

The cells were stained with 1% alizarin red in 2% ethanol (pH 4.0) for 5 mins at room

temperature followed by rinsing with deionized water and incubated in PBS for 15 min to

remove nonspecific staining. The stained matrix was documented as bright red color by

inverted light microscope (Magnus). The staining was quantified by adding 10% acetic acid

and heated at 85°C for 10 min, and subsequently kept on ice for 5 min. The acid was

neutralized by adding Ammonium hydroxide; red color was obtained then quantified by

spectrophotometry at 405 nm.

Alkaline phosphatase activity

Cells were washed with PBS and then fixed with 10% formalin for 20 min, followed by 1

min fixation in pre chilled ethanol and acetone (50:50), and then again washed with PBS.

The preparation of ALP solution was done by mixing of 1 mg of Naphthol AS-MX (Sigma-

Aldrich, Cat # N4875) in one droplet of N, N-dimethylformamide (Sigma-Aldrich, Cat #
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D4551) and the mixture was dissolved in 10 ml of 0.1 M Tris-HCl buffer (pH 8.5)

containing 2 mM MgCl2. 6 mg of Fast Blue BB salt (Sigma-Aldrich, Cat # F3378) was

added to the above solution and filtered. The ALP solution was added to the fixed cells and

incubated at 37°C for 20 min, and p-Nitrophenyl phosphate, 4mg/ml (SRL, Cat # 144816)

was added and read the plate at 405 nm using Synergy HT multimode microplate reader

(Bio-Tek, USA).

Luciferase reporter assay

The wild 3’ UTR of Smurf1 (sense: 5’

AAACTAGCGGCCGCCTTGTTTTGAAGTATTGCTGCTAT 3’, antisense: 3’

TTTGATCGCCGGCGGAACAAAACTTCATAACGACGATAGATC 5’) and mutant 3’

UTR of Smurf1 (sense: 5’ AAACTAGCGGCCGCCTTGTTTTGAAGTATTGAAGCTAT

3’, antisense: 3’ TTTGATCGCCGGCGGAACAAAACTTCATAACTTCGATAGATC 5’)

were chemically synthesized. These sense and antisense primers of either wild or mutant

Smurf1 containing an internal NotI site were annealed and cloned between PmeI and XbaI

restriction sites present in pmirGLO dual-luciferase miRNA target expression vector (Cat#

E1330; Promega, USA). The Smurf1 NCBI Reference Sequence ID is NM_020429. The

clones containing Smurf1 3’UTR sequence were identified by NotI digestion. C3H10T1/2

cells were transiently transfected with 50 nM of miR-15b mimic, miR-15b inhibitor or

negative control miRNA along with 200 ng of the wild or mutant Smurf1 3’UTR constructs

using Lipofectamine 2000 transfection reagent (Invitrogen, Cat# 11668-027). After 24 hr of

transfection, cells were harvested with passive lysis buffer (PLB) and the luciferase activity

was measured in Synergy HT multimode microplate reader (Bio-Tek) using dual luciferase

reporter assay system (Promega, Cat# E1910). Firefly luciferase activity was normalized to

Renilla luciferase activity and all experiments were performed in triplicates.

Bioinformatics target prediction

We identified miR-15bs’ putative targets using the following computational algorithms,

TargetScan 6.2 (http://www.targetscan.org/), PicTar (http://pictar.mdc-berlin.de/), TarBase

(http://diana.cslab.ece.ntua.gr/tarbase/), miRanda (http://www.microrna.org/microrna/

home.do) and miRecords (http://mirecords.umn.edu/miRecords/). miRmap and PITA were

used to quantify the thermodynamic stability of miR-15b-mRNA duplex. The miRmap

identifies thermodynamic energy, probabilistic, evolutionary and sequence information on

the interaction between miRNA-target sites. This calculates the MFE (Minimum Free

Energy) of TG duplex. The binding energy (TG binding) is computed based on ensemble

free energy. TG duplex seed is the measurement of MFE of the seed with RNAcofold and

TG binding seed is the binding energy of the seed based on ensemble free energy. TG open

is referred to mRNA opening free energy-accessibility, in other words it is calculating the

energy required to unfold the target site of 3’-UTR. TG total is calculated by sum of TG

duplex with TG open (TG total= TG duplex + TG open). Raw data of miRmap scores for

each feature, e.g. ‘TG total’ represents in kcal/mol. Probability (binomial/exact distribution)

determines the expected probability of an exact seed match or full miRNA binding site of

target. The conservation is identified as branch length score (BLS) on 3’UTR fitted tree and

PhyloP, SPH (Siepel, Pollard and Haussler) test from PhyloP program. miRmap score

represents the predicted miRNA target repression strength (http://mirmap.ezlab.org/)
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(Vejnar Zdobnov, 2012; Vejnar et al., 2013). In addition, PITA (Probability of Interaction

by Target Accessibility), a thermodynamic modeling program provides the energy scores of

microRNA-target interactions. It is used to calculate TG duplex, TG open and TG total. TG

total (TTG) is equal to the difference between TG duplex and TG open. TG open is referred

to the energy required to make the target region open for miRNA binding and TG duplex is

referred to the binding free energy of miRNA and target duplex structure. PITA settings

were 6 minimal seed size, 0 minimum seed conservation, and no flank (http://

genie.weizmann.ac.il/index.html) (Kertesz et al., 2007; Wilmink et al., 2010).

Statistical analysis

The statistical analysis was carried out using one way ANOVA. The significant difference

(P< 0.05) between groups was determined by the student’s t-test. All data were shown as

mean ± standard deviation (SD) with n=3.

Results and Discussion

Identification of pre-mir-15b expression during osteoblast differentiation

Several miRNAs have been reported to be a key regulator of osteoblast differentiation at

various levels (Vimalraj and Selvamurugan, 2012; Moorthi et al., 2013). Even though a

number of miRNAs have been identified, only few miRNAs have been validated for their

functional role during osteoblast differentiation. In this study our aim was to determine the

expression and the functional role of miR-15b during MSCs differentiation into osteoblasts.

To determine the distribution of pre-mir-15b expression in vivo, total RNA was isolated

from different types of tissues of adult rats and was subjected to real time RT-PCR analysis.

The tissues included were of bone, muscle, adipose, skin, heart, liver, kidney and lung. The

result showed that there is differential expression of pre-mir-15b among the different rat

organs (Fig. 1A). pre-mir-15b expression was significantly down regulated in muscle,

kidney, skin and was up regulated in heart, lung. There was no change in pre-mir-15b

expression in adipose and liver compared to bone tissue (Fig. 1A). In general, pre-mir-15b

was found to be expressed in all tissues analyzed. Differential expression of miR-15b in

different types of normal human tissues has also been reported by others (Guo et al., 2009;

Nishi et al., 2010; Gao et al., 2011). We next examined whether the expression of pre-

mir-15b can be regulated during MSCs differentiation into osteoblasts. MSCs can

differentiate into osteoblastic cells when appropriate internal and external conditions are

provided. Fig. 1B represents the expression of pre-mir-15b during differentiation of

osteoblasts that included undifferentiated human MSCs (hMSCs), 7 days osteo differentiated

hMSCs, 14 days osteo differentiated hMSCs, differentiated human osteoblasts (MG63) and

rat osteoprogenitor cells. The result (Fig. 1B) showed that the expression of pre-mir-15b is

found to be 2–3 fold increased during osteo differentiation of hMSCs compared to

undifferentiated hMSCs. In this study we determined the expression level of precursor

mir-15b not the mature miR-15b. It has been reported that in primary effusion lymphoma,

the levels of mature form correlates with the levels of precursor form in more than 60% of

miRNAs documented (O'Hara et al., 2008). However, oHhthe levels of mature miRNAs

could change from the levels of precursor miRNAs due to the process of transportation and

maturation based on the cellular context.
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The potential role of miR-15b has been documented in miRecords which showed that 5

genes from human and 2 genes from rat have been targeted by miR-15b [in human, Bcl-2

(B-cell CLL/lymphoma 2), RECK (reversion-inducing-cysteine-rich protein with kazal

motifs), CCNE1 (cyclin E1), MKK4 (MAPK (mitogen-activated protein kinase) kinase 4)

and BMI1 (B lymphoma Mo-MLV insertion region 1 homolog) and in rat, Bcl-2 (B-cell

CLL/lymphoma 2) and Arl2 (ADP ribosylation factor-like 2)]. Furthermore, the role of

miR-15b has been studied in various cancerous cells (Satzger et al., 2010; Liu et al., 2012)

and myocardial infarction (Nishi et al., 2010; Liu et al., 2012). Since pre-mir-15b expression

is relatively high in differentiated osteoblasts from our study (Fig. 1B), this suggested that

miR-15b can act as a positive regulator for osteoblast differentiation.

Functional role of miR-15b in osteoblast differentiation

We next analyzed the functional role of miR-15b during osteoblast differentiation by

performing a series of experiments. Rat osteoprogenitor cells were transiently transfected

with either negative control or miR-15b inhibitor. The transfected osteoprogenitor cells were

cultured upto 7 days in normal and osteogenic medium followed by RNA isolation and real

time RT-PCR analysis for osteoblast differentiation marker genes such as alkaline

phosphatase (ALP), type I collagen. When cells transfected with negative control or

miR-15b inhibitor in the presence of normal medium, there was no change in mRNA

expression of ALP and type I collagen (Fig. 2A). When cells were transiently transfected

with miR-15b inhibitor in the presence of osteogenic medium, mRNA expression of ALP

and type I collagen was decreased (Fig. 2A). ALP and type 1 collagen are early osteoblast

differentiation markers genes (Gutierrez et al., 2002; Jensen et al., 2009; Monroe et al.,

2012; Wang et al., 2013). To further confirm these findings, C3H10T1/2 cells were

transfected with negative control or miR-15b inhibitor in the presence of osteogenic

medium. After 7 days, cells were subjected to quantification of ALP activity and

mineralized matrix formation by alizarin red staining. We found that transfection of

miR-15b inhibitor into C3H10T1/2 cells significantly reduced ALP activity (Fig. 2B) as well

as formation of mineralized bone matrix (Figs. 2C and 2D). To determine the effects of

miR-15b on differentiated osteoblasts, MG63 cells were transiently transfected with either

negative control or miR-15b inhibitor in the presence of osteogenic medium. After 7 days,

cells were stained with alizarin red and quantification of alizarin red was carried out.

Inhibition of miR-15b significantly decreased matrix mineralization compared to the cells

transfected with negative control miRNA (Figs. 2E and 2F). Thus, these results from MSCs,

osteoprogenitor and differentiated osteoblasts (Fig. 2) suggested that miR-15b has a positive

role during osteoblast differentiation.

miR-15b regulates Runx2 protein expression

Most of the osteoblast differentiation marker genes require Runx2, a bone specific

transcription factor (Ducy et al., 1997; Komori et al., 1997; Banerjee et al., 1997). It is also

evident that miR-15b regulates expression of ALP and type I collagen followed by matrix

mineralization (Fig. 2). Hence, we examined whether expression of Runx2 gene can be

regulated by miR-15b. In order to determine whether miR-15b targets Runx2, hMSCs were

transiently transfected with either negative control or miR-15b inhibitor, followed by RNA

isolation and real time RT-PCR analysis. The result showed that there is no change in
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expression of Runx2 mRNA in response to miR-15b inhibitor under either normal medium

or osteogenic medium (Fig. 3A). It is expected because Runx2 was not identified as a direct

target gene of miR-15b by bioinformatics tools. Since expression of osteoblast

differentiation marker genes and osteoblast mineralization were regulated by miR-15b (Fig.

2), and Runx2 activity can be altered by the post translational mechanisms such as

acetylation, ubiquitination, phosphorylation, protein-protein interactions (Jeon et al., 2006;

Wang et al., 2013; Boumah et al., 2009; McGee-Lawrence et al., 2013; Lengner et al.,

2005), we determined Runx2 protein expression. Human MSCs were transiently transfected

with either negative control or miR-15b inhibitor and were allowed to differentiate them.

Whole cell lysates were prepared and subjected to Western blot analysis. The result

indicates that the expression of Runx2 protein was decreased when cells were transiently

transfected with miR-15 inhibitor (Figs. 3A and 3B).

In silico investigation and validation of miR-15b’s target genes

Since a single miRNA can target up to hundreds of mRNAs, finding its target genes is an

important step to understand its regulatory network. In this regard, the in silico analyses

were used initially to narrow down to find the functional importance of miR-15b targets

towards osteogenic commitments. The putative targets of miR-15b can be classified

according to their negative contribution in osteogenic differentiation or positive contribution

to other lineages using online softwares. Among them some key regulators or antagonistic

effectors of osteogenesis such as Smad7, Smurf1, Crim1, HDAC4, HOXC8, TGIF2 were

included and these genes were well documented their antagonistic role in osteogenesis (Jeon

et al., 2006; Chen et al., 2012; He at al., 2012, Moorthi et al., 2013). The 3’UTR regions of

Crim1, HDAC4, Smad7 and Smurf1 hold at least 6-nt perfect complementarities to the

miR-15b seed region. According to TargetScan and miRanda target prediction, the

interspecies conservation of putative miR-15b target sites within the Smurf1, Smad7, Crim1

and HDAC4 3′-UTR are shown in Figs. 4A–D. The shadow or colored pointed sequences

indicate the perfectly conserved sequences between human and other species. To identify

potential interactions between miR-15b and its targets based on thermodynamic stability, we

used miRmap and PITA algorithm. These algorithms provide the information on the energy

obtained when miRNA-mRNA duplex formed, and higher negative TG duplex values may

represent potential repression. Among the target genes, Smurf1 3’UTR has more negative

miRmap score indicating its more vulnerability to miR-15b (Table 2). However, several

studies demonstrated negative regulation of osteoblast differentiation by Crim1, Smad7,

HDAC4 and Smurf1 (Jeon et al., 2006; Chen et al., 2012; Monroe et al., 2012; He at al.,

2012). To validate these putative target genes of miR-15b, rat osteoprogenitor cells were

transiently transfected with either negative control or miR-15b inhibitor and were allowed to

differentiate. To determine the expression level of these target genes, total RNA was

isolated, followed by real time RT-PCR analysis. There was no change in mRNA expression

of Crim1 and Smad7; whereas there was a significant increase of Smurf1 mRNA by

miR-15b inhibitor (Fig. 4E). However, the possibility of miR-15b induced repression and

reduced protein synthesis of Crim1 and SMAD7 proteins during osteoblast differentiation

cannot be ruled out.
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miR-15b targets Smurf1 protein

Smurf1 was identified as a target gene for miR-15b (Fig. 4A) and it mediates degradation of

Runx2 by ubiquitination pathway and its overexpression decreases BMP signaling (Zhao et

al., 2004; Jensen et al., 2009). BMP2 acetylates Runx2 by p300 to protect from Smurf1

mediated degradation of Runx2. HDAC4 and 5 are the proteins involved in deacetylation of

Runx2 followed by smurf1 mediated degradation (Westendorf et al., 2002; Jeon et al., 2006;

Boumah et al., 2009). It has been shown that Smad6 binds with Runx2 and subjects to

Smurf1 mediated degradation (Shen et al., 2006). Furthermore, Smurf1 has been reported to

target JunB (Zhao et al., 2010), BMP/TGF-β type 1 receptor, Smad1 and Smad5, (Murakami

et al., 2003; Zhu et al., 1999; Kavsak et al., 2000; Zhao et al., 2004) and mediates

ubiquitination pathway followed by degradation. It is well documented that Runx2 interacts

with several cofactors (Westendorf et al., 2002; Selvamurugan et al., 2006; Niger et al.,

2013). Its activity can be altered by its interacting proteins and/or the posttranslational

modifications (Yang et al., 2011; Wang et al., 2013). Since we already identified that

miR-15b targets Smurf1 (Fig. 4E) and it is evident that Smurf1 degrades Runx2 protein by

interacting with it, followed by ubiquitination and proteasomal pathway (Satzger et al.,

2010; Liu et al., 2012), we next determined expression of Smurf1 protein. Human MSCs

were transiently transfected with either negative control or miR-15b inhibitor and were

allowed to differentiate. Whole cell lysates were prepared and subjected to Western blot

analysis. The result indicates that there was increased expression of Smurf1 proteins when

cells were transiently transfected with miR-15 inhibitor (Figs. 5A and 5B); whereas there

was no change in expression of HDAC4 protein (Figs. 5C and 5D), which is also a target of

miR-15b and a negative regulator of Runx2 transcriptional activity (Jeon et al., 2006;

Boumah et al., 2009; Shimizu et al., 2010; McGee-Lawrence et al., 2011). In addition to

human MSCs, mouse MSCs (C3H10T1/2) were also transiently transfected with either

control miRNA or miR-15b inhibitor/miR-15b mimic. After 7 days, whole cell lysates were

prepared and subjected to Western blot analysis for Smurf1 and Runx2 proteins. The results

showed that the expression of Runx2 protein was significantly increased by miR-15b mimic

whereas it was significantly decreased by miR-15b inhibitor. However, the expression of

Smurf1 protein was significantly decreased by miR-15b mimic but it was significantly

increased by miR-15b inhibitor (Figs. 6A and 6B). We also determined the mRNA

expression levels of Runx2 and Smurf1 after miR-15b inhibitor treatment in these cells. The

result indicated that there was no significant change in Runx2 mRNA expression whereas

Smurf1 mRNA level was significantly increased (Fig. 6C). Collectively, our results suggest

that miR-15b can promote osteoblast differentiation by targeting of Smurf1 and inhibition of

degradation of Runx2.

Luciferase analysis

To determine whether miR-15b directly targets Smurf1 3’UTR, a dual luciferase reporter

assay system was used. Renilla luciferase gene present in pmirGLO construct is

constitutively active and its activity can be used for normalization of firefly luciferase

activity. The pmirGLO construct or the pmirGLO construct containing either the wild or

mutant Smurf1 3’UTR downstream to the firefly luciferase reporter gene were transiently

co-transfected along with miR-15b mimic, miR-15b inhibitor or negative control miRNA
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into C3H10T1/2 cells. The pmirGLO construct had no change in luciferase activity in

response to miR-15b mimic, inhibitor or negative control treatments (Fig. 7). Similarly, the

pmirGLO construct containing the mutant Smurf1 3’UTR had no change in luciferase

activity in response to miR-15b mimic, inhibitor or negative control treatments; whereas the

pmirGLO construct containing the wild Smurf1 3’UTR had significantly reduced luciferase

activity by miR-15b mimic treatment compared to negative control (Fig. 7). Thus, this result

suggested that miR-15b can directly target the 3’UTR of the Smurf1 gene.

Overall, our study suggests that miR-15b expression might play an essential role during

osteoblast differentiation by targeting the gene (Smurf1) which is involved in antagonistic

functions of osteoblast function. Additionally, other putative targets of miR-15b (HDAC4,

Smad7 and Crim1) were analyzed and there was no change in their expression. It appears

that miR-15b promotes osteoblast differentiation by directly targeting Smurf1 and indirectly

protecting Runx2 protein. In conclusion, this study identified that miR-15b can act as a

positive regulator for osteoblast differentiation.
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Figure 1.
Expression of stem loop sequences of miR-15b. (A) Real time RT-PCR analysis of pre-

mir-15b expression in multiple tissues. * represents significant down regulation and **

represents significant up regulation compared to bone tissue. (B) Real time RT-PCR analysis

of precursor pre-mir-15b expression in undifferentiated hMSCs, 7-days osteo-differentiated

hMSCs, 14-days osteo-differentiated hMSCs, human differentiated osteoblast cells, MG63

and rat osteoprogenitor cells. * represents significant up regulation compared to

undifferentiated hMSCs.
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Figure 2.
miR-15b inhibitor down regulates osteoblast differentiation. (A) Rat osteoprogenitor cells

were transiently transfected with 50 nM of negative control miRNA or miR-15b inhibitor in

normal medium or osteogenic medium for 7 days. Total RNA was isolated and real time

RT-PCR was carried out using the primers for ALP and type 1 collagen genes. Relative

expression of mRNAs was calculated after normalization with GAPDH. (B) Mouse MSCs

(C3H10T1/2) were transiently transfected with 50 nM of negative control miRNA or

miR-15b inhibitor in osteogenic medium for 7 days and the cells were subjected to Alkaline

phosphatase activity measurement. (C) Alizarin Red staining was performed in 50 nM of

miR-15b inhibitor or negative control miRNA transfected C3H10T1/2, mouse MSC cells at

days 7 in osteogenic medium. (D) The graph showed the quantitative analysis of the

mineralized matrix. (E) Human osteoblastic cells (MG63) were transiently transfected with

50 nM of negative control miRNA or miR-15b inhibitor in osteogenic medium for 7 days.

Cells were stained with Alizarin Red and were visualized for mineralized matrix under

microscope. (F) Quantitative analysis of the mineralized matrix as shown above. * indicates

significant down regulation compared to negative control.
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Figure 3.
Regulation of Runx2 by miR-15b inhibitor during hMSCs differentiation towards

osteoblasts. hMSCs were transiently transfected with 50 nM of negative control miRNA or

miR-15b inhibitor in the presence of normal medium or osteogenic medium. (A) At day 10,

total RNA was isolated and real time RT-PCR was carried out using the primers for Runx2

and GAPDH genes. Relative expression of Runx2 mRNA was calculated after normalization

with GAPDH. (B) At day 10, whole cell lysates were prepared and subjected to Western blot

analysis using the antibody for Runx2. α-tubulin was used as internal control. (C) The
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densitometry scanning of the above Western blot after normalization with α-tubulin. The

experiment was carried out three times and a representative blot is given.
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Figure 4.
miR-15b inhibitor up regulates expression of Smurf1 mRNA. The putative target region

analysis was performed for Smurf1, Smad7 and Crim1 mRNAs 3’ UTR by miR-15b seed

sequence. Interspecies conservation or similarity of putative miR-15b binding region was

shown in 3’UTR of Smurf1 (A), Smad7 (B), Crim1 (C) and HDAC4 (D). The shadow or

colored pointed sequence indicate the perfectly conserved sequences between human and

other species (E) Rat osteoprogenitor cells were transiently transfected with 50 nM of

negative control miRNA or miR-15b inhibitor for 7 days in osteogenic medium. Total RNA

was isolated and real time RT-PCR was carried out using the primers for Smurf1, Smad7

and Crim1 genes. Relative expression of mRNAs was calculated after normalization with

GAPDH. * indicates significant up regulation of mRNA compared to negative control.
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Figure 5.
Translational regulation of miR-15b’s putative target genes, Smurf1 and HDAC4. (A)
hMSCs were transiently transfected with 50 nM of negative control miRNA or miR-15b

inhibitor in the presence of osteogenic medium. At day 10, whole cell lysates were prepared

and subjected to Western blot analysis using the antibody for Smurf1. α-tubulin was used as

internal control. (B) The densitometretic scanning of the above Western blot after

normalization with α-tubulin. (C) hMSCs were transiently transfected with 50 nM of

negative control miRNA or miR-15b inhibitor in the presence of osteogenic medium. At day

10, whole cell lysates were prepared and subjected to Western blot analysis using the

antibody for HDAC4. α-tubulin was used as internal control. (D) The densitometry scanning
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of the above Western blot after normalization with α-tubulin. The experiment was carried

out three times and a representative blot is given.
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Figure 6.
miR-15b down regulates Smurf1 and up regulates Runx2 proteins expression. (A)
C3H10T1/2 cells were transiently transfected with 50 nM of negative control miRNA,

miR-15b inhibitor or miR-15b mimic. At day 7, whole cell lysates were prepared and

subjected to Western blot analysis using the antibodies as indicated. CDK2 was used as

internal control. (B) Densitometry scanning of these proteins expression by Western blot

after normalization with CDK2. * represents significant up regulation and ** represents

significant down regulation compared to negative control miRNA. (C) At day 7, total RNA

isolation and real time RT-PCR analysis were carried out for determination of Runx2 and

Smurf1 mRNA expression. U6 served as internal control. The relative expression of Runx2

and Smurf1 was calculated after normalization with U6 expression.
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Figure 7.
miR-15b directly targets Smurf1 3’UTR. A part of Smurf1 3’UTR region was predicted to

be a target gene of miR-15b (Fig. 4A). The predicted target sequence and its mutated

sequence were cloned into a luciferase construct (pmirGLO). C3H10T1/2 cells were

transiently transfected with the pmirGLO construct or the pmirGLO construct containing

either wild or mutant Smurf1 3’UTR along with miR-15b mimic, inhibitor or negative

control miRNA. After 24 hrs, cell lysates were prepared and subjected to determination of

relative luciferase activity by normalization of firefly luciferase activity with Renilla

luciferase activity. * indicates significantly decreased luciferase activity.
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Table 1

Primer sequences used for real time RT-PCR.

Name of the
genes

Sequence (5'->3')

pre-mir-15b
Forward GGCCTTAAAGTACTGTAGCAGC

Reverse CCTTAAATTTCTAGAGCAGC

U6
Forward CTCGCTTCGGCAGCACA

Reverse AACGCTTCACGAATTTGCGT

Runx2
Forward GACCAGTCTTACCCCTCCTACC

Reverse CTGCCTGGCTCTTCTTACTGAG

ALP
Forward AGGCAGGATTGACCACGG

Reverse TGTAGTTCTGCTCATGGA

Type1 collagen
Forward TAACCCCCTCCCCAGCCACAAA

Reverse TTCCTCTTGGCCGTGCGTCA

Smurf1
Forward CGGTGGAGACCTTCGATGAG

Reverse CAGAGCCTTGAAGCCTTGGA

Smad7
Forward ACCCGATGGATTTTCTCAAAC

Reverse GCCAGATAATTCGTTCCCCC

Crim1
Forward GCCAACAAGATGCGAGTGTC

Reverse AGACTATGCGGGGAGTGGAT

Rat GAPDH
Forward GCAGAGGTTGAATGTGAGCA

Reverse GGAAGAAGTTCCCATCGTCA

Human GAPDH
Forward TTGATGTCATCATACTTGGCAGGT

Reverse CAG TCAAGGCTGAGAATGGGA
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