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Abstract

Identifying molecular connections between developmental processes and disease can lead to new hypotheses about health
risks at all stages of life. Here we introduce a new approach to identifying significant connections between gene sets and
disease genes, and apply it to several gene sets related to human development. To overcome the limits of incomplete and
imperfect information linking genes to disease, we pool genes within disease subtrees in the MeSH taxonomy, and we
demonstrate that such pooling improves the power and accuracy of our approach. Significance is assessed through
permutation. We created a web-based visualization tool to facilitate multi-scale exploration of this large collection of
significant connections (http://gda.cs.tufts.edu/development). High-level analysis of the results reveals expected
connections between tissue-specific developmental processes and diseases linked to those tissues, and widespread
connections to developmental disorders and cancers. Yet interesting new hypotheses may be derived from examining the
unexpected connections. We highlight and discuss the implications of three such connections, linking dementia with bone
development, polycystic ovary syndrome with cardiovascular development, and retinopathy of prematurity with lung
development. Our results provide additional evidence that TGFB plays a key role in the early pathogenesis of polycystic
ovary syndrome. Our evidence also suggests that the VEGF pathway and downstream NFKB signaling may explain the
complex relationship between bronchopulmonary dysplasia and retinopathy of prematurity, and may form a bridge
between two currently-competing hypotheses about the molecular origins of bronchopulmonary dysplasia. Further data
exploration and similar queries about other gene sets may generate a variety of new information about the molecular
relationships between additional diseases.
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Introduction

The study of the health implications of developmental processes

has now entered the genomic era. The recent sequencing of an

entire fetal genome [1] has demonstrated the possibility of

applying molecular methods to design novel prenatal diagnostics.

The development of therapeutic approaches for personalized fetal

treatment of developmental disorders is now on the horizon [2].

Genomic approaches are providing new insights into causes of and

possible treatments for such widespread pediatric disorders as

asthma [3] and autism [4]. A growing awareness that development

may influence lifelong health risk [5,6] has led to closer

examination of the molecular links between developmental

processes and disease at multiple life stages.

Despite considerable progress, our understanding of the

molecular etiology of most complex diseases is still limited. Yet

by combining weak signals from multiple genes, we may identify

patterns that provide clinically significant insights into disease

processes. We hypothesized that by examining the relationships

between sets of genes related to specific developmental processes

and reported disease genes, we could develop novel insights into

developmental impacts on health. To test this hypothesis, we

created a novel approach and tool to assess the overrepresentation

of various developmental gene sets among groups of genes linked

to specific diseases. Our approach derives its strength from

combining signals of sets of genes and from pooling disease-gene

links across disease subtypes using a hierarchical taxonomy of

disease. We demonstrate that this pooling approach improves

accuracy over a comparable enrichment-detection method with-

out pooling. Our approach has the advantage of potentially

generalizing incomplete disease gene data and overcoming

variation in how genes are associated with specific disease terms,

improving our ability to detect novel and interesting connections.

We note that a similar principle - that of pooling many weak

signals to provide a stronger one - has led to the creation of many

highly effective ‘‘gene-set analysis’’ methods for expression

data [7,8] and genome wide association data [9]. However,

these approaches are inappropriate for assessing the overlap of
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disease-linked genes with genes involved in developmental

pathways, because the members of our developmental gene sets

cannot meaningfully be ranked by the strength of their participa-

tion in the set. Standard statistical enrichment methods such as the

hypergeometric distribution might be more suitable, but their

probabilities depend on inappropriate assumptions of gene

independence [10]. Our approach avoids these problems.

The choice of a disease taxonomy for this analysis is vitally

important, yet most existing hierarchies lack the molecular focus

inherent in the proposed analysis [11]. We chose the MeSH

hierarchy of diseases (category C) because it is widely used, it is

relatively compatible with our disease-gene databases, and it

represents diseases multiple times within different parts of the tree,

thus potentially including somewhat molecularly homogeneous

groupings [12]. For example, type 1 diabetes mellitus appears

multiple times in the taxonomy under categories corresponding to

nutritional and metabolic diseases, endocrine disorders, and

immune system diseases. The MeSH disease taxonomy can be

represented as a ‘‘forest’’ of disease terms (a collection of ‘‘trees,’’

in the computational sense [13]), with 26 top-level categories

(Table S1) represented by ‘‘disease trees,’’ and more specific

disease terms located at increased tree depths.

We derive our disease-gene links from two sources: OMIM, a

curated collection of genes linked to human disease [14], and the

Genopedia data from the database of Human Genetic Epidemi-

ology (HuGE), whose disease-gene information is obtained

primarily by computational literature curation, but includes

manual review of both abstracts and index terms [15]. We then

pool genes linked to descendants of a disease node in the MeSH

trees, and we assess significance through permutation. Because of

the current incomplete knowledge of gene-disease connections,

enrichment of gene sets among genes linked to a specific disease

node in the MeSH forest may not be detectable. By pooling gene

links from related diseases, we are able to rescue some of these lost

connections.

For this study, we focus on identifying connections to genes

involved in developmental processes. The gene sets chosen were

based on Biological Process terms from the Gene Ontology (GO),

a hierarchically-organized collection of controlled-vocabulary

functional annotation of genes and gene products [16]. However,

given our interest specifically in developmental gene sets, we chose

to use the gene sets from DFLAT, a prior collaboration of ours

that aimed to expand human developmental annotation in the

Gene Ontology framework [17]. Gene sets derived from the Gene

Ontology that include the DFLAT annotation have been shown to

improve the interpretability of gene expression data related to

human development [18], so they are a reasonable choice for the

analysis described here. We refer to the developmental gene sets

whose links to disease are being investigated as the query gene sets.

Additional related work assesses significant enrichment of GO

functional annotation terms in query gene sets using the directed-

acyclic graph structure of the Gene Ontology. Such approaches

adjust enrichment calculations by accounting for relationships

between the genes at a given annotation node and those at the

parent or child [19,20]. But these methods are concerned with a

different problem - that of spurious enrichment at higher levels of

the GO hierarchy. Instead, the hazard in our case is false negatives

that occur because of the incomplete knowledge of disease genes

and the variable levels of precision used to map known disease

genes to the MeSH forest. We therefore focus here on query sets

representing top-level developmental processes (e.g., ‘‘heart

development’’ rather than ‘‘atrial cardiac muscle cell develop-

ment’’), because highly specific terms typically include very few

genes, rendering gene-set analyses powerless. Future efforts will

include drilling down into specific developmental pathways. Yet

even at this high level, our analysis identifies both expected links

and several unexpected ones, the latter leading to individual novel

hypotheses about surprising molecular connections that may affect

future disease research.

Results/Discussion

A new approach linking gene sets and disease classes
To identify significant connections between gene sets and

disease, we used a novel method of assessing overlaps between

disease genes and the designated query gene sets. We first created

a computational representation of the MeSH disease taxonomy in

which each node represents a MeSH disease concept. We

extracted and combined gene-disease links from the HuGE

Genopedia database and from OMIM, and mapped the resulting

119,400 gene-disease links to the MeSH forest (see Methods).

Taking advantage of the hierarchical representation of disease

concepts in MeSH, we then created a version of the forest in which

each disease node D contains any genes in the subtree rooted at D.

For example, instead of identifying four lung development genes

linked to neural tube defects, two to meningomyelocele, and three

to spinal dysraphism, pooling them together identifies seven

distinct lung development genes implicated in neural tube defects

(Figure 1).

For this study we considered nine DFLAT gene sets, broadly

representing development in brain, bone, heart, kidney, liver,

lung, nerve, blood vessels, and skin. We identified the overlaps

between each of these gene sets and the disease genes at each node

of our MeSH tree by counting the number of genes in both. (Table

S2 lists the query gene sets and their sizes.) Assessing the

significance of these overlaps must account for gene set sizes and

multiple testing. However, such adjustment is non-trivial because

of the complex dependencies between the tests. (For example, any

method that assumes the probability of enrichment at node D is

independent of the probability of enrichment at D’s parent or

child is going to be wildly inaccurate.) We therefore use a

permutation test (described in the Methods section) to assess the

Author Summary

Understanding the roles that genes involved in normal
human development can play in disease processes is an
important part of predicting disease risk and designing
novel treatment approaches. In this study, we have
identified classes of disease that are associated with a
surprisingly large number of genes involved in any of
several tissue-specific developmental processes. To do so,
we developed a novel approach whose strength comes
from pooling genetic information across related diseases,
overcoming problems ordinarily posed by limited infor-
mation about individual gene-disease relationships. We
demonstrate the method’s efficacy both by examining its
ability to highlight connections between gene sets and
disease classes that are known to be related, and by
demonstrating that the approach recovers expected broad
classes of connections, such as those between heart
development and cardiovascular disorders. However, by
examining unexpected connections in this data set, we are
able to develop new understanding of some surprising
disease relationships, such as the one between dementia
and osteoporosis. Such connections may lead to a better
overall understanding of the role of development in
lifelong health, as well as to the design of new methods to
treat a range of diseases.

Connecting Developmental Processes and Disease
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significance of each observed overlap, given the number of genes

in the query set and the disease-gene mappings in the MeSH

forest. This test produces a p-value at each node estimating the

probability of seeing an overlap of the observed size at that node

by chance.

Pooling genes from disease subtrees improves accuracy
Our hypothesis was that mapping disease genes to broader

disease terms in the MeSH tree as described above would improve

our power to detect actual enrichment by mitigating the effects of

varying precision in gene annotation. However, it is also possible

that pooling might lead to less-accurate results by incorrectly

mapping genes to unrelated disease classes. Assessing which

happens more frequently is challenging because the right answers

are rarely known. Thus, to compare our pooling approach to a

more traditional enrichment analysis, we performed the following

experiment.

The intuition behind this experiment is that disease classes that

are correctly linked to the query gene set should be more likely to be

supported by withheld data from the same query set. So we use

support by withheld data as a rough way to approximate

correctness. Our ‘‘pooling’’ approach computes the significance

of the query gene set’s enrichment at disease node D by pooling

data from the genes in the subtree rooted at D. For fairness, we

chose (as the ‘‘traditional’’ method) to assess significance of linkage

using exactly the same random permutations of gene labels, but

counting only the genes directly linked to disease node D (rather

than those linked to the node or any of its descendants).

We note that the traditional method used here is really just a

randomized approximation to the classical hypergeometric calcu-

lation, but one that maintains the correlation structure of genes

between different diseases. We have separately computed the

hypergeometric probabilities (data not shown), and found them to

give very similar overall results to those derived using permutation.

Accordingly, we present just the permutation-based method,

which is the most direct control for our pooling approach, in the

comparison below.

We withheld 100 randomly chosen links, each connecting a

gene in the query gene set to a specific associated disease. We

recomputed enrichment at each disease node without the withheld

links, using both the pooling method and the traditional one.

Counting then allows us to estimate the probability Ppool that a

randomly-chosen node found to be more significant under the

pooling approach than the traditional approach would be

supported by a randomly withheld link, and Ptrad , the probability

that a node more significant by the traditional method would be.

(See Methods for further details.)

We repeated this experiment with a different set of 100 withheld

links 100 times for each of the 9 developmental gene sets. Table 1

shows the average values of Ppool and Ptrad for each of the

development gene sets, and Figure 2 shows histograms of the

distribution of Ppool - Ptrad for all of the development gene sets. If

Ppool is larger than Ptrad , then the nodes that are more significant

under the pooling approach tend to be more consistently

supported by the withheld data, which is our proxy for correctness.

In other words, when Ppool is larger, it suggests that the pooling

method tends to make correct links appear more significant. For

all nine query sets, we found that the averaged Ppool is greater than

the averaged Ptrad , suggesting that the pooling method is better

able to identify true links between developmental gene sets and

disease.

A visualization tool for connecting gene sets and disease
While it is relatively easy to provide a list, for each

developmental gene set, of MeSH terms whose gene set

enrichment p-value is below some cutoff, interpreting those lists

Figure 1. Pooling genes across related diseases to assess enrichment. a) Lung development genes linked directly to three related MeSH
terms. The genes associated with each term are shown in a different color. b) By pooling the lung development genes from the subtree rooted at the
Neural tube defects node, we obtain enough genes to identify significant enrichment at that node. Colors, the same as those in part a, indicate the
disease terms with which the genes were associated before pooling.
doi:10.1371/journal.pcbi.1003578.g001

Connecting Developmental Processes and Disease
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is complex. Because enrichment calculations are based on

subtrees, there is important information available at different

scales, ranging from high-level overviews of the MeSH disease

forest to specific enriched gene-disease links, their significance

scores, and the genes involved. For these results to lead to new

discoveries, we must select from this large collection of significant

links a few that are surprising yet plausible. Doing this requires a

considerable amount of domain knowledge in molecular medicine.

To facilitate data exploration by collaborators with such

expertise, we developed a web-based tool that provides both an

abstract and a detailed view of the associations (available at

http://gda.cs.tufts.edu/development). For a high-level overview,

we visualize each disjoint hierarchy of disease terms (i.e., each tree

of the MeSH disease forest) in a simplified triangular form

(Figure 3). Each significant disease association with the given gene

set is represented as a dot in this triangle, whose color represents

the degree of significance. This abstract view helps highlight the

broad overall patterns of association between development gene

sets and disease classes.

Clicking on a particular disease subtree leads to a detailed tree

view (Figure 4). The tree visualization is implemented using

Cytoscape Web [21]. Color again corresponds to significance, with

darker nodes indicating more significant enrichment of the

developmental gene set in the disease genes associated with the

subtree rooted at that node. For clarity, this view by default only

displays disease nodes significantly associated with the query gene

set (and their ancestors in the chosen tree). However, users can

adjust parameters to view the full tree if desired. Specific genes and

p-values for individual links can be identified by selecting nodes in

this view. The associated gene lists are easily selected and pasted

into functional analysis tools for pathway identification.

In the next two sections, we describe some results from our

initial explorations using this tool. The first section provides a

sanity-check by demonstrating that we find the broad patterns of

connections that one would expect, while the next shows that we

can use this approach and the tool described here to make novel

but plausible discoveries with potential clinical impact.

Developmental gene sets implicated in expected disease
trees

We first take a high-level view of all the results together.

Generally speaking, one would expect to see connections between

tissue-specific developmental gene sets and broad categories of

diseases known to involve those particular tissues. For example, it

seems likely that many cardiovascular disorders would be linked to

a significant number of heart development genes. Figure 5 shows a

heatmap of the relative ‘‘density’’ of disease terms significantly

linked to each of the gene sets (see Methods) for several MeSH

Figure 2. Histogram showing Ppool - Ptrad for each query gene set. The red lines show a difference of zero; values to the left of these lines
represent individual random trials in which the traditional method outperformed the pooling method. This occurred only once, in one trial for the
skin development gene set.
doi:10.1371/journal.pcbi.1003578.g002
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disease trees. We see high enrichment that essentially mirrors our

expectations: bone development genes are over-represented in

musculoskeletal disorders, brain development genes in nervous

system disorders, heart development genes in cardiovascular

disorders, etc.

There are a few interesting exceptions. For example, the

percentage of nervous system disorders significantly enriched for

nerve development genes is relatively high, but not quite high as

the percentage of musculoskeletal diseases enriched for nerve

development genes. This seems to be in part an artifact of the large

number of distinct nervous system disorders listed in MeSH

category C despite having little or no molecular information,

artificially decreasing the normalized density values (the maximum

density score in the C10 category is lower than the maximum

score in any of the other MeSH disease trees shown in the figure).

The root node of MeSH category C4, ‘‘Neoplasms,’’ is

significantly associated (pƒ0:0001) with all of the developmental

gene sets except for nerve and skin (the two smallest of the gene

sets and therefore the least likely to have significant overlaps). This

observation reflects the fact that the regulation of cell growth and

differentiation that comprise normal developmental processes are

typically disrupted and dysregulated during the onset of malig-

nancy [22,23]. A range of signaling proteins that play roles in

directing both developmental processes and tumorigenesis are

likely to blame for these interactions [24–26]. However, the

specific signaling processes implicated in the different tumor types,

as well as those known to be involved in developmental processes

but not yet implicated in specific tumor types, may be of interest.

Similarly, given that the query gene sets are all involved in

developmental processes, it is not surprising that the C16 MeSH

subtree, described as ‘‘Congenital, Hereditary, and Neonatal

Diseases and Abnormalities,’’ shows significant enrichment at the

root node (pƒ0:0001) for all of the tested developmental gene sets.

A wide range of molecular developmental processes are implicated

in this MeSH category. The density measurement shown in

Figure 5 provides a broader way of assessing a similar property.

The density measure for the C16 tree is above average (i.e., the z-

score normalized density metric is positive) for each of the nine

gene sets considered here.

By confirming that we find expected and reasonable high-level

results, the observations in this section provide evidence of the

efficacy of our approach.

Unexpected connections and implications
Delving more closely into specific results, we identified several

findings that seemed, at first glance, less predictable than those

described above. Here we describe three such links. All of them

identified surprising connections that, since our initial discovery of

them using this approach, have been further supported by new

publications.

Bone development and dementia. One surprising link is a

significant overlap (p~0:0002) between bone development genes

and genes involved in dementia (MeSH term C10.228.140.380).

There are 24 genes involved in this overlap. One might suspect

that the connection would be through BMP signaling proteins,

which play developmental roles in a variety of processes including

bone formation and neurogenesis. Yet although BMP4 is among

the 24 genes, it is the only BMP family member on the list.

Functional analysis (in DAVID [27], v6.7) of the linking gene set

indicates enrichment of a broader set of proteins involved in bone

morphogenesis (COL1A1, COL13A1, HSPG2, PEX7, and RUNX2).

This is to be expected in a subset of genes involved in bone

development. Yet we also saw enrichment of retinoic acid receptor

proteins (RARA, RARB, RARG) and heparin-binding proteins

(BMP4, COMP, COL13A1, FGFR2). These links are of interest

because both heparin derivatives and retinoic acid are candidates

for new Alzheimers therapies [28,29], yet both are also known to

contribute to osteoporosis [30,31].

Evidence supporting this connection has recently been proposed

in empirical observations of an association between lower bone

mineral density and dementia in postmenopausal women [32].

Although molecular pathways supporting this link were not

identified, a role for estrogen deficiency was suggested. Our

observations are consistent with this hypothesis – five of the 24

shared genes (ALPL, BMP4, COL1A1, GH1,and RARA) are among

those with the GO Biological Process annotation ‘‘response to

steroid hormone stimulus,’’ a finding whose adjusted false

discovery rate (as computed in DAVID via the Benjamini-

Hochberg method) is below 0.015.

This analysis also suggests a possible connection between

dementia and bone density through additional signaling pathways.

For example, the growth factor MDK, a still relatively unstudied,

retinoic acid-responsive, heparin-binding protein appears to be

involved in both neuron and bone growth [33]. Elevated levels

have been observed in serum from Alzheimer’s patients [34]. Our

Table 1. Advantage of the pooling approach.

Query Gene Set Ptrad Ppool

Blood Vessel Development Gene Set 0.0698 0.2428

Bone Development Gene Set 0.1930 0.4574

Brain Development Gene Set 0.1252 0.2887

Heart Development Gene Set 0.0990 0.2781

Kidney Development Gene Set 0.1532 0.3507

Liver Development Gene Set 0.2350 0.5632

Lung Development Gene Set 0.1438 0.3460

Nerve Development Gene Set 0.3296 0.6140

Skin Development Gene Set 0.3007 0.5176

Average probabilities (over 100 trials) that random, withheld gene-disease links support nodes more significant by the traditional method (Ptrad ) or the proposed
pooling method (Ppool ) for the 9 query gene sets. Significance in each trial was computed without the withheld links. When Ppool is larger than Ptrad , the nodes that are

more significant under the pooling approach tend to be more consistently supported by the withheld data, our proxy for correctness.
doi:10.1371/journal.pcbi.1003578.t001
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observations suggest that molecular connections through this and

related signaling pathways may be worth exploring in the quest for

novel therapeutic approaches to dementia.

Heart development and polycystic ovary syndrome. The

link between heart development and polycystic ovary syndrome

(PCOS; MESH term C19.391.630.580.765) has a p-value below

0.0001. PCOS is an endocrine disorder that causes hormonal

changes, ovarian ‘‘cysts’’ (that are actually immature follicles), and

decreased female fertility. It has been associated with an increased

risk of diabetes, dyslipidemia, and cardiovascular disease [35].

There are 31 genes responsible for the connection we observed

between PCOS and heart development. Functional analysis of this

gene list shows enrichment of genes annotated with the GO

Molecular Function term ‘‘SMAD binding’’ and those in the

KEGG ‘‘TGF-beta signaling’’ pathway. TGF-beta (TGFB ) is the

canonical member of a family of cytokines that play regulatory

roles in many developmental, homeostatic, and immune processes.

It regulates apoptotic pathways, in part through SMAD binding

[36].

It has long been known that cardiovascular symptoms are

associated with PCOS, but the molecular etiology of this

connection is not clear. One study proposed that oxidative stress

caused by insulin resistance may lead to cardiovascular injury in

nonobese PCOS patients, but did not implicate specific molecular

pathways [37]. Given that TGFB/SMAD complexes are known to

mediate the DNA damage response [38,39], dysregulation of

TGFB is a possible mechanism to be considered.

A role for TGFB in PCOS through mutations in fibrillin 3, a

gene linked to PCOS, has also recently been suggested. Fibrillin 3

expression changes in fetal ovaries of PCOS patients have been

shown to affect TGFB binding, perhaps leading to changes in

follicle formation [40]. The same paper suggested that the PCOS

phenotype was consistent with increased TGFB activity. A more

direct role for TGFB itself in PCOS was recently proposed,

despite largely circumstantial evidence [41]. Our analysis also

seems to support this hypothesis, which potentially explains both

the observed cardiovascular outcomes and the early developmen-

tal origins of ovarian cysts in PCOS.

We looked for further corroborating evidence in mouse models,

but could not identify an existing, well-characterized mutant that is

a good model of TGFB upregulation. However, there are four genes

in the KEGG TGFb pathway that are known to inhibit TGFB
activity: LTBP1, DCN, Lefty, and Activin. For all of these genes there

are mouse mutant strains (in a variety of backgrounds) that disrupt

the homologous proteins’ expression, thus potentially upregulating

TGFB . These mutant strains have differing degrees of phenotypic

characterization, but two of them (DCN and Activin) have knockout

mutations that cause reduced female fertility [42,43], and the

activin knockouts are even characterized as having ovarian cysts.

These findings are unexpected by chance: the hypergeometric

Figure 3. Triangle view of disease enrichment for the bone development gene set. Each triangle represents one of the 26 top-level
categories in the MeSH disease forest. Each dot represents a disease node with significant enrichment of brain development genes. To clearly indicate
the significance of relationships between diseases and the query gene set in these small images, we used two colors: light brown dots indicate
pv0:005, and darker brown dots, pv0:001. Mousing over the dots reveals a pop-up of the disease term associated with that node (Alzheimer Disease
is shown). Clicking on the category name leads to a detailed view of that tree.
doi:10.1371/journal.pcbi.1003578.g003
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probability of seeing at least two of four randomly-selected

proteins whose knockout strains are characterized as having

reduced female fertility in the Mouse Genome Database is below

0.0001, as is the probability of seeing at least one of four with an

ovarian cyst phenotype. We therefore suggest that further work on

the role of the TGFB pathway in the development of PCOS may

prove fruitful.

Lung development and retinopathy of prematurity. The

lung development gene set was linked, with a p-value below

0.0001, to retinopathy of prematurity (MeSH term

C16.614.521.731). Retinopathy of prematurity (ROP) is a

complication that occurs primarily in infants delivered before

approximately 28 weeks’ gestational age, before the infants’ visual

system has been fully formed [44]. While early detection and

treatment often lead to a full recovery, severe cases may lead to

permanent nearsightedness or vision loss [45]. Yet we still know

too little about why some infants develop this complication of

prematurity, while others born at the same age and with similar

clinical characteristics do not. Although most neonates with

retinopathy of prematurity also have immature lungs, a molecular

connection between ROP and lung development is not readily

apparent.

The significant connection we observed was based on five genes

linked to both ROP and lung development: IGF1, NOS3, EPAS1,

KDR, and VEGFA. These genes are all related to blood vessel or

tube development. Excessive but disordered VEGF-mediated

vascularization of the retina is known as the cause of ROP [46],

and indeed ROP has been successfully treated in recent pilot

studies by intravitreal administration of the VEGF inhibitor

bevacizumab [47]. It appears likely that these genes may be

playing a specific role in alveolar development and lung function.

We therefore hypothesized that there might be similar

molecular enrichment of the ROP genes in bronchopulmonary

dysplasia (BPD), another complication of prematurity character-

ized by extended need for supplemental oxygen and, in extreme

cases, long-term respiratory insufficiency. Like ROP, BPD also

affects some, but not all, extremely premature infants. Its exact

cause is unknown. Current hypotheses include one in which

inflammation plays a major role [48], as well as the so-called

vascular hypothesis of BPD in which decreased vascularization

impairs alveolar formation at a critical time [49].

Our observations are consistent with the hypothesis that both

complications may be caused in part by perturbations of the VEGF

pathway (Figure 6), which provides a molecular link between the

vascular and inflammatory BPD hypotheses. In support of this

theory, we observe that 7 of the 26 ROP genes are among the 49

BPD genes listed in our disease-gene collection, an overlap that

would occur by chance with a hypergeometric probability of

&8|10{12. We also wondered whether the two disorders tend to

occur in the same infants more often than expected by chance.

This question was recently answered in the affirmative, in a paper

that did not identify the cause of such clustering but hypothesized

that both ROP and BPD might be consequences of NICU-

acquired infection [50]. More recent work shows an association

Figure 4. Detailed view of part of the Nervous System Disease subtree, showing enrichment of bone development genes. Links to
dementia and Alzheimer’s disease are shown. Significance of each node in the tree is represented by color; a gradient of shades of blue indicates p-
values ranging from 0 (darkest blue) to 1.0 (white). Clicking on a node or selecting a set of nodes allows users to see, in the box in the upper right
corner, the selected disease terms, p-values, and genes shared between those diseases and the developmental gene set.
doi:10.1371/journal.pcbi.1003578.g004
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between low VEGF protein levels in urine and the eventual

development of both ROP and BPD [51], suggesting a non-

invasive early approach to predict both outcomes.

However, the picture appears to be more complex than this. If

both ROP and BPD were associated with uniformly low VEGF

activity, then the current practice of treating ROP with VEGF

inhibitors presumably would not have arisen. BPD, on the other

hand, does appear to be associated with reduced VEGF expression

levels in the lungs of human neonates [52], and administration of

VEGF ameliorates symptoms of respiratory distress in a mouse

model of BPD caused by inhibition of the VEGF pathway [53]. It is

possible that an interaction between VEGF levels and NFKB-

mediated response to neonatal infection accounts for the observed

co-occurrence of these disorders.

There is also a possible connection to adult pulmonary disease

[54]. Drug-induced suppression of VEGF has been used to create

a model of emphysema in adult rats [55]. A prior analysis of gene

expression in BPD implicated chromatin remodeling and histone

acetylation pathways [56]. We therefore investigated possible

molecular links between BPD and chronic obstructive pulmonary

disease (COPD), in which histone acetylation also plays a role

[57,58]. We observed that 26 of the 49 BPD genes in our data set

are among the genes linked to COPD (an event that would occur

under the null hypothesis with hypergeometric probability

v10{15). It is difficult to directly assess co-occurrence of BPD

and COPD in the same individuals, because COPD typically

affects older patients, most of whom were born before the neonatal

diagnosis of BPD was formally defined in 1967 [59]. However, the

observation of early-onset emphysema (a form of COPD) in BPD

survivors [60] supports our theory that this molecular overlap does

not occur by chance. Our evidence leads to the hypothesis that

there might be a shared molecular mechanism predisposing

individuals to an excessive response to alveolar damage, whether

the damage is caused by oxidative stress from neonatal ventilation,

or cigarette smoke in adults.

Conclusions and future work
We have introduced a new approach that identifies significant

overlap of gene sets with groups of related diseases in a

hierarchical disease taxonomy. To evaluate this approach, we

implemented a tool that allows users to explore connections

between disease subtrees in MeSH and several developmental

gene sets. Our observations in this analysis have helped identify

surprising molecular connections between disparate processes.

They have also more generally served to validate the approach of

pooling incomplete information about disease genes across related

disorders to strengthen our ability to identify such connections.

With a growing interest in research into the developmental origins

of adult disease, this resource should prove a valuable source of

information for generating hypotheses about such connections at

the molecular level.

Our work has assumed only that query gene sets are lists of

genes that share some common property [61]. However, for this

study we have chosen query sets whose genes share common

annotations in the Gene Ontology. An interesting future direction

would be to consider the possibility of creating hierarchically-

structured queries representing related query terms in the Gene

Ontology’s directed acyclic graph structure, while still looking for

significant links to disease classes or subtrees in the MeSH forest.

While our implementation relies on a particular set of disease-

gene information and a small group of developmental gene sets,

the power of the approach will be best exploited by the inclusion of

a more comprehensive set of disease-associated genes. One key

limitation of the current approach is due to the nature of the

available data linking genes to diseases. OMIM is an excellent

resource created largely by computer-assisted manual review of

the literature [14]. However, it is limited in scope and is curated by

locus rather than by disease, so that even identifying all genes

related to, for example, type 2 diabetes, can be complicated.

Conversely, the HuGE database, which provides the majority of

the disease-gene data used in this project, derives most of its

information from computational screening of PubMed (along with

some manual review) [62,63]. This raises the possibility that, in

addition to being incomplete, our gene-disease database may

include a substantial number of false positives due not only to false-

positive experimental results but also to inappropriate interpreta-

tion of the text. There is prior work on reducing the rate of false

positives when mining such information from the literature [64],

and the HuGE database creators worked to assess and improve

accuracy [63], but any data set derived from computational

literature analysis will always have this concern. On the other

hand, the success of our initial analysis in identifying expected

connections suggests that false positives are so far not interfering

significantly with the use of this tool for discovery. Further

improving the quality of the data and characterizing the impact of

different types of noise on the results will be an important area to

investigate in the future.

Finally, we note that while there are many disease taxonomies

that are widely used for different purposes, there is growing

dissatisfaction with most of them, in part because of the lack of a

Figure 5. Expected results by tissue. Density of enrichment of
developmental gene sets (labels on the right) in major disease subtrees.
Values are z-score normalized densities, computed as described in
Methods. Darker squares indicate that a larger fraction of the disease
terms in the MeSH category have significant enrichment (pv0:005) of
genes in the indicated gene set. Expected connections appear
approximately along the diagonal in the first 7 columns, and
throughout the rightmost two columns.
doi:10.1371/journal.pcbi.1003578.g005
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molecular representation of disease relationships [11]. Analyses

such as ours may, as the data improve over time, lead to better

understanding of molecular disease relationships across the

board. Such knowledge is an important prerequisite for

developing a truly molecular taxonomy of disease. We

therefore hope that this work may ultimately contribute to

the development of a new, more molecular disease taxonomy

that is well suited to support translational research in the

genomic era.

Methods

Gene-disease data
We assembled a combined set of disease-gene links for 11,831

genes using 116,117 human gene-disease associations from the

Genopedia compendium in the HuGE database of Human

Genetic Epidemiology [62] and 4,813 gene-disease associations

from the OMIM database [65], both downloaded in November,

2013. Genes from the Genopedia database were mapped to their

corresponding disease concepts in the MeSH hierarchy of medical

subject headings (http://www.nlm.nih.gov/mesh/), using the

Unified Medical Language System (UMLS) [66] as a thesaurus

to identify synonymous diseases. To find MeSH terms that best

correspond to the OMIM phenotypes, we used the MEDIC

merged disease vocabulary, an ongoing toxicogenomics effort to

map OMIM disease terms into the MeSH disease hierarchy,

downloaded from the Comparative Toxicogenomics Database

[67] in November, 2013. After removing one copy of the 1,530

duplicate associations found in both data sets, we were left with a

total of 119,400 unique associations.

Estimating significance
We estimate the distribution of the expected number of shared

genes between the query gene set and the genes associated with a

disease under the null hypothesis that there is no meaningful

relationship between the query gene set and the disease class. We

do so by randomly choosing gene sets of the query-set size from

among all the genes in our MeSH tree. This is equivalent to

randomly permuting the labels of the genes in the data to

determine whether or not they are in the query set. Such

permutation leaves the gene-disease connections intact and

maintains the complex correlation structure of genes between

related diseases. Assuming that SN is the observed size of the real

overlap at disease node N (i.e., the number of genes in the query

gene set that are linked to node N ), for each permuted query set

we can then determine whether the number of genes at node N in

that random query set is larger than SN . We ran 10,000

permutations to compute a p-value at each node estimating the

probability of seeing an overlap of the observed size at that node

by chance.

Figure 6. The VEGF pathway and its relevance to both BPD hypotheses. The relationships shown here are derived from the VEGF, PI3K-AKT,
mTOR, and HIF-1 signaling pathways and the ‘‘Pathways in Cancer’’ map in the KEGG Pathway database. Dashed lines represent indirect regulation.
Genes highlighted in orange are the five lung development genes implicated in ROP.
doi:10.1371/journal.pcbi.1003578.g006
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Density of significant enrichment
Density of enrichment was computed between the 9 query gene

sets and the 26 top-level MeSH disease categories, each

represented by its own tree. Because many diseases are represent-

ed multiple times at different places in each tree, we first created a

listing of all the unique MeSH disease terms in each tree. If

different instances of the same disease in the same tree had

different p-values, they were averaged. We then compared the p-

values to the chosen significance cutoff of 0.005. The fraction of

unique terms in the tree with lower significance was computed.

This fraction represents the ‘‘density’’ of significant enrichment of

the query gene set in the chosen MeSH category.

To create the heatmap, we z-score normalized the densities

across each row (query gene set). To identify expected enrichment,

we manually selected the 9 top-level MeSH disease categories

thought to be most relevant to the 9 query gene sets (or to many/

all developmental gene sets, as in the case of C4 - neoplasms and

C16 - congenital, hereditary, and neonatal diseases and disorders).

Comparing the accuracy of the pooling and traditional
approaches

We performed the following experiment to compare the

accuracy of our proposed pooling approach to a comparable

enrichment analysis using only the genes directly associated with a

given disease term. To describe the experiment, we first introduce

new terminology:

Assume that we are discussing only a single, fixed query gene

set. Let G be the set of all gene-disease links in our combined

database: G~fSg,dT j gene g is associated with disease dg. For

any disease node i in the MeSH forest, let ptrad (i,G) be the

permutation-based significance score for enrichment of the query

gene set among genes in G associated with that node using the

traditional method (only those genes directly linked to node i).
Similarly, let ppool(i,G) be the analogous score for node i under the

pooling approach.

Then we will repeatedly randomly withhold some links from G.

Specifically, for the jth random iteration, let Rj be a randomly

chosen set of 100 Sg,dT pairs from G, such that g is in the query

gene set, and let G’j~GRj : We can then partition the disease

nodes into those that are more significant under the pooling

method (in the jth iteration) and those that are more significant

under the traditional method. Formally, let Spool(j)~f nodes

i jppool(i,G’j)vptrad (i,G’j)g, and let Strad (j)~f nodes

i jppool(i,G’j)wptrad (i,G’j)g. (Note that in the many cases where

ppool(i,G’j)~ptrad (i,G’j), the nodes contribute to neither set. Many

of these are either leaves, or nodes with no associated genes under

either method.)

We say a node i is supported by gene-disease link Sg,dT from Rj if

a node corresponding to d appears in the subtree rooted at i. We

can then determine the probability that a node in the set Spool(j) or

Strad (j) is supported by some link in Rj . Let indicator function

I(i,j)~1 if node i is supported by a link in Rj , and 0 otherwise.

Then the probability that a node in Spool(j) is supported by Rj is

defined as

Ppool(j)~

P
i[Spool (j) I(i,j)

jSpool(j)j
,

and Ptrad (j) is defined analogously, using Strad (j) Finally, we

average over all random trials j to compute the averages Ppool and

Ptrad that are reported in Table 1. Figure 7 illustrates the process

of calculating Ppool(j) and Ptrad (j) with an example for the jth

random trial.
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