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Abstract

Systematic, genome-wide loss-of-function experiments can be used to identify host factors that directly or indirectly
facilitate or inhibit the replication of a virus in a host cell. We present an approach that combines an integer linear program
and a diffusion kernel method to infer the pathways through which those host factors modulate viral replication. The inputs
to the method are a set of viral phenotypes observed in single-host-gene mutants and a background network consisting of
a variety of host intracellular interactions. The output is an ensemble of subnetworks that provides a consistent explanation
for the measured phenotypes, predicts which unassayed host factors modulate the virus, and predicts which host factors
are the most direct interfaces with the virus. We infer host-virus interaction subnetworks using data from experiments
screening the yeast genome for genes modulating the replication of two RNA viruses. Because a gold-standard network is
unavailable, we assess the predicted subnetworks using both computational and qualitative analyses. We conduct a cross-
validation experiment in which we predict whether held-aside test genes have an effect on viral replication. Our approach is
able to make high-confidence predictions more accurately than several baselines, and about as well as the best baseline,
which does not infer mechanistic pathways. We also examine two kinds of predictions made by our method: which host
factors are nearest to a direct interaction with a viral component, and which unassayed host genes are likely to be involved
in viral replication. Multiple predictions are supported by recent independent experimental data, or are components or
functional partners of confirmed relevant complexes or pathways. Integer program code, background network data, and
inferred host-virus subnetworks are available at http://www.biostat.wisc.edu/,craven/chasman_host_virus/.
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Introduction

A virus requires host cellular machinery to complete its life

cycle. Understanding the interactions that occur between viruses

and their hosts can contribute to the development of preventative

and therapeutic methods to control their effects on human health.

To this end, an increasing number of genome-wide loss-of-

function studies have recently been performed to identify host

factors that modulate the virus life cycle in a host cell. These

studies have used either yeast mutant libraries [1–5] or RNA

interference [6–10] to systematically suppress the production of

host gene products. For each host gene that is manipulated, the

effect on the virus is assessed by measuring the replicative yield of

viral genetic material or viral proteins relative to a control.

Typically, these genome-wide screens identify a large number of

host genes, which we refer to as hits, whose loss has a significant

effect on the virus. However, the screens themselves do not reveal

how the gene products of these hits are organized into the

pathways that modulate the virus, nor do they indicate which host

gene products directly interface with a viral component. We

consider the computational task of inferring directed subnetworks

that hypothesize the pathways through which each hit modulates

viral replication. The value of these inferred subnetworks is that

they can be used to (i) predict which unassayed genes may be

involved in viral replication, (ii) interpret the role of each hit in

modulating the virus, and (iii) guide further experimentation that is

aimed at uncovering and validating the mechanisms of host-virus

interaction.

We present an approach that uses an integer linear program (IP,

for brevity) to infer the pathways that are involved in the lifecycle

of a virus in a host cell. The inputs to our approach are the list of

phenotypes measured in a genome-wide loss-of-function assay,

including a list of those host genes that are hits, and a partially-

directed background network characterizing known physical interac-

tions among host cellular components. Using these data, our

approach predicts the identity of a small number of host-virus

PLOS Computational Biology | www.ploscompbiol.org 1 May 2014 | Volume 10 | Issue 5 | e1003626

http://www.biostat.wisc.edu/&sim;craven/chasman_host_virus/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003626&domain=pdf


interfaces (host factors that are closest to a direct interaction with the

virus), and infers a subnetwork of directed interactions that

provides at least one path from every hit to a predicted interface.

By providing these paths, we say that the subnetwork plausibly

explains or accounts for the viral phenotype observed when each hit is

suppressed. Because the background network and experimental

observations are incomplete, many different subnetworks may be

inferred for the same set of hits. To account for this, our method

infers an ensemble of subnetworks, each of which provides paths

for all of the hits. We use the ensemble to assess our confidence in

various aspects of the predicted subnetworks.

Figure 1 provides an illustration of the input and output of our

computational approach. Figure 1(A) shows what is provided as

input to the approach using a graph representation. Nodes in the

graph represent host genes, proteins, and protein complexes. Both

the gene and its encoded protein are represented using the same

node. The connecting edges in the graph provide a simplified

representation of known interactions among the nodes.

Figure 1(B) presents a graphical guide to the network elements

used by our method. The color of a gene node specifies the

observed phenotype when expression of the gene’s product is

suppressed. Using the loss-of-function assay data, we derive

discrete viral phenotype labels that describe the sign and

magnitude of the measured effect of each host gene on viral

replication: down and weakly down for genes whose loss of

function reduces viral replication, up and weakly up for genes

whose loss increases viral replication, and no-effect for genes with

no consistent, measurable effect on viral replication. The figure

also shows the types of interactions in the background network and

how they are distilled into a simplified representation. Each

interaction is represented by an edge indicating the direction and

sign (activation or inhibition) of the interaction, when these

properties are known.

Figure 1(C) shows the result of the inference process, which is a

directed subnetwork that accounts for the loss-of-function pheno-

type of each hit (B,E,J,K) by providing potential mechanistic paths

leading to a direct interaction with the virus. In the subnetwork

shown, host gene products J and L are predicted to be interfaces

between the host and virus, as indicated by the directed edges to

the virus node. Some of the edges and nodes, shown in gray, are

deemed to be not relevant to viral replication, and hence not useful

for explaining the measured hits; these include all genes with no-
effect (gray) viral phenotypes. The dark edges, which are

considered part of the inferred subnetwork, are assigned directions

and signs in cases where these properties are not specified by the

background network. The directions for the relevant edges are set

so that for each hit, there is at least one path that proceeds forward

from it to the virus. The signs for the relevant edges are set so that

each one gives a biologically plausible interpretation of how the

interaction is relevant to viral replication. For example, protein E

has an up phenotype and modulates the virus by inhibiting the

expression or function of protein H, which activates the function

or expression of the interface protein L. Additionally, the

subnetwork predicts that two genes whose phenotypes are

unknown (G, H), and two genes whose phenotypes are weak (D,

L), are actually key host factors involved in viral replication.

The integer linear program used in our approach consists of an

objective function and a set of constraints characterizing

subnetworks that are deemed biologically interpretable. Due to

functional redundancy in the host genome and the inability to

assay some host-gene suppressions, many true hits are not

identified by individual loss-of-function experiments. Therefore,

to predict additional hits and to identify multiple paths between

hits and interfaces, our objective function maximizes the inclusion

of unassayed genes and genes with weak viral phenotypes, subject

to other constraints on the subnetwork. These genes are prioritized

using a diffusion kernel (DK) scoring method, which assigns scores

to genes based on their network proximity and connectivity to the

hits. As a counterpoint to the objective function, which is generous

in including genes in the subnetwork, the IP’s constraints provide

restrictions on which paths may be inferred to be part of the

subnetwork. All of the inferred paths must be directed, meaning that

each interaction in a path is directed forward from the hit to the

virus, and directions are inferred for undirected interactions. The

paths must also be consistent, meaning that the sign (activating or

inhibitory) of each interaction between host factors agrees with the

viral phenotypes of the interactors. For a pair of host factors that

both inhibit or both facilitate viral replication when suppressed, an

activating interaction is consistent. For a pair of host factors that

affect the virus in opposite ways, an inhibitory interaction is

consistent. Using these rules, our method infers the signs of

unsigned interactions and the viral phenotypes for unassayed host

factors.

We assess the inferred subnetworks using both computational

experiments and an analysis of the relevant literature. First, we

conduct a cross-validation experiment to evaluate the accuracy of

our inferred subnetworks in predicting host factors involved in

viral replication. We compare the accuracy of our approach to

several baselines including a diffusion kernel method which is used

as an input to our approach. Our results demonstrate that (i) the

high-confidence predictions of our IP approach achieve a high

level of accuracy, (ii) the predictions made by our method are

more accurate than those made by several baselines, and (iii) the

accuracy of our method for this task is comparable to the diffusion

kernel method which does not infer detailed causal pathways like

our IP approach. Second, we use our approach to predict a set of

host-virus interfaces and a set of unassayed host genes that are

likely to be modulators of viral replication. We discuss indepen-

dent biological evidence that supports a number of these

predictions. Finally, we perform a suite of additional computa-

tional experiments to assess our method’s predictions in other

ways. These include (i) a comparative analysis to IP components

inspired by related work, (ii) a Gene Ontology analysis to evaluate

the ability of our inferred subnetworks to better identify relevant

functional categories than an analysis of the experimental data

alone, and (iii) a Monte Carlo analysis to assess whether the

protein complexes that our method predicts to be relevant are well

supported by the experimental data and subnetwork-inference

process.

Related work
Our work is related to methods that address several different

categories of problems: finding mechanistic explanations for

Author Summary

Nearly every step of the viral life cycle requires the action
or use of host machinery. Genome-wide suppression
experiments have been used to identify individual host
genes whose products are involved in viral replication. The
hit sets identified by such experiments are typically fairly
large and difficult to comprehend. We propose a method
to infer subnetworks of intracellular interactions that
explain the experimental data. These inferred subnetworks
make the data more interpretable in terms of the
mechanisms of viral replication and can be used to guide
further experiments.

Inferring Host-Virus Gene Subnetworks
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source-target pairs, subnetwork extraction, candidate gene prior-

itization, and gene set enrichment.

One closely related task is to infer the physical interactions that

mediate the observed direct or indirect relationships between a

source gene and a target gene. The input to these methods is a set

of source-target pairs and a background network consisting of

unsigned protein-protein and/or protein-DNA interactions. The

output is a subnetwork that provides a connection between each

source and target. Most closely related to our work are the

approaches that globally infer a subnetwork to account for all

given pairs by providing paths between them. The Markov

network-based Physical Network Model [11] and the integer

programming-based SPINE [12] both infer subnetworks in which

each source must be connected to its targets by one or more

acyclic pathways, and in which the sign of each edge is also

inferred. The Physical Network Model also infers directions for

edges. Related methods for signaling network orientation [13–15]

infer edge directions, but not edge signs or node phenotypes. Yosef

et al. [16] infer rooted trees that connect a set of sources with a set

of targets. Additionally, some methods account for source-target

pairs separately, rather than in a global inferred subnetwork

[17,18]. Others employ genetic interactions or correlation of

mRNA expression in addition to protein-protein interactions to

infer indirect or direct relationships between genes [19,20]. Our

work has similarities to these approaches, particularly those based

on integer linear programming, but differs in some key respects. In

our setting, the common target of all hits – the virus – is external to

the background network, and the identity of the host factors that

interact with it directly must be predicted. Additionally, our

background network encompasses a greater variety of biological

interactions than the background networks used by these other

approaches. Unlike the methods that use mRNA expression

Figure 1. Input and output for our subnetwork inference approach. (A) The inputs to our subnetwork inference approach are phenotypes
measured in a loss-of-function assay and a background network characterizing known interactions. (B) The network elements represented in panels
A, C, and other figures. (C) An inferred subnetwork for the given inputs. The subnetwork includes a directed, consistent path linking each hit (gene
with an up or down phenotype) to the virus. The red borders on the unassayed nodes G and H indicate that they are inferred to have the down
phenotype. Edges shown in gray are not included in the subnetwork.
doi:10.1371/journal.pcbi.1003626.g001
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profiles as the basis for determining direct or indirect relationships

between genes, ours uses only phenotypes derived from a genome-

wide mutant assay.

Recently, Gitter et al. [21] presented an application of their

source-target pair-based method to inferring human signaling

pathways involved in influenza A viral infection. In their

approach, sources are human proteins that are known to directly

interact with a viral component, analogous to the interfaces in our

conceptual model. Targets are human genes whose expression is

measured over several time points during viral infection. The

method orients paths through a protein-protein interaction

network from the sources to the targets, preferring paths that

contain influenza-relevant genes identified by RNAi experiments.

Conceptually, this method infers the signaling pathways that

control the host’s transcriptional response to viral infection. In this

paper, we look at host-virus interactions from the opposite

direction and infer the mechanistic pathways by which suppressed

host genes inhibit or enable the normal viral replication cycle.

Other related methods address the network extraction task:

selecting specific types of connecting structures from a background

network when a biologically-motivated node- and/or edge-

weighting function is available. The structures include rooted

trees [22], variants on Steiner trees [23–26], random walks and

short paths [27], parallel pathways [28], dense highly-connected

subnetworks [29], and undirected subnetworks that provide

connections between pairs of genes [30]. Unlike our method,

these approaches do not distinguish (or infer) phenotype signs and

edge signs, nor do they apply global constraints to the extracted

subnetwork other than a global edge minimization. In contrast, we

employ global constraints such as an upper bound on the number

of interfaces. We do not believe that for our task it is appropriate to

assume the entire network will be minimal, which is an assumption

made by the Steiner tree and shortest-paths methods.

Other methods apply graph kernels or flow algorithms to an

interaction network to predict and prioritize additional hit genes

[31–34]. Notably, Murali et al. [33] predict which genes modulate

HIV replication in human cell lines. Like these methods, our

approach uses a gene ranking method to prioritize genes for

inclusion in the inferred subnetwork. However, these methods

themselves do not infer consistent, directed pathways, nor do they

predict which host factors directly interact with the virus. Our

approach combines a gene prioritization method with a directed

network inference method.

More distantly related to our work, gene set enrichment

techniques are widely used to interpret hit sets identified by high-

throughput experiments. These methods identify which pre-

defined biological components and processes, such as Gene

Ontology annotations or KEGG pathways [35,36], are represent-

ed in a set of genes [37]. In contrast, our method does not restrict

our pool of candidate genes and interactions to predefined gene

sets. Additionally, gene set enrichment-based methods are typically

better suited when the task is to identify common annotations

within a gene set, rather than to predict a set of high-precision

additional hits or relevant mechanistic interactions among known

hits.

Materials and Methods

Data
The input to our approach consists of a set of viral phenotypes

observed in a loss-of-function experiment and a background

network of intracellular interactions. When available, we can also

take advantage of confirmed relevant interactions curated from the

literature.

Experimental observations. We analyze data from exper-

iments screening the yeast genome for genes that modulate the

replication of two RNA viruses: Brome Mosaic Virus (BMV) [1,4]

and Flock House Virus (FHV) [5]. The experiments measure the

replication of the virus in a yeast host when the expression of one

gene is partially or completely depleted. Yeast mutant strains allow

the majority of cell genes (of about 5,800 total genes in yeast) to be

screened in parallel. For nonessential genes, the experiment was

performed using the yeast deletion library [38]. Essential genes

were screened using a collection of yeast strains, each with a single

essential gene promoter replaced by a doxycycline-repressible

promoter, allowing repression of gene expression by adding

doxycycline to the growth medium [39]. Each data set includes at

least two replicate assays for each mutant strain.

As yeast is not the natural host for either virus, an artificial

experimental system was used to initiate viral replication. Each

mutant yeast strain was grown and transformed with two DNA

plasmids expressing viral components. The plasmid expressing

viral RNA also contained a luciferase reporter gene, allowing the

accumulation of viral RNA to be measured by the intensity of the

light produced from luciferase gene expression. The output of the

assay is the fold-change in accumulation of viral RNA between each

mutant strain and the control. Let m be the virus expression level

in the mutant strain, and c be the expression level in the control

strain. Fold-change is computed as {
c

m
if mvc, or

m

c
if mwc.

We derive a discrete phenotype label for each assayed gene

based on the sign, magnitude, and reproducibility of the fold-

change across replicate assays. If a mutant reproducibly yields a

decrease in viral replication, the interpretation is that the missing

gene product directly or indirectly facilitates virus replication. We

label such mutants with a down or weakly-down phenotype,

depending on the magnitude of the fold-change. Conversely, the

interpretation for a mutant that reproducibly results in an increase

in viral replication is that, when expressed, the missing gene

product directly or indirectly inhibits the replication of the virus.

We label such mutants up or weakly-up. The mutants with high-

magnitude phenotypes, down and up, are considered hits. While

we include mutants with weak phenotypes in our analysis, we are

primarily interested in explaining the hits.

The threshold used to divide the hit and weak phenotypes was

determined separately for each screen and, for BMV, is described

in greater detail in the original publications. In the BMV data set,

different thresholds were used for essential and nonessential genes.

To be considered a hit for BMV, a nonessential gene mutant

resulted in at least a 2.5-fold change in two replicates and at least

an average 3-fold change. A more stringent threshold was used for

essential gene mutants, which cause expression knockdown rather

than complete knockout. Essential gene hits conferred at least a 6-

fold change in BMV expression in two replicates. As for FHV, the

data set consists of only nonessential yeast gene mutants. FHV hits

conferred at least a 2-fold change in viral replication in two

replicates, and additionally passed a secondary validation by

northern blot.

We assign a third category of phenotype, no-effect, to genes

for which the sign of the fold-change is different across replicates.

Finally, genes that were either not screened, or for which the yeast

colony did not grow, are labeled unobserved. Table 1 presents

the distribution of phenotypes considered here for the BMV and

FHV assays. While all available gene mutants were assayed in the

experiments, we limit our analysis to only those genes that are

represented in the background network.

Background network. The interactions in the subnetworks

inferred by our method are drawn from a background network

Inferring Host-Virus Gene Subnetworks
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that we have assembled from various publicly available data sets.

The entities represent gene products and protein complexes. The

interactions describe protein-protein and protein-DNA interac-

tions, post-translational modifications of proteins, protein complex

membership, transcriptional regulatory interactions, metabolic

pathways, and inferred physical interactions between complexes

and proteins. In concordance with our goal of inferring

mechanistic subnetworks, nearly all interaction types represent

direct physical interactions. The exception is the metabolic

pathway interactions, which are edges between enzymes that

catalyze adjacent metabolic reactions.

High-confidence interactions were selected from each database

using stringent filters; for example, protein-protein interactions

were selected from BioGRID [40] only if the interaction was

observed using at least two different types of experimental

methods. In total, the background network consists of 4,667

entities and 14,447 interactions. Node and edge counts and

citations for the intracellular interaction network are described in

Tables 2 and 3.

Since we are focused on inferring the direction and consistency

of paths, we do not need to represent all of the distinctions among

the various types of interactions in our background network.

Instead, we use a simple, general representation. In this

representation, both genes and their gene products are represented

using the same node; in this text, we identify nodes using the

protein name. Each edge may have a direction and a sign. The

direction determines which interactor is the source, and which is

the target. For example, for a protein-DNA interaction, a

transcription factor is the source, and the regulated gene is the

target. The sign describes the effect, positive or negative, of the

source on the synthesis, stability, or specific activity of the target. A

positive sign is called activation, whereas a negative sign is called

inhibition. Many edges in the background network are not provided

with a sign or direction. For example, transcription factor-gene

binding interactions and post-transcriptional modifications are

directed but unsigned, and most protein-protein interactions are

undirected and unsigned.

Most of the interaction data sets we use are already encoded as

binary interactions. However, we extract binary edges from two

additional data sets that were not originally in that format:

metabolic pathway data and protein complex membership data.

To extract binary interactions from the metabolic pathway data

[41], we draw an edge between enzymes that catalyze adjacent

reactions. This edge is directed unless both reactions were

annotated as reversible.

We also represent protein complexes in the background

network. Pu et al. [42] and Heavner et al. [41] provide manually-

curated protein complex information in the form of sets of genes

that are each labeled with the name of a protein complex. To

represent the protein complexes, we first add a node that

represents the complex, and next add activating, directed

edges from each constituent gene to the complex node. Protein

complex nodes are treated the same as any other node. One

implication of our representation is that only the components

of a complex that share the same phenotype label will

be drawn into predicted relevant paths that involve the

complex.

We also infer a set of undirected complex-complex and

protein-complex interactions by combining the protein complex

membership information [41,42] with the protein-protein

interactions [40]. For a pair of complexes with disjoint protein

membership, we draw an undirected edge between them if at

least 50% of the possible interactions between one protein from

each complex are present in the protein-protein interaction

data set. Similarly, for a complex and a single protein, we

draw an undirected edge between them if at least 50% of

proteins in the complex have a protein-protein interaction with

the protein.

Relevant interactions curated from literature. The

mechanisms for some yeast hits for BMV have been studied in

detail [43–48]. To leverage this information in our approach, we

encode domain knowledge from the literature in the same format

as our background network. We have encoded 28 binary

interactions among 24 host factors and the external virus node.

This set includes the addition of three nodes representing protein

complexes, and four interactions between a host component and

the virus. Only four of the intracellular interactions were present in

the original background network. Table 4 summarizes the

interactions derived from literature. Visualizations are available

at the supplementary website.

Computational methods
We have developed an integer-linear-programming-based

approach to infer a directed subnetwork of interactions that are

relevant to virus replication in a host cell. The approach infers

subnetworks that have the following properties:

N The subnetwork maximizes the nodes included, subject to

constraints.

N A small number of interfaces are predicted; these interfaces are

the most downstream nodes in the subnetwork.

N The subnetwork accounts for each hit by providing at least one

directed path from the hit to an interface.

N Each relevant edge is assigned a single direction.

N The sign of each relevant edge in the subnetwork is consistent

with the phenotypes of its interacting host factors.

N The subnetwork is acyclic.

Table 1. Phenotype labels for suppressed host genes.

Phenotype BMV FHV

up (hit) 49 48

weak-up 623 826

weak-down 1,067 668

down (hit) 55 7

no-effect 1,074 991

Distribution of phenotype labels for genes in the background network. The
labels were derived from genome-wide assays of Brome Mosaic Virus and Flock
House Virus replication in yeast.
doi:10.1371/journal.pcbi.1003626.t001

Table 2. Types of host factors represented by nodes in the
background network.

Node type Count

Yeast ORFs 4,167

Protein complexes 472

Small RNAs 15

Mitochondrial ORFs 8

doi:10.1371/journal.pcbi.1003626.t002

Inferring Host-Virus Gene Subnetworks
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Overview of approach. In this section we present an

overview of the three steps of our approach. Figure 2 illustrates

each step applied to a small example background network and set

of phenotype labels.

Step 1: Determine candidate interfaces. One aspect of the

inference procedure is to predict which host factors most directly

interact with a viral component. We refer to these as interfaces.

Before running inference, we identify as candidate interfaces all of the

host factors that do not have a no-effect phenotype label. To

represent the possibility of any of these host components

interacting with a viral component, we add a special ‘‘virus’’ node

to the background network, and add a directed edge from each

candidate interface to the virus node. We refer to the edges

between host factors and the virus node as external edges, and edges

between pairs of host factors as internal edges. Figure 2(A) depicts

the addition of the external edges to the five-node background

network shown. No edge is added for node E, which has a no-
effect phenotype. The set of external edges could be constrained

if additional knowledge were available (e.g., experimental evidence

for specific interactions between host and viral proteins).

Step 2: Determine candidate paths. An inferred subnet-

work must account for each hit’s viral phenotype by either

predicting the hit gene to be an interface itself, or by providing a

directed, acyclic path to a predicted interface. We enumerate all

possible candidate paths of a specified depth leading from each hit

to the virus through a candidate interface (as defined in Step 1).

Nodes with a no-effect phenotype are not included in candidate

paths. Nodes with a weak viral phenotype may appear in paths,

but are not used as starting points. Figure 2(B) shows the nine

candidate paths for the given network.

Step 3: Infer an ensemble of consistent, directed

subnetworks. An inferred subnetwork comprises a union of

directed candidate paths that predicts which host factors are

interfaces and provides consistent and directed paths for each hit.

We refer to a candidate path that has been chosen to be part of the

inferred subnetwork as a relevant path. Similarly, we refer to an

edge (node) in a relevant path as a relevant edge (node). If an external

edge (edge between a host factor and the virus) is predicted to be

relevant, the host factor is predicted to be an interface. Inference is

a matter of determining the optimal combinations of relevant

paths, node phenotypes, interfaces, and edge signs and directions,

and is carried out by the IP method.

During inference, the method infers binary viral phenotype

labels for all unassayed relevant nodes, and the signs of all relevant

edges in cases where they are not specified in the given data. (We

do not infer these attributes for nodes and edges that are deemed

irrelevant.) While the input data differentiates between weak and

strong (hit) viral phenotypes, we predict only the labels up or

down for the unassayed genes that we infer to be relevant. For an

edge to be considered relevant, its sign must be consistent with the

phenotypes of the interacting nodes. We refer to Figure 2(A) to

illustrate this notion of consistency. In the background network,

notice that we have evidence that both nodes A and B can activate

node C. If edge II is relevant, node C would have the phenotype

up, to match A’s phenotype. However, if edge IV is relevant, node

C would have the phenotype down, to match B. Since a relevant

node can have only one phenotype label, we cannot predict that

both edges II and IV are relevant. In addition to using the

consistency concept to rule out inconsistently signed edges, we can

also use it to infer missing edge signs. If both edges IV and I are

relevant, then the inferred phenotype for node C is down, and we

infer that edge I’s sign is inhibition.

The inference process also assigns a direction to all relevant,

undirected edges. In the inferred subnetwork, each hit must be

Table 3. Intracellular interactions in the background network.

Interaction Source Directed Signed Count

Protein-protein [40] N N 4,132

Inferred complex-complex interactions [40–42] N N 22

Inferred complex-protein interactions [40–42] N N 1,128

Between metabolic enzymes [41] N N 713

Between metabolic enzymes [41] Y N 440

Post-translational modifications [40] Y N 514

Protein-DNA, unsigned [71] Y N 4,067

Protein-DNA, signed [72,73] Y Y 1,248

Complex membership [41,42] Y Y 2,183

Binary interactions in the background network.
doi:10.1371/journal.pcbi.1003626.t003

Table 4. Interactions from literature.

Cellular process Source Nodes Edges

Ubiquitin-proteasome pathway and lipid production [43,48] 8 11

Membrane conformational stability [47] 4 4

Translation [44,46] 12 12

Chaperone proteins [45] 1 1

Domain knowledge about interactions between yeast and BMV encoded as binary interactions.
doi:10.1371/journal.pcbi.1003626.t004
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able to reach an interface by a directed path. Since a relevant edge

can only take one direction, paths 4 and 9 in the example cannot

both be predicted to be relevant because they require opposite

directions for edge I.

Because of the incompleteness of the background network and

experimental data, the space of possible subnetworks that meet all

of our requirements is very large. To represent this space, we find

an ensemble of subnetworks, where each one corresponds to a

different optimal solution to the IP. We initially solve the IP to

optimality using a branch-and-cut method [49], and collect

multiple solutions by returning to untaken branches. With the

ensemble of subnetworks, we thereby assess the confidence in the

relevance of a path (node, edge) as the fraction of subnetworks in

the ensemble containing that path (node, edge). We measure

confidence in the same way for the other inferred quantities:

phenotypes, edge signs, and edge directions. Figure 2(C) shows an

ensemble of two inferred subnetworks that each account for both

hits A and B using one interface.

Integer program (IP) variables and notation. Subnetwork

inference is performed by solving an integer program (IP), which

consists of a set of linear constraints and an objective function, all

of which are defined over a set of integer variables that

characterize possible subnetworks. The values of some of the

variables are determined by the input to the inference process (the

phenotypes and background network), whereas others are inferred

by the IP. In our implementation, some variables need not be

explicitly declared as integer variables because they are con-

strained such that they can only feasibly take integer values. The

implemented program is therefore more precisely a mixed integer

linear program.

First, we describe the variables and notation that we use to

define the IP. The background network is represented as a graph

of nodes N , edges E, and candidate paths P. E(p) and N (p) refer

to the edges and nodes in a particular candidate path p, N (e)
refers to the nodes in a particular edge e, and E(n) refers to the

edges that touch a particular node n. We denote an edge between

nodes ni and nj as (ni,nj).

These sets are further divided into subsets based on experi-

mental data. NH(N is the set of hit nodes. EU(E is the set of

undirected edges. The complete set of edges E can also be divided

into external edges EX , which are added during the execution of

our method to provide connections to the virus node, and internal

edges EI , which represent the original background network.

Each node n has two variables: yn, representing whether or not

the node is present in any relevant paths, and vn, representing its

observed or inferred phenotype sign. For hits, we fix yn~1 to

require that they are present in the inferred subnework. For down
and weak-down genes, we fix vn~0; for up and weak-up
genes, we fix vn~1. As many as four variables describe each edge.

The predicted relevance of an edge e is represented with the

variable xe, which takes the value 1 if the edge is in at least one

relevant path. The sign of an edge is represented by two mutually

exclusive variables ae and he. If ae~1 (he~1), the edge is

predicted to be relevant, and inferred to describe an activating

(inhibitory) interaction. If an edge is not predicted to be relevant,

xe~ae~he~0. For activating edges given in the background

network, he is fixed at 0; similarly, for inhibitory edges, ae is fixed

at 0. Undirected edges also have an associated variable de,

representing the inferred direction of the edge (relative to an

arbitrarily chosen canonical direction). If the inferred direction is

the same as the canonical direction of the edge, or ‘‘forward’’, then

de~1; otherwise, de~0. The predicted relevance of a path p is

represented with the variable sp, which takes the value 1 if the

path is included in the inferred subnetwork, and 0 if it is not.

The variables are summarized in Table 5. Figure 3 shows the

variables used to characterize one specific example path.

Diffusion kernel (DK) for node prioritization. To repre-

sent the ways in which a hit may modulate the virus through many

paths, our inferred subnetworks will generously include consistent

nodes and edges. Inspired by the use of graph diffusion kernels to

prioritize candidate genes, we use a diffusion kernel method to

prioritize non-hit nodes (those with unobserved or weak pheno-

types) for inclusion in the subnetwork. (All hits are already

Figure 2. The steps of our subnetwork inference approach. Each
edge is shown with a numeric identifier for cross-reference. (A) Add a
new node to the background network, representing the virus. Add
connections between all nodes except no-effects to the new virus
node, representing the possibility of any host factor having a direct
interaction with a viral component. (B) For each hit identified by the
genome-wide mutant assay, enumerate candidate paths through the
background network that could explain it by providing a linear path to
the virus node. (C) Infer an ensemble of consistent subnetworks. Each
subnetwork is a union of paths that accounts for all of the hits and is
consistent with virus phenotype data.
doi:10.1371/journal.pcbi.1003626.g002
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required to be included.) The intuition behind this method is that

each hit carries some amount of weight that is partially diffused out

via its neighbors in the background network. Each node in the

network thereby receives a weight according to its proximity and

connectivity to the set of hits. This score is used in the objective

function of our integer program method.

To calculate the DK scores, we first calculate a regularized

Laplacian kernel matrix K [50], in which the value in each cell

represents the proximity and connectivity between two nodes in

the graph. The first step is to use the background network to

calculate an jN j|jN j symmetric adjacency matrix A. In this

matrix, Aij~1 if there is an edge (regardless of direction) between

nodes ni and nj in the background network (internal edges only),

and 0 otherwise. Second, we calculate D, a diagonal degree matrix

derived from A, where Dii~
PjN j

j Aij . From these, we calculate a

normalized Laplacian matrix L~1{D{1=2AD{1=2. Finally, the

kernel matrix is K(l)~½IzlL�{1
.

Next, we use the kernel matrix to calculate how close and

connected each node is to the set of hits. We define q as a binary

vector of length jN j where qi~1 if ni[NH
(is a hit) and qi~0

otherwise. Finally, for each node ni, the DK score score(ni) is

calculated as
PjN j

j~1 Kij(l)qj .

Global objective function and constraints in the IP. The

following objective function and two constraints control global

properties of the inferred subnetwork.

Maximize the inclusion of nodes that are proximal and connected to hits. In

order to capture multiple pathways between the hits and the virus,

we want to include in the inferred subnetwork the nodes that are

most proximal and connected to the hits. Which nodes can be

included is limited by the IP’s constraints, and so we prioritize

nodes using their diffusion kernel score. The objective function of

our integer program maximizes the combined score of relevant

nodes that are not hits (N{NH
).

max
X

n[N{NH

score(n)yn

0
@

1
A

A small number of interfaces are inferred. The true number of

interfaces is unknown. As a heuristic, we limit the number of

interfaces in the inferred subnetwork to a specified integer c. In the

inferred subnetwork, we can count the number of interfaces by

counting the number of relevant external edges EX , which connect

yeast gene nodes to the virus node.

X
e[EX

xe

0
@

1
Aƒc

While the objective function tends to maximize the number of

nodes in the inferred subnetwork, we can control the size of the

subnetwork by restricting the number of interfaces. Depending on

the prediction task that the inferred subnetwork will be used for,

we may use a more constrained or more generous number of

interfaces. If constrained to use only a small number of interfaces,

the inference process will identify those interfaces that can explain

the most hits. This setting would be appropriate to use when the

goal is to predict a high-confidence set of interfaces. On the other

hand, allowing more interfaces expands the network and allows for

more parallel paths and alternative explanations for hits.

Figure 3. Variables for pathway 9 from Figure 2. The values of
some variables are fixed by the data. The values of free variables are
determined by the IP.
doi:10.1371/journal.pcbi.1003626.g003

Table 5. Integer program variables.

Network elements Variable Interpretation Values

Paths p sp Relevant no = 0, yes = 1

Edges e xe Relevant no = 0, yes = 1

ae Relevant, activating no = 0, yes = 1

he Relevant, inhibiting no = 0, yes = 1

de Direction back = 0, forward = 1

Nodes n yn Relevant no = 0, yes = 1

vn Phenotype down = 0, up = 1

Binary variables represent the status of nodes, edges, and paths in the network.
doi:10.1371/journal.pcbi.1003626.t005
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The proportion of edge signs is constrained. In the BMV and FHV

screens, a hit’s phenotype sign (up or down) is highly correlated

with those of its neighbors in the background network. Therefore,

we require that the proportion of activating edges in the inferred

network is close to a proportion estimated from data. Considering

all pairs of hits that interact (under any interaction) in the

background network, we record the proportion of pairs with the

same phenotype sign. For the BMV data set, this is about 95%; for

FHV, it is 100%. The following constraint gives a lower bound a
on the proportion of activating internal edges (edges that do not

involve the virus node).

X
e[EI

ae§a
X
e[EI

xe

By default, we set this a~0:9 to allow a small deviation from the

proportion estimated from the data set. If we did not allow a small

number of inhibitory edges into the inferred subnetwork, our

inferred subnetworks would not be able to represent connections

between two differently-signed hits and the same downstream

interface.

Local constraints in the IP. Our other subnetwork desid-

erata are represented as constraints that are used to select which

edges and paths are deemed relevant.

Every hit is included in the inferred subnetwork. By fixing yn~1 for

each hit node n[NH
, we force the solver to infer a relevant path to

account for the hit.

Vn[NH
yn~1

All edges in a relevant path are relevant. A relevant edge e (where

xe~1) must be in at least one relevant path (for which sp~1); we

refer to all paths p for an edge e as P(e). For a relevant path p, all

of its edges E(p) must be relevant.

Ve[ Exeƒ

X
p[P(e)

sp

Vp[P (Ve[E(p) spƒxe)

All nodes in a relevant edge are relevant. A node n is relevant (that is,

yn~1) if one if its edges e[E(n) is relevant (xe~1). For a relevant

edge e, both of its nodes N (e) are also relevant.

Vn[N ynƒ

X
e[E(n)

xe

Ve[E (Vn[N (e) xeƒyn)

All relevant edges must be either activating or inhibitory. The following

constraints require that at most one sign variable (ae or he) can be

equal to 1 for any edge, and that for a relevant edge e (where

xe~1), exactly one sign variable must be equal to 1.

Ve[E aezheƒ1

xe~aezhe

The sign of a relevant edge is consistent with the phenotypes of the nodes that

it connects. The following set of constraints guide the inference of

phenotypes and edge signs for relevant nodes and edges. If a

relevant internal edge e~(ni,nj) represents activation (ae~1), the

interacting nodes must have the same phenotype (vni
~vnj

).

Ve~(ni,nj)[EI vni
zaeƒ1zvnj

vnj
zaeƒ1zvni

If a relevant internal edge e~(ni,nj) represents inhibition

(he~1), the two interacting nodes must have opposite phenotypes

(vni
=vnj

).

Ve~(ni,nj)[EI hezvni
zvnj

ƒ2

heƒvni
zvnj

In a relevant path, all edges are directed toward the interface. In each

relevant path p, the edges E(p) must be oriented toward the virus

node at the end of the path. This direction is determined when the

candidate path is generated in Step 2, and is given by dir(p,e). The

term including I(:), the indicator function, returns 1 if an edge’s

inferred direction corresponds to the direction required by the

path.

Vp[P Ve[E(p)spƒI de~dir(p,e)ð Þ
� �

The inferred subnetwork is acyclic. While each candidate path is

acyclic, it is possible to choose a union of paths that contains

cycles. We argue that acyclic inferred subnetworks are more

interpretable because they better describe the order of genes in

paths and therefore differentiate upstream-acting factors from

downstream-acting interfaces. Because searching for and prohib-

iting all cycles in the inferred subnetwork is an intractable task, we

use an approximation that prohibits small cycles. First, we identify

sets of edges that induce cycles of a restricted size, and then

introduce constraints to the IP so that each possible cycle among

relevant nodes must be broken.

We identify cycles among candidate nodes by performing

depth-limited, depth-first searches through the candidate nodes in

the background network, once per candidate node. If a node is

encountered for the second time during the search, then the edges

that were taken to get there are saved as a cycle. In our

experiments, we search for cycles containing up to three edges.

The following constraints require each cycle to be broken. A cycle

is broken if either at least one edge in it is inferred to be irrelevant,

or if at least one edge is inferred to be directed in the opposite

direction of the other edges in the cycle. The precomputed set of

possible cycles is C, where each cycle c has the set of edges E(c). In

the second term, the direction of an undirected edge e that would

complete the cycle c is given by dir(c,e).
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Vc[C
X

e[E(c)

1{xez
X

e[E(c)\EU

1{I(de~dir(c,e))

0
@

1
A§1

Interfaces are the most downstream nodes in the subnetwork. Interfaces

are meant to represent the host factors and processes that are

closest to a direct interaction with the virus. So, we prohibit a

predicted interface n from being inferred to have any other

downstream neighbors. Given a particular node n, the IP must

choose between connecting n to the virus (thus making it an

interface), or inferring any other relevant outgoing edge from n. In

the following constraints, we refer to the external edge (from n to

the virus) using ei, and the internal edges using ej . We use separate

constraints for directed and undirected internal edges. In the

constraint for undirected edges (listed second), the function

source(e,dej
) returns the node n that is the source of the

undirected edge ej when the edge’s direction is set to dej
.

Direct edges :

Vei~(n,virus)[EX Vej~(n,nk)[EI{EU xei
zxej

ƒ1
� �

Undirected edges :Vei~(n,virus)

[EX Vej~(n,nk)[EI\EU xei
zxej

zI source(ej ,dej
)~n

� �
ƒ2

� �

Specific nodes and edges whose relevance is supported by domain knowledge

must be included in the inferred subnetwork. When we have domain

knowledge that a specific host factor or interaction is relevant to

viral replication, we can use it to seed the inferred subnetwork by

setting its relevance variable to 1 (yn~1 for nodes, xe~1 for

edges). In the following constraints, N L5N and EL5E represent

the relevant nodes and edges drawn from the literature.

Ve[EL xe~1

Vn[N L
yn~1

Results

Although it is not practicable to fully evaluate our inferred

subnetworks, we can assess their validity using a number of

quantitative and literature-based evaluations.

Cross-validated phenotype prediction
We first describe an experiment in which we assess the accuracy

of our approach in predicting whether test genes with held-aside

phenotypes are hits or not. We refer to this as the hit-prediction task.

Previously, diffusion kernel methods like the one we use in our

objective function have been successfully applied to this task,

which is also called gene prioritization [31,33].

Using a leave-one-out methodology, we hold aside the

measured phenotype for one gene at a time. The set of genes

that are held-aside as test cases for the BMV data set includes 104

hits (49 up and 55 down) and 1074 no-effect genes. The test set

for the FHV data set comprises 55 hits (48 up and 7 down) and

991 no-effect genes. We do not test weak-phenotype genes in this

evaluation. When a given gene is held aside, it is treated as if its

phenotype has the unobserved label, meaning that the inference

process is used to predict whether or not the gene is relevant, and,

if it is predicted to be relevant, its phenotype label. If the test case is

included in the set of literature-curated interactions, then all

interactions that involve the test case are held aside as well. We

also recalculate the diffusion kernel scores for the entire network

for each held-aside test case.

To predict the label of a held-aside node, we use our integer

programming approach to infer an ensemble of subnetworks. An

individual subnetwork may include the held-aside gene and

provide a predicted up or down phenotype for it, or it may

exclude the gene. We assess our confidence in whether the gene is

a hit or not by determining the fraction of subnetworks in which it

is predicted to have an up or down phenotype. When this

fraction is the same for a set of cases, the node scores computed by

the kernel are used as a secondary measure of confidence. By

varying a threshold on these confidence values, we can plot a

precision-recall curve characterizing the predictive accuracy of our

method. Recall is defined as the fraction of true hits in the test set

that are predicted to be hits, and precision is defined as the fraction

of predicted hits that are truly hits. In this context, we consider

precision to be the more important of the two measures, as it is

better to to avoid devoting follow-up experiments to false positives.

Parameter settings. For all experiments, candidate path-

ways are limited to a depth of three interactions, and 100

subnetworks are inferred for each ensemble. For the cycle-

prohibiting constraint, we compute and disallow cycles of up to

three edges. The default setting for a, the fraction of inferred

activating edges, is 0.9. We initially set c, the maximum number of

interfaces, to the minimum feasible number that can be used to

consistently explain all hits. This is determined for each data set by

running a slightly modified version of our IP in which the objective

is to minimize the number of interfaces. We perform experiments

assessing the effect of raising the level of c at four additional

intervals of 25. For BMV, we perform experiments using

c~½47,72,97,122,147�; for FHV, we use c~½26,51,76,101,126�.
We also assess the effect of the other settings: prohibiting cycles,

requiring edges and nodes supported by domain knowledge, and

controlling the distribution of edge signs using the parameter a. All

experiments were performed using GAMS 23.9.3 (for constructing

the IP) [51] and the IBM ILOG CPLEX 12.4.0.1 (for solving the

IP) [52]. Both are commercial products that are currently available

with reduced-cost or free licenses for academic use.

Baselines for comparison. We compare our method’s

precision-recall curve to the curve generated by the diffusion

kernel (DK) scores. We also compare against two baselines that use

local phenotype information: a hypergeometric test baseline and a

nearest neighbor-baseline. In what we call the hypergeometric test

baseline, we use the hypergeometric distribution to assign a p-value

to each held-aside test case gene based on the proportion of hits

among its first neighbors relative to the proportion of hits in the

entire background network.

To acquire a ranking of the test cases, we sort them in ascending

order of their hypergeometric p-value. Our second baseline is a

naı̈ve nearest-neighbor approach that uses information about both

hit and weak viral phenotypes. For each query gene, we count the

number of adjacent genes that have either a hit or weak viral

phenotype, and rank the test cases in descending order by this

count.
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We also perform a permutation test in order to estimate our

method’s ability to predict real viral phenotype hits using

randomized input data. The purpose of this test is to estimate

how much of our method’s predictive accuracy is due to the

topological properties (e.g., degree, connectivity) of the held-aside

genes in the background network, independent of true experi-

mental data. For this test, we infer a subnetwork ensemble for each

of 1,000 permuted sets of phenotype labels, and rank actual test

cases by their average confidence over the 1,000 inferred

subnetwork ensembles. We construct permuted phenotype label

sets with approximately the same degree distribution as the

original experimental phenotype labels, to control for the effect of

degree on the likelihood that a node is predicted to be relevant. To

maintain the degree distribution, we draw for each phenotype

label a gene from the background network that has the same

degree. If fewer than ten genes have the same degree, we expand

our consideration to the genes with degree one higher or lower,

and continue expanding until we have at least ten to draw from.

Among the permuted phenotype label sets for BMV, on average

3.54 true hits (out of 104 in the background network) are retained

as permuted hits; for FHV, on average 1.2 true hits (out of 55) are

retained.

Figure 4. Precision-recall curves for the hit-prediction task. BMV at left, FHV at right. The horizontal line shows precision that would be
achieved if all test cases were called hits. (A) Comparison of the diffusion kernel method to the naı̈ve baselines. (B) Comparison of our IP approach to
the diffusion kernel method and to random permutations. (C) The effect of varying c, the maximum number of interfaces allowed in the subnetwork
inferred by the IP method.
doi:10.1371/journal.pcbi.1003626.g004
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Hit-prediction results. Precision-recall curves for the hit-

prediction task are presented in Figure 4. The horizontal line

shown in each panel is the fraction of the test set that are hits, thus

representing the level of precision that would be achieved by

simply predicting that all held-aside genes are hits.

Figure 4(A) compares the diffusion kernel method to the two

baselines that employ local phenotype information. For both the

BMV and the FHV data sets, the nearest neighbor baseline

performs quite poorly: this indicates that, locally, the weak

phenotype information is not helpful for making predictions about

a node’s viral phenotype. The hypergeometric test baseline

generally does not perform as well as the diffusion kernel on

either data set, although its most highly confident predictions for

BMV are more accurate. These results indicate that only a small

number of hits can be predicted based only on their local

neighborhood, and thus support the use of the diffusion kernel to

help identify unassayed genes that might be involved in viral

replication. The recall of both of these baselines is bounded by the

number of hits that have other hits (or weak-phenotyped genes)

among their neighbors.

Figure 4(B) compares our IP method, which uses the diffusion

kernel, to the diffusion kernel alone and to the permutation-test

baseline. We show the results achieved using the median tested

number of interfaces (c~97 for BMV, c~76 for FHV). (We

choose to show the c value from the middle of the tested range

because, as we discuss later, the method’s accuracy does not

appear to be very sensitive to the number of allowed interfaces.)

In the high-confidence range, our method is able to achieve

comparable precision to the kernel method alone, despite the

fact that it is making more detailed predictions by specifying

interfaces and at least one directed path from each hit to an

interface. Both our method and the diffusion kernel method

easily surpass the permutation-test baseline’s precision. Inter-

estingly, the permutation test’s precision is higher than the

random guessing line in the low-recall region, suggesting that

some hits are more central in the background network

compared to no-effect genes.

We note that our method does not achieve the same level of

recall as the diffusion kernel method. Whereas the diffusion kernel

can reach high levels of recall because it propagates nonzero scores

to all held-aside genes that are indirectly connected to a hit, the

recall of our approach is limited by whether each held-aside gene

is included in an inferred subnetwork or not. Our IP can only

include a held-aside hit that (i) is used in at least one candidate

path for another hit, and (ii) is useful for connecting hits to inferred

interfaces. To some extent, we can increase recall by allowing

more interfaces in the subnetworks, and by enlarging the number

of subnetworks generated in the ensembles. Nevertheless, given the

low precision of the diffusion-kernel predictions at high levels of

recall, we argue that the recall differences between the two

approaches are not of practical significance.

To assess the robustness of our IP with respect to the number of

interfaces allowed, we vary c (the maximum number of interfaces)

over five values that range from the minimum feasible number to

one hundred more. Figure 4(C) presents precision-recall curves for

this experiment. For the BMV data set, requiring the minimum

number of interfaces results in ensembles that are the least

accurate, but the other four values tested produce similar precision

to each other, with recall increasing just slightly with c. For the

FHV data set, the minimum number of interfaces results in higher

precision overall in comparison to higher values of c, but lower

precision in the highest-confidence range. Since the FHV curve

represents only a small number of predictions, it is difficult to make

strong conclusions based on it. However, the results of the

experiment on both data sets suggest that, beyond the minimum

allowed, the number of interfaces does not have a large effect on

accuracy. For BMV, it appears to be best to use a moderate

number of interfaces.

Sign-prediction task. As a secondary evaluation, we assess

the accuracy of the methods in predicting the correct sign of the

phenotype (up, down) for held-aside hits. We refer to this as the

sign-prediction task. The methodology for this experiment is largely

the same as for the previous one. We hold aside a given hit’s

phenotype (treating the gene as being unobserved), infer an

ensemble of 100 subnetworks, and then predict the phenotype sign

that is inferred by a plurality of subnetworks. The confidence in a

predicted sign is given by the fraction of subnetworks in which the

gene is predicted to take that sign. We compare the predictive

accuracy of our approach to the diffusion kernel and the baselines

considered in the previous experiment. We also tested a variant of

the neighbor-voting baseline that employs the notion of consis-

tency described in the Computational Methods section. That is,

neighbors connected to the held-aside gene by unsigned and

activating edges vote with their own phenotype, but neighbors

Figure 5. Accuracy-coverage curves for the sign-prediction task. BMV on the left, FHV on the right. The horizontal line indicates the accuracy
that would be achieved by assigning the plurality phenotype label to every test case (down for BMV, up for FHV.)
doi:10.1371/journal.pcbi.1003626.g005
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connected by inhibiting edges vote with the phenotype of opposite

sign. The consistency-based baseline performed no better than the

simple neighbor-voting methods and thus we report the results

only for the original baseline here.

We construct accuracy-coverage plots for our IP-based

approach and both baselines. Accuracy is measured as the fraction

of phenotype signs correctly predicted, and coverage is the fraction

of hits (with either up and down phenotype) for which predictions

are made. The hits are sorted by the algorithm’s confidence in the

predicted phenotype, and accuracy is plotted as coverage

increases. The results of this experiment are presented in Figure 5.

For both data sets, the diffusion kernel method is the only one

able to make predictions for the entire set of hits, and it achieves

high accuracy. Our IP approach matches the diffusion kernel

method in the high-confidence range for both data sets. The

predictive accuracy of the hypergeometric test is comparable to

the IP approach for both data sets. The neighbor-voting baseline is

slightly better than our IP method for the FHV data, but inferior

for BMV.

Stability of the leave-one-out subnetworks. To examine

the robustness of our inference method, we compare the ensemble

inferred using complete experimental data to the ensembles

inferred during the leave-one-out experiments. Specifically, we

measure the stability of four types of predictions: (i) which nodes

are relevant (yn), (ii) the phenotype signs of relevant nodes (vn when

xn~1), (iii) which nodes are interfaces (xe for edges from predicted

interfaces to the virus), and (iv) the relevance of nodes that are

predicted to be interfaces (yn, considering only nodes that are ever

predicted to be interfaces by any ensemble, but regardless of the

confidence in that prediction).

Our method’s predictions about node relevance for BMV are

highly stable, with average agreement between the complete

ensemble and leave-one-out ensembles at or above 90% for

ensembles inferred using c~f72,97,122,147g interfaces; for c~47
interfaces, the node relevance agreement is slightly lower at 85%.

Phenotype sign predictions show slightly lower agreement (80%-

84%), as do predictions about which nodes are interfaces (71%–

78%). However, predicted interfaces are still likely to be deemed

relevant across the set of ensembles, even if they are not as

consistently predicted to be interfaces (88%–91%). Overall,

predictions for FHV were somewhat less stable than those for

BMV, which may be due to the greater connectivity of BMV’s hits

compared to FHV’s. The methodological details and full results

for this experiment are available in Text S1 and Table S1-S2.

Figure 6. Precision-recall curves for two other objective functions on the hit-prediction task. Comparison of this work’s objective
function, which maximizes node score (IP), to two alternatives inspired by published methods: maximize path count (MP-Count) and maximize path
score (MP-Score). For BMV, the number of interfaces c~97. For FHV, c~76.
doi:10.1371/journal.pcbi.1003626.g006

Figure 7. Accuracy-coverage curves for the SPINE heuristic on the sign-prediction task. Comparison of of this work’s edge sign heuristic,
IP, a~0:9, to the heuristic used by the SPINE method[12], IP, SPINE. Also shown is the result for our IP when a~0:8.
doi:10.1371/journal.pcbi.1003626.g007
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Varying components of the IP
As discussed in the Related Work section, several integer

programming methods have been developed to infer signalling

and regulatory networks from experimental data that comes in

the form of source-target pairs. A key aspect of our approach is

that it does not assume that targets are given. Instead, it infers

the downstream interfaces. Existing IP approaches are therefore

not directly applicable to our own task. However, we consider

some components of existing methods that can be substituted

into our integer program: namely, two alternative objective

functions, and one alternative heuristic for inferring edge signs.

Additionally, in this section, we explore the effect of varying

some of the previously discussed parameters and constraints of

our IP.

Alternative objective functions. While our objective

function maximizes the total diffusion kernel score of relevant

nodes, a common goal of other network inference methods is to

maximize the number of paths that connect sources and targets.

Edges or nodes may also be weighted, giving rise to a weight for

each path. Inspired by these methods, particularly by the work

by Ourfali et al. [12] and Gitter et al. [14], we consider two path-

based objective functions as alternatives to the node-based

objective function that we presented in the Computational

Methods section.

Maximize the total count of inferred relevant paths (MP-Count):

max
X
p[P

sp

Maximize the total score of inferred relevant paths (MP-Score). In

advance of inference, we calculate the score of a path as the sum of

the diffusion-kernel-derived scores of the nodes in the path:

max
X
p[P

score(p)sp, wherescore(p)~
X

n[N (p)

score(n)

We compare the predictive accuracy of these two path-based

objective functions to our node-based objective function using the

hit- and sign-prediction tasks that we described previously. The

results for the hit-prediction task are shown in Figure 6(A) and (B)

for BMV and FHV respectively. The two path-based objective

functions perform comparably to our node-based one; thus it does

not appear that our IP method is very sensitive to the choice of

objective function among the options tested. For the sign-

prediction task, again, all three objective functions performed

comparably (not shown). Full results for all levels of c are available

in Figure S1 (BMV) and S2 (FHV).

Alternative edge sign heuristic. In their SPINE method for

inferring signalling networks from source-target pairs, Ourfali et al

[12] employ the assumption that each node is either a repressor or

an activator: that is, all edges leaving from a node must have the

same sign. Our own heuristic simply requires that, globally, at least

90% of edges must be activating. To compare the two, we

constructed an alternate version of our IP that contains SPINE’s

heuristic. This is achieved with the introduction of two new

variables per node and four new constraints per edge; the details

are provided in Text S2.

We use the sign-prediction task to compare our heuristic to

SPINE’s. As shown in Figure 7, our global constraint results in

higher sign-prediction accuracy than SPINE’s locally-based

constraints. Under the SPINE heuristic, the majority of edges

are still inferred to be activating. Among the ensembles that

were used to generate the BMV SPINE sign curve in Figure 7,

the proportion of activating edges ranges from 0.73–0.84, with a

median of 0.79. For BMV, the SPINE heuristic’s accuracy

appears comparable to that of setting a~0:8. Additional results

for all levels of c are available in Figure S3 (BMV) and S4

(FHV).

Varying parameters and using additional cons-

traints. We also performed additional experiments to measure

the effects of other aspects of our method. We summarize the

results here, and provide precision-recall curves in Figures S5-S9.

N Constraining edge signs. We tested our method under two smaller

values of the parameter a, the proportion of activating edges:

0.7 and 0.8. On the sign-prediction task, setting a~0:9 results

in the highest accuracy, and accuracy drops as a decreases.

The hit-prediction accuracy of our method, however, appears

to be fairly insensitive to the value of this parameter.

N Prohibiting cycles in the inferred subnetworks. We compared

precision-recall curves for both data sets and several values

of c, both allowing and disallowing cycles in the inferred

network. Disallowing cycles does not appear to have a strong

or consistent effect on the method’s precision. However, our

rationale for prohibiting cycles is based on interpretability

considerations.

N Seeding the subnetwork with edges and interfaces from domain knowledge.

Seeding the subnetwork with literature-curated edges does not

appear to have an effect on BMV hit- and sign-prediction

accuracy. However, we believe that doing so is qualitatively

useful, as it allows our method to make predictions about

what additional hits might be explained by already-studied

mechanisms.

Figure 8. A component from the inferred subnetwork ensem-
ble showing the predicted involvement of Snf7p and Vps4p in
viral replication. For predictions made about node and edge
relevance, confidence values ,1.0 are indicated. For the unassayed
nodes, the same phenotype label prediction was made in all solutions
in which they appear; similarly, all solutions predicted the same
direction for the undirected edges. Dashed edges indicate cases in
which the edge’s direction was not fixed in the background network.
See Figure 1 for a key to the other network elements.
doi:10.1371/journal.pcbi.1003626.g008
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Phenotype prediction for unobserved host factors
One motivation for our inference approach is to make

predictions about which unassayed host factors may be involved

in viral replication. A number of host factors were unable to be

assayed using the deletion or doxycycline-repressible mutant

libraries, either because the mutant was not part of the library

or did not grow under experimental conditions. As these factors

cannot be assayed using high-throughput screens, there is a need

to identify a high-confidence subset of them for further, lower-

throughput experimentation. Toward this end, we use our

approach to make predictions about host factors that were not

assayed (or not successfully assayed) in the genome-wide BMV

screens [1,4]. We collect an ensemble of 100 inferred subnetworks

using all available phenotype data and allowing the use of 97

interfaces. We choose this number of interfaces because it is in the

middle of the range tested in our cross-validation experiments, the

results of which suggest that prediction accuracy is not significantly

affected by a larger number of interfaces. We also seed the network

with the literature-curated edges described in the Data section.

Out of 1,821 unassayed host factors in the background network,

221 are predicted to be relevant by any of the 100 inferred

subnetworks in the ensemble, and 189 receive §0:75 confidence.

Of these, 124 represent ORFs (about 9% of unassayed ORFs/

putative ORFs), and 65 represent protein complexes (about 14%

of represented protein complexes). Here we discuss independent

evidence supporting a selection of these predictions.

In numerous cases, the predicted hits include members of

pathways of protein complexes known to be involved in BMV

replication. In these cases, the inferred subnetworks correctly

expanded the relevant complexes with other known components

or functional partners that were absent from the given hit sets for

technical reasons, such as non-viability of the relevant mutant

strain. One example is the inferred inclusion of previously un-

implicated components of the cellular ubiquitin-proteasome

system, such as the 20S proteasome and components of the 19S

regulator complex. While some experimental and literature-

curated hits are associated with the proteasome, the predicted

hits contribute several more proteasomal proteins. Recent

additional experiments, including inhibitor studies and other

approaches, have confirmed the involvement of the 20S protea-

some, the 19S regulator and other factors in this system in multiple

aspects of BMV RNA replication (B.G. and P.A., unpublished

results).

Even more important biological validation of our results

emerged from additional experimental studies. For example, our

ensemble predicts the involvement of Snf7p and Vps4p, both at

0.99 confidence. These are proteins in the ESCRT pathway,

which is involved in membrane bending and scission events in cell

division, cell surface receptor down-regulation and other processes

[53]. Recent studies initiated independently of the work reported

here have confirmed the predicted role of ESCRT pathway, and

of Snf7p and Vps4p in particular, in facilitating BMV RNA

replication (A. Diaz, X. Wang and P. Ahlquist, manuscript in

preparation). The predicted relevant interactions involving Snf7p

and Vps4p are shown in Figure 8.

A further example is provided by the inferred involvement of

Xrn1p, a protein involved in RNA degradation. An independent

study confirmed the strong impact of the gene XRN1 on BMV

replication by showing that a BMV mutant defective in modifying

BMV RNA’s by the addition of a 5’ m7G cap could not

accumulate RNA in wild type yeast but did so in an xrn1D deletion

strain [54].

Host-virus interface predictions
The subnetworks inferred using our method can be used to

predict which host factors are closest to a direct interaction with

the virus. For this evaluation, we predict a set of high-confidence

host interfaces for BMV. The ability of our methods to predict

physical interfaces between host protein networks and viral

components is constrained by the limits of current background

knowledge, as specifically represented by the input background

network of interacting host proteins. Because of such external

limitations, some predicted interfaces may not represent actual

host-virus interfaces, but instead approximate the host component

that would most likely connect with an actual interface if the

relevant subnetwork were extended to include currently unrecog-

nized interaction partners. We consider support from domain

knowledge that the predicted interfaces are plausibly close to a

direct interaction with a viral component.

To predict high-confidence interfaces, we infer an ensemble of

100 subnetworks for BMV-yeast interactions, applying the global

constraint that only the minimum possible number of interfaces

can be used (that is, the smallest number of interfaces such that the

IP remains feasible; in this case, 47). We also seed the network with

the literature-curated edges described previously, which include

four interfaces. Over the entire ensemble, the total number of

interfaces used by at least one subnetwork is 51. We designate as

‘‘high-confidence’’ those interfaces that (i) account for more than

one hit (other than themselves), (ii) have greater than 0.75

confidence, and, (iii) are predicted to be an interface with an

average of at least 0.75 confidence across all of the leave-one-out

ensembles inferred using a minimum number of interfaces.

Our method predicts 14 novel high-confidence yeast interfaces

for BMV, as shown in Table 6. We assessed these high-confidence

interfaces for plausibility based on their annotated function in the

Saccharomyces Genome Database [55].

The value of our subnetwork inference method is supported by

the observation that several of the predicted 14 high-confidence

interfaces are known interactors with BMV components and many

more are closely associated with known interactors. Below we

Table 6. High-confidence predicted interfaces.

Function or location Predicted interfaces

Membrane Nem1p/Spo7p holoenzyme, Set3p complex, Tcb3p, UDP-N-acetylglucosamine complex

Ribosome Dbp2p

Viral RNA and protein interactions OCA complex, Ski complex, Smt3p, Ahp1p, 19/22S regulatory complex of proteasome, Cdc34p

mRNA transcription Gcn5p, Sir4p, Tup1p

Yeast proteins and protein complexes predicted to affect BMV through a direct interaction.
doi:10.1371/journal.pcbi.1003626.t006
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discuss available information on several classes of these predicted

interfaces.

Membrane-associated interfaces. Multiple predicted in-

terface proteins have functions or localization related to endo-

plasmic reticulum (ER) membranes, the site of BMV genomic

RNA replication [56,57]. Of these, three reside on the ER (the

Nem1p/Spo7p holoenzyme, Tcb3p, and the UDP-N-acetylgluco-

samine transferase complex, which consists of Alg13p and Alg14p).

Such proteins may represent anchors for BMV RNA replication

complexes, as the mechanisms that localize BMV RNA replication

to ER membranes are not completely understood [58]. One of

these potential interfaces, Tcb3p, normally resides predominantly

on the cortical ER membrane near the cell periphery, rather than

on the perinuclear ER membrane that is the major site of BMV

RNA replication. However, it was recently shown that BMV

RNA replication factor 1a interacts with and induces the

relocalization of at least one class of cortical ER membrane

proteins, the reticulons, to the perinuclear ER [47]. In addition,

the Nem1p/Spo7p phosphatase complex is involved in regulating

phospholipid biosynthesis. Regulated synthesis of new lipids is

critical to create a specific, expanded membrane compartment

essential for RNA replication by BMV [43,59] and other positive-

strand RNA viruses, a number of which were recently shown to

interact with lipid synthesis factors to actively promote lipid

synthesis [60]. In addition, the Set3p complex is a histone

modifier involved in regulating the secretory stress response. This

complex might play a role in responding to the extensive

occupation of the cell’s ER membrane by BMV RNA replication

complexes [56,57].

Ribosome-associated interface. One predicted interface is

related to ribosomes, which directly interact with BMV genomic

and subgenomic RNA to produce all BMV proteins, and thus

regulate all steps of BMV replication and gene expression. Dbp2p

is involved in processing ribosomal RNA (rRNA) precursors into

mature form. The actual yeast-BMV interface might be this rRNA

synthesis factor or its rRNA products, which interact with BMV

RNAs in their primary role as key ribosomal components.

Ribosomal-RNA-related proteins modulate ribosome abundance,

which positively and negatively regulates the relative translation

levels of different classes of mRNAs, including the competition

between polyadenylated cellular mRNAs and non-polyadenylated

mRNAs such as those of BMV RNAs [61]. Changes in ribosome

synthesis rates, as well as more specific changes, could also alter

the specific protein composition of ribosomes, which has can exert

dramatic effects on the translation efficiencies of viral mRNAs

[62].

Interfaces implicated in viral RNA or protein

interactions. Additional predicted interface proteins are likely

to interact with BMV RNAs or proteins. The Ski complex directs

degradation of viral and cellular mRNAs, notably including

Figure 9. A component from the inferred subnetwork
ensemble showing a connection between Acb1 and the
literature-extracted ubiquitin-proteasome-system inter-
actions. All node and edge predictions shown have confidence = 1.0
in the ensemble. A dashed edge with no terminal indicates connections
to the rest of the subnetwork. Edges extracted from literature are
colored blue. Doubled blue edges (as from Rsp5p to Spt23p) indicate
literature-extracted edges that were also present in the original
background network. See Figure 1 for a key to the other network
elements.
doi:10.1371/journal.pcbi.1003626.g009

Figure 10. A component from the inferred subnetwork
ensemble showing a connection between the literature-
identified interface Ydj1p and two hits, Hsf1p and Ure2p. The
blue edge from Ydj1p to the virus was originally extracted from
literature. See Figure 1 for a key to the other network elements.
doi:10.1371/journal.pcbi.1003626.g010
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preferential degradation of non-polyadenylated RNAs like those of

BMV [61,63]. Consistent with direct Ski-mediated degradation of

BMV RNAs, knockout of Ski components increases BMV

replication [1]. Interestingly, Ski-mediated mRNA degradation

involves the exosome, a complex also involved in the rRNA

processing discussed above.

The Oca complex (Oca1p, Oca2p, Oca4p-6p and Siw14p) was

predicted as an interface because knockouts of each of its genes

produced significant BMV replication phenotypes. Two of its

subunits, Siw14p and Oca1p, are tyrosine phosphatases. It was

suggested previously that these phosphatases may play a role in

undermining viral protein phosphorylation events that inhibit

RNA replication complex assembly [1,64].

Finally, multiple predicted interfaces (19/22s regulatory

particle of the proteasome, Cdc34p, and Smt3p) are compo-

nents of the ubiquitin-proteasome system, which covalently

modifies proteins to direct their degradation, intracellular

trafficking or other purposes. Many viruses encode proteins

that interact with this system to modulate viral protein

accumulation, targeting or function, or to direct the degradation

of interfering cell proteins [65–67]. As these precedents include

many other positive-strand RNA viruses, BMV may well do the

same [68].

Interfaces involved in regulation of mRNA trans-

cription. The remaining predicted interfaces are involved in

the regulation of mRNA transcription. As BMV is an RNA virus,

these proteins are unlikely to be required for the virus’ replication

in its natural host. Instead, they may be artifacts of the DNA

plasmid-directed experimental system used to artificially initiate

BMV replication in yeast.

Impact of provided domain knowledge
One significant advantage of our approach is that it enables

domain knowledge to be readily incorporated into the inferred

subnetworks. Specifically, the IP can incorporate constraints that

represent knowledge about host factors and interactions that are

known to be involved in viral replication, thereby influencing

decisions about the rest of the subnetwork. These constraints were

shown in the Computational Methods section.

Here, we consider the effect of seeding the subnetworks with

interactions from specific host pathways that are known to be

involved in BMV replication. This set of domain knowledge,

which we have elicited from the relevant literature, comprises 28

interactions among 24 host factors. It also specifies several host

factors that should be treated as interfaces. For comparison, we

also infer BMV subnetwork ensembles that do not use the

literature-curated interactions. Seeding the subnetwork with these

interactions does not have any apparent effect on hit-prediction

accuracy, as we discussed earlier in the Results section. However,

the interactions do appear to have an influence on their local

neighborhoods. In examining the 97-interface BMV subnetwork

ensemble, we observe a small number of cases in which the

supplied interactions and interfaces serve to provide ‘‘anchors’’

that allow us to explain other, related hits.

One set of edges extracted from the literature connects the

ubiquitin-proteasome pathway to membrane synthesis, and

specifies that Ole1p is an interface to BMV. The inferred

subnetwork identifies a connection between Ole1p, a fatty acid

desaturase, and Acb1p, which is involved in transporting newly

synthesized fatty acids; the relevant portion of the subnetwork is

shown in Figure 9. The connection between the ubiquitin-

proteasome pathway and Acb1p was not identified in any

subnetwork inferred without the provided literature-based

interactions. Furthermore, Ole1p is not inferred to be relevant

at all without the provided interactions.

Another component from the literature specifies the chaperone

protein Ydj1p is an interface. The inferred subnetwork, shown in

Figure 10, identifies upstream connections from the hits Hsf1p and

Ure2p to Ydj1p, which were not mentioned in the paper

discussing Ydj1p’s relationship to BMV [45]. These inferred

connections demonstrate that the inferred subnetwork can be used

to predict relevant connections between well-understood compo-

nents of the network and host factors that have not yet been

studied in detail.

Gene ontology analysis of inferred BMV subnetwork
To supplement our manual analysis of predicted hits and

interfaces, we employ the Model Based Gene-Set Analysis

(MGSA) tool [69] to evaluate the ability of the inferred

subnetwork to better identify relevant functional categories

than an analysis of the experimental hits alone. The MGSA

method uses a Bayesian network to analyze the representation

of all GO terms in a gene set at once. As output, it provides the

marginal probability that each GO term accounts for the input

gene set. We use MGSA to analyze first the experimental hits

and literature-derived relevant genes for BMV that are present

in the background network, and second, the experimental hits

combined with the predicted hits from the 97-interface

inferred subnetwork. We use a probability threshold of 0.25

because we are willing to tolerate a degree of redundancy in

the results, in exchange for the identification of a thorough list

of representative GO terms.

We further assess the significance of each returned GO term

by comparison to the subnetworks inferred from random data.

For each GO term, we generate a p-value as the proportion of

random subnetworks for which MGSA gives a greater or equal

probability.

Table 7 presents the GO terms returned by MGSA with

probability §0:25 for the combined set of experimental and

predicted hits. The ‘‘Experimental Hits’’ columns show the

number of experimental hits associated with each GO term, and

MGSA’s probability that the GO term explains the experimental

hits alone. Similarly, the ‘‘Predicted Hits’’ columns show the

number of additional predicted hits associated with the GO term,

and MGSA’s probability that the GO term explains the combined

experimental and predicted hit set. The ‘‘p-value’’ column shows

the proportion of random subnetworks with equal or greater

probability for the GO term as compared to the inferred

subnetwork, with asterisks indicating pv0:05.

As shown in Table 8, an additional 15 GO terms are identified

by MGSA for the combined hit set, but are not identified for the

experimental hits alone. A number of these GO terms represent

only predicted hits. Eight of the GO terms receive a pv0:05 from

the random subnetwork analysis. This result indicates that our

subnetwork inference method predicts hits that (i) are useful for

amplifying weak functional signals among the experimental hits,

and (ii) are among themselves functionally coherent. Several of

the amplified GO terms represent protein complexes or pathways

that are recognized for their role in BMV replication. Dead-

enylation-dependent mRNA decapping factors are also known to

be relevant [44], and the perinuclear region of the cytoplasm is

the cellular location in which BMV replicates [56]. Among the

novel GO terms that contain no experimental hits are represent-

ed specific parts of the ubiquitin-proteasome system and

ribosome synthesis, both of which we have noted are relevant

to BMV replication.

Inferring Host-Virus Gene Subnetworks
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Permutation analysis of inferred relevant complexes
One advantage of our method is that we explicitly include

protein complexes as nodes in our background network. We

propose that doing so allows the inferred subnetworks to provide

useful information about cooperative interactions between pro-

teins. We use two Monte Carlo tests to assess the degree to which

the representation of complexes among inferred subnetworks, and

specifically among inferred interfaces, is due to (i) topological

properties of the background network and inference procedure,

independent of the experimental data, and (ii) properties of the

experimental data, independent of the inference procedure. The

details of these experiments are available in Text S3, with results in

Tables S3-S4.

Considering predicted relevant complexes in the 97-interface

BMV subnetwork, 17 out of 65 predicted relevant complexes

receive a p-value below 0.05 from either Monte Carlo test. Of the

high-confidence, predicted BMV-yeast interfaces that are

protein complexes or are members of complexes, five out of

the eight receive a p-value below 0.05 from either test. These

results indicate that the representation of many complexes by

our inferred subnetworks are well-supported by predicted hits

and are not likely to be artifacts of the background network or

chance.

Discussion

We have presented an approach that aims to elucidate how

viruses exploit their host cells. Our approach uses known host

intracellular interactions to infer ensembles of directed subnet-

works which provide consistent explanations for phenotypes

measured in genome-wide loss-of-function assays. This approach

is able to represent a rich set of interaction types, in addition to

domain knowledge about specific interactions that are known to be

relevant. By inferring an ensemble of subnetworks, the approach is

able to quantify its certainty about the relevance of various genes

and interactions.

The value of the subnetworks inferred by our method is

that they can be used to (i) predict which unassayed genes

may be involved in viral replication, (ii) interpret the role of

each hit in modulating the virus, and (iii) guide further

experimentation. Our empirical evaluation demonstrates

that, using a gene-prioritization method as a sub-compo-

nent, our method is able to predict phenotypes for unassayed

genes with accuracy that is comparable to the gene-

prioritization method alone. We also used our method to

predict host-virus interfaces and additional relevant host

genes for Brome Mosaic Virus, and performed a literature-

based analysis of the predicted relevant host factors. While

additional experimentation is necessary to confirm our

predictions, a number of them are supported by domain

knowledge. Among the predicted interfaces, many are

known to bind or modify RNA, localize to the site of viral

replication, or act in processes that have been previously

identified as involved in viral replication. Similarly, many

predicted hits are members of known relevant complexes,

and a few are supported by independent experiments. These

results are also supported by a Gene Ontology analysis

which showed that our inferred subnetworks identify more

relevant functional categories than the experimental data

alone. Our experiments also demonstrated that the predic-

tions made by our inferred networks have high levels of

stability given small changes to the input data.

There are a number of promising directions in which we plan to

extend this work. Among them are applying the method to RNAi

studies in more complex host networks and incorporating

literature-extracted interactions into the background network.

Our supplementary website is located at http://www.biostat.

wisc.edu/,craven/chasman_host_virus/. There we provide inte-

ger program code and data in the GAMS language, and

visualizations of the background network and inferred BMV

subnetworks as Cytoscape [70] files.

Supporting Information

Figure S1 Precision-recall and accuracy-coverage
curves for path-based objective functions; BMV dataset.
Results are provided at all levels of c (the number of interfaces).

(PDF)

Figure S2 Precision-recall and accuracy-coverage
curves for path-based objective functions; FHV dataset.
Results are provided at all levels of c (the number of interfaces).

(PDF)

Figure S3 Precision-recall and accuracy-coverage
curves for the SPINE phenotype-sign heuristic; BMV
dataset. Results are provided at all levels of c (the number of

interfaces).

(PDF)

Figure S4 Precision-recall and accuracy-coverage
curves for the SPINE phenotype-sign heuristic; FHV
dataset. Results are provided at all levels of c (the number of

interfaces).

(PDF)

Figure S5 Precision-recall and accuracy-coverage
curves showing the effect of varying a; BMV dataset.
Results are provided for at all levels of c (the number of

interfaces).

(PDF)

Figure S6 Precision-recall and accuracy-coverage
curves showing the effect of varying a; FHV dataset.
Results are provided for at all levels of c (the number of

interfaces).

(PDF)

Figure S7 Precision-recall and accuracy-coverage
curves assessing accuracy of the cycle-prohibiting
constraint; BMV dataset. Results are provided at all levels

of c (the number of interfaces).

(PDF)

Figure S8 Precision-recall and accuracy-coverage
curves assessing the accuracy of the cycle-prohibiting
constraint; FHV dataset. Results are provided all levels of c
(the number of interfaces).

(PDF)

Figure S9 Precision-recall and accuracy-coverage
curves assessing the accuracy of literature-curated
interactions. Results are provided for BMV at all levels of c
(the number of interfaces).

(PDF)

Table S1 Stability of leave-one-out inferred subnet-
works. Stability of predictions for all settings of c.

(PDF)

Table S2 Sizes of inferred subnetworks. Average counts of

weak and unassayed host factors that are predicted to be relevant

by the leave-one-out ensembles.

(PDF)
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Table S3 Enriched, predicted relevant, protein com-
plexes. List of protein complexes predicted to be relevant and

supported by permutation analyses.

(PDF)

Table S4 Interfaces accounted for by enriched com-
plexes. List of high-confidence interfaces that are or are

represented by significantly-enriched protein complexes.

(PDF)

Text S1 Stability analysis of inferred subnetworks.
Analysis of the stability of the predictions made by the cross-

validation ensembles.

(PDF)

Text S2 SPINE edge-sign prediction heuristic. Descrip-

tion of the IP variables and constraints used to implement the

SPINE-based edge sign prediction heuristic.

(PDF)

Text S3 Permutation analysis of inferred relevant
complexes. Further analysis of predicted relevant protein

complexes.

(PDF)
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