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Abstract

Emotion influences most aspects of cognition and behavior, but emotional factors are

conspicuously absent from current models of word recognition. The influence of emotion on word

recognition has mostly been reported in prior studies on the automatic vigilance for negative

stimuli, but the precise nature of this relationship is unclear. Various models of automatic

vigilance have claimed that the effect of valence on response times is categorical, an inverted-U,

or interactive with arousal. The present study used a sample of 12,658 words, and included many

lexical and semantic control factors, to determine the precise nature of the effects of arousal and

valence on word recognition. Converging empirical patterns observed in word-level and trial-level

data from lexical decision and naming indicate that valence and arousal exert independent

monotonic effects: Negative words are recognized more slowly than positive words, and arousing

words are recognized more slowly than calming words. Valence explained about 2% of the

variance in word recognition latencies, whereas the effect of arousal was smaller. Valence and

arousal do not interact, but both interact with word frequency, such that valence and arousal exert

larger effects among low-frequency words than among high-frequency words. These results

necessitate a new model of affective word processing whereby the degree of negativity

monotonically and independently predicts the speed of responding. This research also

demonstrates that incorporating emotional factors, especially valence, improves the performance

of models of word recognition.
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Emotion influences most aspects of cognition and behavior, from visual attention (Rowe,

Hirsh, & Anderson, 2007) to social comparison (Estes, Jones, & Golonka, 2012). It affects

how we see the world, what we think, and with whom we associate (Forgas, 1995; van

Kleef, 2009). Emotions are typically characterized along two primary dimensions of arousal

and valence (Russell, 2003; Russell & Barrett, 1999), which correspond respectively to

Osgood and colleagues’ (Osgood, Suci, & Tannenbaum, 1957) semantic factors of activity

and evaluation. Arousal is the extent to which a stimulus is calming or exciting, whereas

valence is the extent to which a stimulus is negative or positive. These two dimensions are

theoretically orthogonal: Negative stimuli can be either calming (e.g., dirt) or exciting (e.g.,

snake), and positive stimuli can also be calming (e.g., sleep) or exciting (e.g., sex). Arousal

and valence are also neurologically dissociable, activating distinct cortical networks

(Kensinger & Corkin, 2004; LaBar & Cabeza, 2006).

The present research investigates effects of arousal and valence on word recognition. Word

recognition has received considerable research attention over the last few decades, and

despite a number of important theoretical advances (see Adelman, 2012), a great deal of the

variance in word recognition times still remains unexplained (Adelman, Marquis, Sabatos-

DeVito, & Estes, 2013). Notably, the current models incorporate a broad range of lexical

factors such as word frequency (Brysbaert & New, 2009) and contextual diversity

(Adelman, Brown, & Quesada, 2006), but emotional factors are conspicuously absent. So

given the influence of emotion on cognition, and the lack of emotional factors in current

models of word recognition, the present study examined the influence of emotion on word

recognition.

Effects of emotion on word recognition

Many experiments over decades of research suggested that negative stimuli elicit slower

responses than neutral stimuli on a range of cognitive tasks. For instance, negative words

such as coffin tend to evoke slower color naming in the emotional Stroop task (for a review,

see Williams, Mathews, & MacLeod, 1996), slower lexical decisions (e.g., Wentura,

Rothermund, & Bak, 2000), and slower word naming (a.k.a., reading aloud; e.g., Algom,

Chajut, & Lev, 2004) than neutral words such as cotton. This observation was attributed to a

process of automatic vigilance, whereby humans preferentially attend to negative stimuli

(Erdelyi, 1974; Pratto & John, 1991). According to this automatic vigilance hypothesis,

negative stimuli engage attention longer than other stimuli (Fox, Russo, Bowles, & Dutton,

2001; Ohman & Mineka, 2001), and hence negative stimuli elicit slower responses than

other stimuli. The automatic vigilance hypothesis thus assumes that emotion affects the

decisional or response stage of word processing: The delayed response to negative words

arises during the lexical decision or naming process, rather than during the activation of

lexical or semantic representations. Alternatively, emotion could affect the activation of

those lexico-semantic representations (Yap & Seow, 2013). That is, activation of negative

representations may be “repressed” (Erdelyi, 1974) and/or positive representations may be

activated particularly quickly. In fact, Yap and Seow recently reported evidence that valence

affects both early and late stages of the word recognition process.
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Those decades of experimental results, however, are critically undermined by a lack of

stimulus controls (Larsen, Mercer, & Balota, 2006). Larsen et al. conducted a meta-analysis

of 1033 stimulus words that were used in 32 published studies on the emotional Stroop task

(i.e., color naming of emotional and neutral words). They found that the negative words

used in those prior studies tended to be longer and less frequent than the neutral words (see

also Warriner, Kuperman & Brysbaert, 2013). These lexical confounds, both of which are

known to slow down word recognition (e.g., Balota, Cortese, Sergent-Marshall, Spieler, &

Yap, 2004), could parsimoniously explain the effects observed in those prior studies. And

indeed, Larsen et al. found that after controlling those spurious lexical confounds, negative

words no longer elicited slower responses than neutral words. Thus, the entire literature on

automatic vigilance was rendered equivocal. Since Larsen et al.'s (2006) critical observation,

several more recent and better controlled studies have examined the effect of emotion on

word recognition, but unfortunately those studies have yielded differing conclusions.

Recent Controlled Studies

Estes and Adelman (2008a) examined the influence of valence on lexical decision and

naming latencies, while controlling other important emotional and lexical factors (see Table

1). They found that arousal significantly predicted word recognition: Exciting words tended

to be recognized faster than calming words. Their analyses additionally showed that, even

after statistically accounting for arousal and several lexical factors, valence still explained

significant variance in lexical decision and naming times. Negative words tend to be

recognized more slowly than positive words. In contrast to a linear effect whereby

increasingly negative and increasingly positive words elicit increasingly slow and fast

response times (RTs) respectively, Estes and Adelman found that the effect of valence on

word recognition times was nonlinear. Extremely negative words were recognized no slower

than moderately negative words, and extremely positive words were recognized no faster

than moderately positive words. This produced a step-function whereby RTs remained

constant and slow across the category of negative words, decreased sharply through the

neutral region of the valence scale, and then remained constant and fast across the category

of positive words.

Whereas Estes and Adelman (2008a) tested for independent effects of valence and arousal,

Larsen, Mercer, Balota, and Strube (2008) examined whether arousal and valence have an

interactive effect on word recognition. They replicated Estes and Adelman's analyses of

lexical decision and naming times (except with different control factors, see Table 1), and

additionally included the possible interaction between arousal and valence. Larsen et al.

found a significant interaction between arousal and valence in lexical decisions (but not in

naming), such that low arousal tends to slow down lexical decisions to negative words but

speeds up lexical decisions to positive words (see also Robinson, Storbeck, Meier, &

Kirkeby, 2004). Highly arousing words, in contrast, exhibited little or no effect of valence.

Estes and Adelman (2008b) subsequently demonstrated, however, that Larsen et al.'s

reported interaction of valence and arousal depended critically on the underlying form

assumed for valence. When valence was entered into the regression model as a linear

continuous predictor, then it interacted with arousal in predicting RTs (as in Larsen et al.,

2008). However, when valence was entered into the model as a categorical predictor (as
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previously observed by Estes and Adelman, 2008a), the interaction reported by Larsen et al.

disappeared and negative words elicited slower lexical decisions than positive words

regardless of their arousal (i.e., an effect of valence was also observed among highly

arousing words).

A limitation of the studies by Estes and Adelman (2008a) and Larsen et al. (2008) was their

use of the Affective Norms for English Words (ANEW; Bradley & Lang, 1999) as the sole

source of stimuli. ANEW is useful for sampling a limited number of emotional words, but

because the words in ANEW were primarily selected for their emotionality, ANEW lacks

the preponderance of emotionally neutral words that is typical of natural languages (Kousta,

Vinson, & Vigliocco, 2009). Kousta et al. thus merged ANEW with an additional set of

randomly selected words, producing a total of 1446 words, including more neutral words

than the prior studies. They also employed more sophisticated regression methods for

detecting nonlinear relationships. Unlike Estes and Adelman, Kousta et al. found no effect

of arousal on lexical decision latencies when controlling for valence. Critically, they also

found that after controlling for several other lexical, semantic, and emotional factors (see

Table 1), negative and positive words both elicited faster lexical decisions than neutral

words, and the difference between negative and positive words was nonsignificant. That is,

Kousta et al. found a nonlinear, inverted-U effect of valence on lexical decision times. They

did not test for an interaction between arousal and valence. These findings based on the

large-scale behavioral data set collected in US universities and available from the English

Lexicon Project (ELP; Balota et al., 2007) have recently been replicated by Vinson, Ponari,

and Vigliocco (2013) with the British Lexicon Project (Keuleers, Lacey, Rastle, &

Brysbaert, 2012), a mega-study that reported lexical decision latencies to over 28,000 words

collected at UK universities. Vinson et al. (2013) observed an inverted-U effect of valence

on lexical decision times, and they found no evidence of a valence × arousal interaction.

Emotion × Frequency Interactions

Word frequency is among the most important factors of word recognition. To begin with, in

most studies it explains a relatively large amount of the variance in word recognition

latencies and accuracies (Balota et al., 2004; Brysbaert & New, 2009; Yap & Balota, 2009):

Frequent words are recognized more quickly and accurately than infrequent words. More

critically for the present study, frequency also tends to modulate the effects of other factors

on word recognition. For instance, although both imageability and age of acquisition

influence word recognition (Balota et al., 2004; Brysbaert & Cortese, 2011; Cortese &

Khanna, 2007; Kuperman, Stadthagen-Gonzalez, & Brysbaert, 2012), both of those effects

are significantly larger among low frequency words than among high frequency words (e.g.,

Cortese & Schock, 2013; Gerhand & Barry, 1999a, 1999b). Two plausible explanations of

such interactions with frequency can be differentiated. One general explanation is purely

statistical and relies on a base-rate effect, namely, that the magnitude of word recognition

latencies is positively correlated with the magnitude of lexical effects on the speed of word

recognition. The same relative effect size (say, a 25% difference in RTs between words of

high and low imageability) leads to a larger absolute effect in words with longer mean

latencies (e.g., 150 ms in words with a mean RT of 600 ms) than in words with shorter mean

latencies (e.g., 100 ms in words with a mean RT of 400 ms). Since lower-frequency words
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take longer to recognize, all lexical effects may appear larger in those words (Butler &

Hains, 1979; Faust, Balota, Spieler, & Ferraro, 1999; Kuperman & Van Dyke, 2013; Yap,

Balota, Sibley, & Ratcliff, 2012). A second explanation is that because low frequency words

take longer to recognize, there is more time for higher-level semantic factors (e.g.,

imageability) to affect responding. In contrast, because high frequency words are recognized

relatively quickly, semantic factors exert little or no effect on word recognition (Cortese &

Schock, 2013). Thus, the former explanation is purely mathematical, whereas the latter is

cognitive.

Word frequency also appears to modulate emotional effects on word recognition, but the

nature of this modulation is currently unclear. In the emotional Stroop task, valence

influenced responses to low frequency words, such that negative words elicited slower color

naming than positive words. Among high frequency words, however, valence had no effect

(Kahan & Hely, 2008). This finding is analogous to the results described above, in that high

frequency tends to reduce or eliminate effects of other factors (e.g., imageability, age of

acquisition, valence). In lexical decisions, however, some evidence suggests an opposite

effect. Scott, O'Donnell, Leuthold, and Sereno (2009) reported that among low frequency

words, negative and positive words elicited equally slow responses, but that among high

frequency words, negative words elicited slower lexical decisions than positive words.

Further research with eye movements during sentence reading confirmed the interaction of

valence and frequency. Whereas fixation durations did not differ between low frequency

words of negative and positive valence, fixations on high frequency words were

significantly longer for negative words than for positive words (Scott, O'Donnell, & Sereno,

2012). Furthermore, Sheikh and Titone (in press) observed speed benefits to both positive

and negative words, as compared to neutral ones, but only when words were of low

frequency and relatively concrete. Thus, despite empirical ambiguity in the direction of the

effect, it is now clear that word frequency often modulates emotional effects on word

recognition. Unfortunately, none of the recent controlled studies of emotional effects on

word recognition (i.e., Estes & Adelman, 2008a, 2008b; Kousta et al., 2009; Larsen et al.,

2008) controlled or tested for interactions with word frequency.

The Present Study

Empirical Contribution

Prior studies have demonstrated that emotion influences word recognition, but the precise

nature of this relationship is unclear. Two main theoretical issues have arisen. First, there is

disagreement about the functional form of the effect of valence on word recognition.

Specifically, it is unclear whether the effect of valence on word recognition is monotonic but

has a step-function form (Estes & Adelman, 2008a, 2008b), monotonic with a linear form

(Larsen et al., 2008) or nonmonotonic with an inverted-U form (Kousta et al., 2009; Vinson

et al., 2013). Second, it is unclear whether arousal and valence have independent effects on

word recognition. Some researchers have found that both arousal and valence influence

word recognition (Estes & Adelman, 2008a), whereas others have found effects of valence

but not arousal (Kousta et al., 2009). Moreover, some have found that arousal and valence

have an interactive effect on word recognition (Larsen et al., 2008), but others have argued
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against the validity of such an interaction (Estes & Adelman, 2008b; Vinson et al., 2013).

Thus, the present study compared statistical models that varied in whether they treated

arousal and valence as linear or nonlinear and independent or interactive.

The prior studies have also exhibited some potentially critical empirical limitations. To

begin with, although they included substantially larger samples of stimuli than the pre-2006

experiments in this area of research, those regression studies each sampled little more than a

thousand words (see Table 1). By the current standards of research on word recognition

(e.g., Brysbaert & New, 2009; Yarkoni, Balota, & Yap, 2008; for review see Adelman,

2012), those are small samples. Moreover, although Kousta et al. (2009) and Vinson et al.

(2013) added a few hundred neutral words, the prior studies nonetheless contain a paucity of

neutral words, thus undermining their representativeness. Furthermore, the various studies

have included different sets of control factors (see Table 1), making it difficult to compare

results from one study to the next. For instance, the discrepant results between Estes and

Adelman (2008a) and Kousta et al. could simply be due to the fact that Estes and Adelman

did not control for age-of-acquisition, or that Kousta et al. did not control contextual

diversity. Perhaps most importantly, those prior studies did not test for emotion × frequency

interactions, which are known to occur in word recognition (Kahan & Hely, 2008; Scott et

al., 2009, 2012; Sheikh & Titone, in press). The present study aimed to address these

limitations by (1) sampling a substantially larger set of words that (2) were not sampled for

their emotionality and thus are more representative of natural language, (3) including many

more lexical and semantic control factors than any prior study, and (4) testing for

interactions of valence and arousal with word frequency.

Thus, the present study used a sample (12,658 words) from the dataset of affective norms

(psychological valence, arousal and dominance) collected by Warriner et al. (2013), which is

about 9-13 times larger than the prior studies. The analyses also included about twice as

many lexical and semantic control factors, to critically test multiple models of emotional

word recognition. Our study has been made possible by the recent emergence of

psycholinguistic mega-studies (for review see Adelman, 2012; Balota, Yap, Hutchinson, &

Cortese, 2012), whereby massive datasets compiling the lexical (Brysbaert & New, 2009;

Kuperman et al., 2012), semantic (Brysbaert, New, & Keuleers, 2012), and emotional

characteristics (Warriner et al., 2013) of many thousands of words can be merged with

behavioral data such as lexical decision and naming latencies and accuracies for those same

words, namely the English Lexicon Project (Balota et al., 2007). The present research

employs this mega-study approach to determine the precise nature of the effects of arousal

and valence on lexical decision and naming latencies.

Theoretical Contribution

We anticipate two important theoretical contributions from this research. First, this research

is most informative for models of automatic vigilance. The effect of valence on word

recognition times has been a primary source of evidence for automatic vigilance (Algom et

al., 2004; Estes & Adelman, 2008a, 2008b; Larsen et al., 2008; Pratto & John, 1991;

Wentura et al., 2000; Williams et al., 1996), but several different relationships have been

hypothesized. The simplest model of automatic vigilance supposes that humans immediately
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judge stimuli as either aversive (i.e., negative stimuli to be avoided) or appetitive (i.e.,

positive stimuli to be approached) in a binary, categorical manner (Estes & Adelman, 2008a,

2008b). Such simple evaluative judgments would be behaviorally adaptive in that they

would facilitate rapid decisions and actions. Deliberating about whether a stimulus is

extremely dangerous or only moderately dangerous could in fact be fatal, whereas over-

reacting with an extreme response to a moderately dangerous stimulus is merely disruptive

rather than fatal. Of course, humans are capable of differentiating extreme from moderate

stimuli, but the implication is that such fine discriminations occur via a slower, more

deliberative process than the one that influences word recognition times. By this categorical

model of vigilance, the relation between valence and recognition times should be a step

function, with slower responses to negative words than to positive words (Estes & Adelman,

2008a, 2008b).

A different model arises if humans do make use of the fine discrimination of negative,

neutral and positive valence, such that it differentially affects either how fast a stimulus

activates its lexical or semantic representation (slower for negative words) or how long it

engages attention (longer for negative words) or both. By this account, a gradient effect of

automatic vigilance is expected. The gradient model predicts a linear negative effect of

valence on behavioral latencies, with slower responses to more negative words and a speed-

up with an increase in valence. Somewhat surprisingly, none of the recent controlled studies

supported such a gradient model of automatic vigilance.

In contrast to prior evidence that negativity slows down word recognition (Algom et al.,

2004; Estes & Adelman, 2008a, 2008b; Pratto & John, 1991; Wentura et al., 2000; Williams

et al., 1996), Kousta et al. (2009) found that valence, whether negative or positive, sped

word recognition. Such an inverted-U relation between valence and recognition times would

entail a double rejection of automatic vigilance: Responses are claimed to be (1) faster to

negative words than to neutral words, and (2) equally fast to negative and to positive words.

Kousta et al. instead explain their result in terms of motivational relevance: Because

negative and positive stimuli respectively activate the avoidance and approach behavioral

systems, both valences are “motivationally relevant,” and motivationally relevant stimuli are

preferentially processed (Lang, Bradley, & Cuthbert, 1990).

Alternatively, an interaction of valence and arousal (Larsen et al., 2008) would imply yet a

different model of vigilance. In fact, such an interaction effect on word recognition times

would corroborate some prior research on evaluative judgments. Robinson et al. (2004)

presented images and words that varied in arousal and valence, and had participants indicate

whether the stimulus was negative or positive. They found a similar interaction as that

observed by Larsen et al.: Negative words tended to elicit faster responses when they were

highly arousing than when they were calming, whereas positive words elicited faster

responses when they were calming than when they were arousing. According to Robinson et

al., high arousal facilitates responding to negative stimuli because this combination of

arousal and negativity is characteristic of dangerous stimuli, and rapid responding to

dangerous stimuli is adaptive. Thus, by examining the precise nature of the effects of arousal

and valence on word recognition latencies, the present research provides a critical test of

various models of automatic vigilance.
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Secondly, this research may also inform models of word recognition. Lexical and semantic

factors such as word frequency and age of acquisition have long been known to influence

the speed with which words are recognized, and decades of research have identified a

substantial list of factors that each explain some significant amount of variance in word

recognition times. For instance, Adelman et al. (2013) recently assembled a regression

model that included a comprehensive list of such factors, and the regression model

outperformed all current cognitive models of reading. In so doing, however, Adelman et al.

highlighted how little of the potentially explainable (i.e., non-noise) variance is actually

explained by the current knowledge in the field. Essentially, Adelman et al. announced a call

for the field to search for additional factors or alternative models that can more fully explain

word recognition. One class of likely predictors of word recognition missing from current

models is emotional factors, which could influence the early activation of lexico-semantic

representations and/or the late decisional-response stage of word processing (Yap & Seow,

2013). Thus, by testing for effects of valence and arousal on word recognition, the present

research contributes generally to models of word recognition.

Methods

Data

We compiled a set of 12,658 words for which all of the following variables were available.

Emotion variables—Mean valence and arousal ratings, retrieved from Warriner et al.

(2013), served as our predictor variables of primary interest.

Behavioral variables—Mean lexical decision and naming latencies, retrieved from the

ELP (Balota et al., 2007), served as our criterion variables.

Lexical control variables—Word length was controlled via several measures:

Orthographic length in characters and morphemes, and phonological length in phonemes

and syllables. Lexical density was also controlled via several measures: Orthographic,

phonological and phonographic neighborhoods (these are the number of words that can be

formed from a given word by replacing respectively one letter, one phoneme, or one letter

corresponding to one phoneme, with another in its place), and orthographic and

phonological Levenshtein distance (OLD and PLD; these are defined as the mean

Levenshtein distance between a target word and its 20 closest neighbors, where Levenshtein

distance is the minimum number of letter/phoneme insertions, deletions, or substitutions

needed to transform the target word into another word). All these values were retrieved from

the ELP. Word frequencies were retrieved from the 51 million-token SUBTLEX-US corpus

of subtitles to the US films and media (Brysbaert & New, 2009), the 130 million-token HAL

corpus of electronic communication (Burgess & Livesay, 1998), and the 8 million-token

TASA12 corpus of educational materials for 12th graders (Zeno et al., 1995). Contextual

diversity was also retrieved from SUBTLEX-US, and age-of-acquisition (AoA) was

retrieved from the norms of Kuperman et al. (2012). We further included the word's initial

phoneme and its part-of-speech (i.e., dominant PoS tag in Brysbaert, New, & Keuleers,

2012).
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Statistical Analyses

As demonstrated by Larsen et al. (2008), arousal and valence may enter into interactions that

form complex surfaces in the three-dimensional space with arousal, valence and behavioral

latency as axes. Recent reports by Kahan and Hely (2008), Scott et al. (2012) and Sheikh

and Titone (in press) additionally suggest the possibility of emotion × frequency

interactions. These observations necessitate the use of a statistical technique that enables

flexible modeling of complex surfaces, without imposing the planar functional form on

interactions. Generalized additive mixed-effects (GAM) regression modeling (see e.g.,

Hastie & Tibshirani, 1990; Wood, 2006) – as implemented in the mgcv package (Wood,

2006, 2011) of the R statistical computing software (R Core Team, 2012) – affords the

required flexibility and hence is the regression technique of choice here.1

The distributions of raw lexical decision and naming latencies showed the typical skew (i.e.,

a heavy right tail), which biases estimates of the mean. A common solution is to transform

the distribution such that it closely resembles the Gaussian, and to apply statistical methods

that assume an underlying Gaussian distribution of the data (see e.g., Baayen & Milin, 2010;

Kliegl et al., 2010). In keeping with this approach, we log-transformed the latencies, as

indicated by the Box-Cox transformation test (Box & Cox, 1964). Regression models were

thus fitted to log-transformed RTs with Gaussian as the underlying family of distributions

and identity as a link function. The results reported below were also obtained with both

untransformed RTs and inverse-transformed RTs, so our conclusions are not particular to the

transformation itself.

We frame our discussion of the functional form of emotion effects in terms of

(non)monotonicity rather than (non)linearity, because a linear effect of a predictor on a log-

transformed dependent variable only guarantees a monotonic, not necessarily linear, effect.

Moreover, the ratings of valence and arousal are ordinal variables, whereas claims of a

linear relationship require variables that are at least interval. Therefore, our research

question is better thought of as addressing the question whether the emotion effects on word

recognition are monotonic with a (near-)constant rate of change across the entire range, or

have a specialized form, such as the step-function, indicating a fast change over a limited

part of the continuum and a lesser change in the remainder.2

Multicollinearity of predictors in a regression model may inflate standard errors and distort

regression coefficients (Mason & Perreault Jr., 1991). In the present set of variables, strong

correlations typically exist both within and between measures gauging the rate and time-

course of word use (frequency of occurrence, contextual diversity, AoA) and measures

gauging formal lexical properties (e.g., length in characters, morphemes, phonemes and

syllables; orthographic, phonological and phonographic neighborhood sizes, as well as PLD

and OLD). Unsurprisingly then, the condition number test calculated for the entire set of

1For detailed description and worked examples of the use of GAM models in psycholinguistics see Baayen, Kuperman, and Bertram
(2010), Tremblay and Baayen (2010), Matuschek, Kliegl, and Holschneider (2012), Kryuchkova et al. (2012), and Balling and Baayen
(2012), and for applications in linguistic studies see Wieling et al. (2011) and Koesling et al. (2012).
2We thank Stephen Lupker for this suggestion.
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continuous variables under consideration (frequency-related measures, length-related

measures, valence and arousal) indicated substantial multicollinearity, κ = 87.13.

Several steps were taken to reduce multicollinearity. First, we applied principal components

(PC) analysis to the nine variables representing formal lexical properties. Three principal

components each explained over 5% of the variance in those formal lexical variables, and

taken together accounted for over 90% of the variance. These principal components (labeled

PC1, PC2, and PC3) were thus incorporated into our models as statistical estimators of

formal lexical properties. (Variables that loaded most strongly on PC1 were length in

characters, and orthographic and phonological density; on PC2 – orthographic, phonological

and phonographic neighborhoods; and on PC3 – length in morphemes.) Second, the effect of

word frequency (from SUBTLEX, log transformed) was partialled out from AoA and log

contextual diversity estimates. The residual values (labeled rAoA and rCD) were thus de-

correlated from the estimates of frequency and were used in further modeling. Finally, we

centered all numerical predictors. The resulting set of PC1, PC2, PC3, rAoA, rCD, word

frequency, valence, and arousal variables showed only a mild, acceptable level of

multicollinearity, κ = 16.85.

The set of continuous predictors listed above, as well as factors reflecting the first phoneme

and part-of-speech, were entered into GAM models with by-item average RTs as the

dependent variable. All continuous predictors were first explored for nonlinear effects,

implemented as restricted cubic splines. Predictors that showed no support for a nonlinear

functional form were re-entered into final models as linear. We also modeled interactions

(implemented as tensor product splines) for predictors that were shown or hypothesized to

interact in prior research (i.e., valence × arousal, frequency × valence, and frequency ×

arousal). Because the dependent variables were by-item average RTs, there were no random

effects in any models fitted to the item-level data.

Results

Our analyses addressed a progressive series of research questions, reported in turn.

What is the functional relation between word frequency and emotional factors?

Various corpora have been used for estimating word frequencies in prior studies. However,

they differ in potentially relevant ways (e.g., content and size), and indeed they are not

equally good at predicting word processing times (Brysbaert & Cortese, 2011; Brysbaert &

New, 2009). We therefore first examine whether the various corpora yield systematically

different patterns of word frequency estimates across the ranges of valence and arousal.

Figure 1 demonstrates the functional relationship of valence and arousal with word

frequency estimates from TASA12, SUBTLEX, and HAL. The figure is based on 12,092

words overlapping between the three corpora. The vertical separation among the lines

simply reflects the differing sizes, and hence the differing absolute word frequencies, of the

various corpora: TASA12 and HAL respectively are the smallest and largest of the three

corpora, so they respectively yield the lowest and highest frequency counts. Valence and

arousal are binned into twenty quantiles, each accounting for 5% of the respective

distribution, and the mean log frequency is reported for each bin.
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Frequency distributions across the valence range (left panel) are similar across corpora.

While there is an overall trend for more positive words to be more common within each of

the three corpora (i.e., all three lines peak on the right end of the scale), very negative words

are more frequent than moderately negative words. The observed spike in frequency of very

negative words will become important in our comparison of prior and present findings. The

functional relationships of frequency and arousal (right panel) differ substantially. TASA12

contains mostly low-arousal words, with highly arousing words being relatively rare, as

indicated by a frequency curve that decreases sharply across the arousal range. Put simply,

educational texts (TASA12) contain boring words, possibly due to editorial requirements to

what counts as appropriate content for school-level reading. SUBTLEX, in contrast, shows a

relatively flat pattern across the arousal range, with an increase in frequency in very

arousing words. Film and media subtitles (SUBTLEX) thus unsurprisingly contain more

exciting words, as befits their purpose of attracting and maintaining viewers’ attention.

Finally, HAL exhibits an essentially flat distribution of frequency over the arousal range.

That is, electronic communication (HAL) contains an approximately equal number of

boring, neutral and exciting words. In what follows we only consider SUBTLEX and HAL

frequency estimates, as these two corpora are larger and show a stronger convergence than

the TASA frequency counts which are based on a (6 to 16 times) smaller sample of edited

educational materials.

What is the relation between emotional factors and word recognition when the emotion ×
frequency interaction is not taken into account?

Several recent studies have indicated that emotion may interact with word frequency in

affecting word processing (Kahan & Hely, 2008; Scott et al., 2009, 2012; Sheikh & Titone,

in press), but the prior regression studies did not include emotion × frequency interactions.

For comparison with those prior regression studies, we thus examined such non-interactive

relationships between emotional factors and behavioral latencies in our larger and more

representative dataset. We plotted valence and arousal against lexical decision and naming

response times: as shown in Figure 2, we replicated the inverted-U effect of valence on

response times, as originally shown by Kousta et al. (2009). Importantly, the inverted-U

shape of the valence effect was retained after statistically accounting for all of the control

variables listed in the Methods (plot not shown). These control variables included word

frequency (SUBTLEX) but not its interactions with valence and arousal. Unlike Kousta et

al., however, our analysis also revealed an inverted-U effect of arousal on response times.

Thus, when the hypothesized interactions of word frequency with valence and with arousal

were omitted from the analyses (as in prior studies), the inverted U-shaped relationship

between emotional factors and behavioral latencies was replicated.

What is the relation between emotional factors and word recognition when the emotion ×
frequency interaction is taken into account?

Figure 3 summarizes the effects of valence (top row) and arousal (bottom row) on lexical

decision (left column) and naming (right column) response times, plotted as a function of

word frequency (SUBTLEX). Each panel displays a series of five trend lines estimated

using the cubic spline function for words falling into respective quintiles of lexical

frequency (from a solid line for the lowest frequency words to a dotted line for the highest
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frequency words). The top panels reveal that the effect of valence on behavioral latencies is

negative, and the magnitude of the effect is attenuated as frequency increases (i.e., the slope

is steep among the high lines but is flat in the lowest line). To illustrate, the magnitude of the

effect of valence on lexical decision times (top left panel) was about 55 ms among the

lowest frequency words, but among the highest frequency words valence had little or no

effect. The bottom panels of Figure 3 reveal that the effect of arousal on behavioral latencies

is instead positive, and again the magnitude of the effect is attenuated as frequency

increases. In the extreme, the magnitude of the effect of arousal on lexical decision times

(bottom left panel) was about 55 ms among the lowest frequency words, but among the

highest frequency words arousal had little effect.

The patterns in Figure 3 are based on raw data, and are fully confirmed by the regression

model that includes emotion × frequency interactions (see models below, plots not shown).

The consistent near-linear trends observed in all frequency bands (Figure 3) reveal that the

inverted-U shape (Figure 2), which is only observed when emotion × frequency interactions

are unaccounted for, substantially mischaracterizes the effect of emotion on word

recognition behavior. Finally, the patterns in Figures 2 and 3 are based on SUBTLEX

frequencies, but those same patterns are also observed when HAL frequency counts are used

instead (plots not shown). Thus, despite being independent corpora based on different genres

of text (i.e., film and media subtitles; internet communications), SUBTLEX and HAL

frequencies yielded strikingly similar emotion × frequency interactions. Full results of GAM

regression models are reported next, separately for lexical decision and naming.

Lexical Decision—A model fitted to lexical decision RTs identified a number of outliers

(1.53% of the data points) that were further than 2.5 standard deviations from the model's

fitted values (Baayen & Milin, 2010). These outliers were removed and the model refitted.

Table 2 reports the model's outcome. Part A of the table lists the linear effects of continuous

predictors. For brevity, the effects of factorial predictors with multiple levels – namely, part-

of-speech and first phoneme – were omitted from the table. However, both of these control

factors were significant, and the full model's output is available upon request. Part B lists the

nonlinear effects (i.e., smooth terms, for which the assumption of nonlinearity was

warranted, p < 0.001 and effective degrees of freedom edf > 1) and the emotion × frequency

interactions (i.e., tensor products)3. The model explained 60.15% of the variance in

latencies.

F-test model comparisons were conducted to establish whether the valence × frequency

tensor product, and separately the arousal × frequency tensor product, significantly

improved the performance of the baseline model with nonlinear non-interacting effects of

frequency, valence, and arousal. Both tensor products were indeed warranted as terms in the

best-performing model (Table 2), with all ps < 0.001 in model comparison tests.

Furthermore, the tensor product of frequency and valence was preferred by the model

comparison test over the independent nonlinear effect of valence (which was significantly

3The output of the generalized additive models differs from outputs of most regression or ANOVA models in that the estimates and
inferential statistics for tensor products are reported for the entire hyperbolic surface, without separating it into more customary
separate representations of main effects and interactions. The main effect of frequency is not omitted, but rather is fully accounted for
when frequency is entered as one of terms in the tensor product with valence, arousal or any other variable.
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negative, p < 0.001). Likewise, the tensor product of frequency and arousal was preferred

over the nonlinear effect of arousal (which was nonsignificant, p = 0.15). In short, adding

the frequency × valence and frequency × arousal interactions significantly improved the fit

of the models. The tensor product of valence and arousal did not reach significance in any of

the models, suggesting that these affective properties have independent effects.

Critically, including these emotion × frequency interactions revealed effects (Figure 3) that

are strikingly different from those observed when the interactions are excluded from the

models (Figure 2): Namely, what previously appeared as inverted U-shaped effects of

valence and arousal on response times are now revealed to actually be monotonic,

essentially linear effects. In none of the frequency bands did the effect of valence on

response times exhibit an inverted U-shape. The effect of arousal on response times was also

monotonic and near-linear, rather than inverted U-shaped.

There was no straightforward way to estimate the unique variance explained by either

valence or arousal, as their impact was modulated by frequency. As an approximate

estimate, we compared the amounts of variance explained by (a) the nonlinear effect of

frequency, (b) the tensor product of frequency and valence, and (c) the tensor product of

frequency and arousal. Models with predictors outlined in (a)-(c) were fitted to RTs from

which effects of all other predictors (principal components PC1, PC2, and PC3, AoA,

contextual diversity, first phoneme, and dominant part-of-speech) were partialled out.

Frequency alone (a) explained 24.4% of the variance, including the frequency × valence

interaction (b) explained 26.3%, and including the frequency × arousal interaction (c)

explained 24.5% (including both interactions together explained 26.4%). We conclude that

the contribution of valence to explained variance (the difference between (a) and (b)) is on

the order of 2%, while the contribution of arousal (the difference between (a) and (c)) is

much smaller (0.1%).

Naming—The modeling procedure was repeated with naming latencies. Table 3 reports the

model fitted to log-transformed (base e) naming latencies after removing outliers (1.82% of

the data points). Part A of the table again lists the linear effects of continuous predictors,

whereas Part B lists the nonlinear effects and the emotion × frequency interactions. Again,

for brevity, the effects of part-of-speech (nonsignificant) and first phoneme (significant)

were omitted from Table 3, but the full model's output is available upon request. The model

explained 58.01% of the variance in latencies. As with lexical decisions, F-test model

comparisons indicated that both tensor products (frequency × valence and frequency ×

arousal) significantly improve the model's performance as compared to a set of non-

interacting, nonlinear effects of frequency, valence and arousal (all ps < 0.01). Once again,

the interaction of valence and arousal was nonsignificant (p = 0.3), pointing to the

independent nature of these effects.

Amounts of variance in naming latencies explained by valence and arousal, with all other

effects partialled out, were as follows. Frequency alone (a) explained 11.1% of the variance,

including the frequency × valence interaction (b) explained 11.3%, and including the

frequency × arousal interaction (c) explained 11.2% (including both interactions together

explained 11.5%). Thus, in naming the contribution of valence to explained variance is a
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small but significant 0.2%, while the contribution of arousal is an even smaller but still

significant 0.1%.

Are emotion effects robust across individual trials?

The preceding analyses, and indeed all prior studies, examined emotion effects at the level

of words (or “item means”): Each word has a mean response time, and among the set of

words, we test whether the words’ valence and arousal ratings tend to predict their mean

response times. This analysis provides a general, averaged view of emotion effects on word

recognition. Here we additionally examine emotion effects at the level of individual trials:

Each trial of the lexical decision and naming studies produces a single response latency, and

among all those individual trials, we test whether the given word's valence and arousal

ratings tend to predict the individual response times that the given word elicited by each

participant. To illustrate, suppose a hundred words are presented to each of a hundred

participants in a lexical decision study. In the standard word-level analysis (a.k.a. “item

analysis”, “by-items analysis”, or “F2”), there would be 100 rows of data (one per item). But

in the trial-level analysis, there is a row for each trial of each participant, so there would be

10,000 rows of data (100 x 100). Clearly, this trial-level analysis is far more statistically

powerful, though it must be noted that individual response latencies are also far more

variable (due to random “noise” that is averaged out of word-level analyses).

As in previous analyses, only correct responses were considered, and we excluded outliers

identified in the ELP data (Balota et al., 2007) as trials with latencies more than 3 standard

deviations from the word's mean latency. The resulting data sets contained 384,113 and

329,871 data points for lexical decision and naming respectively. Our models (not shown)

had the same configuration of predictors as outlined above, with an addition of such

predictors as the latency and correctness of the previous response, and the position of the

word in the participant's experimental list. The maximal random effects structure was

implemented in the models, with by-subject and by-word intercepts, as well as by-subject

slopes for valence, arousal, and frequency and their interactions (Barr et al., 2013). The

results were very similar to the ones observed in average latencies. Namely, both lexical

decision and naming latencies monotonically decreased with increasing valence, while the

valence effect was at its strongest in the lower-frequency words and gradually diminished in

magnitude as word frequency increased. The same attenuation of effect with increasing

frequency was observed for the positive correlation of arousal with lexical decision and

naming latencies. Finally, the valence × arousal interaction did not reach significance in the

trial-level data, over and above the frequency × valence and frequency × arousal

interactions. Thus, the trial-level analysis replicated the emotion effects observed in the

word-level analysis reported above.

Are emotion effects on word recognition independent of semantic variables?

Our preceding analyses included a large number of lexical control factors, but recently

several measures of additional semantic factors have emerged. Most pertinently, there is

growing interest in “semantic richness”, which is essentially the amount or diversity of

information that a given word evokes. For instance, “dog” tends to evoke a rich array of

sensory and encyclopedic information, whereas “twig” tends to evoke less information. It
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could reasonably be argued that emotion is merely one facet of semantic richness, and thus

the question arises whether emotion effects on word recognition are really just another

demonstration of semantic richness effects. We therefore examined the correlations of

valence and arousal with a battery of semantic measures, and we tested whether these

emotional factors explained any unique variance in word recognition times after statistically

accounting for those semantic variables. For this analysis we identified a set of 1083

monosyllabic words for which all of the following measures were available: valence and

arousal ratings (Warriner et al., 2013), SUBTLEX frequency of occurrence (Brysbaert &

New, 2009), age-of-acquisition ratings (Kuperman et al., 2012), imageability ratings

(Cortese & Fugett, 2004; Schock et al, 2012), sensory experience ratings (Juhasz, Yap,

Dicke, Taylor, & Gullick, 2011; Juhasz & Yap, 2013), body-object interaction ratings

(Tillotson, Siakaluk, & Pexman, 2008), semantic diversity measures (Hoffman, Ralph, &

Rogers, 2012; see also Jones, Johns, & Recchia, 2012) and the word's number of senses

from Wordnet (Miller, 1995).

Table 4 demonstrates that although all correlations were weak in magnitude (|ρ| < 0.2), all

were significant (p < .05) except those of arousal with semantic diversity and with the

number of senses. Based on these correlations as well as ones reported in Warriner et al.

(2013, Table 5) we observe that positive words are consistently associated with higher

semantic richness: they are more concrete, imageable, sensorily acute, prone to be used in

body-object interactions, etc. To evaluate the amount of variance explained by each of these

affective and semantic variables, we calculated the difference in multiple R2 between a

model with non-linear functions of word length, log frequency and age-of-acquisition and a

model which included those same predictors plus a non-linear function of one of the

variables under comparison. All models were fitted to log-transformed lexical decision

latencies. Inclusion of arousal explained an extra 1.4% of the variance (54.4% vs 53%), and

valence explained an extra 1.1%. These increments were significant (p < 0.01) and stronger

than those associated with most other semantic variables: Sensory experience ratings 0.3%,

semantic diversity 0.2%, number of senses 0.1%, imageability 0.6%. The amount of

variance explained by body-object interactions (1.1%) was on par with that of valence, and

smaller than that of arousal. Finally, we observed a significant increment of R2 when

valence was added to form a tensor product with word frequency in the model that

additionally had as predictors nonlinear functions of word length, AoA, and all semantic

variables listed above. The amount of unique variance associated with valence, calculated

over and above the influence of all semantic predictors, was 1.1% (56.1% vs 55%). The

comparable quantity for arousal was 1.2%.

We conclude that the independent impacts of valence and arousal cannot be ascribed to their

correlations with a large range of semantic variables (these correlations were weak). Nor can

those emotion effects be attributed to the variance the affective measures share with the

semantic richness measures: The contributions of both valence and arousal are independent

of and stronger than those of the semantic variables, and are numerically the same regardless

of whether they are estimated over and above the other semantic variables.4
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Discussion

Converging empirical patterns observed in word-level and trial-level data from lexical

decision and naming RTs in American English yield the following conclusions.

1. Valence has a monotonic effect on word response times, such that negative words (e.g.,

coffin) tend to be responded to more slowly than neutral words (e.g., cotton), which tend to

be responded to more slowly than positive words (e.g., kitten). Specifically, the underlying

functional form of this relation between valence ratings and log-transformed RTs was

strictly linear in the regression analyses we ran; using a curvilinear form for valence failed to

improve the fit of the model to the data. Note however that, because the precise statistical

properties of the valence scale are currently unknown and because the RTs were log

transformed, the linear nature of this effect must be interpreted with caution. What can be

concluded with more confidence is that the effect is monotonic and thus constant in polarity

across the entire range: Greater negativity generally slows lexical decision and naming RTs.

2. Arousal has a monotonic effect on word response time, such that calming words (e.g.,

sleep) tend to be responded to more quickly than arousing words (e.g., sex). That is, arousal

slows word processing. As with valence, the relation between arousal and RT was strictly

linear in our analyses, but again due to potential nonlinearities in the valence scale and/or

the log-transformed RTs, we conclude only that the effect is monotonic.

3. Valence has a stronger effect on word processing than does arousal. Valence explains

about 2% of the variance in lexical decision times and 0.2% in naming times, whereas the

effect of arousal in both tasks is limited to 0.1% in the analysis of the full dataset.

4. The effects of valence and arousal on word response times are independent, not

interactive. Adding an arousal × valence interaction term to the model failed to improve its

fit, even when the interaction was flexibly modeled as a hyperbolic surface.

5. Valence and arousal both interact with word frequency, such that valence and arousal

exert larger effects among low-frequency words than among high-frequency words.

6. Valence and arousal have stronger effects on lexical decisions than on naming. Valence

and arousal together explained more than 2% of the variance in lexical decision latencies,

whereas their effects on naming latencies were less than .5%.

Empirical Integration

Our results support many prior findings. Specifically, results 3, 5, and 6 corroborated prior

studies showing respectively that valence is more powerful than arousal (see Table 1; see

4A slightly more prominent predictive role of arousal, as compared to valence, in the subset of 1083 monosyllabic words is intriguing
given arousal's negligible role in the entire data set of over 12,000 mono- and polysyllabic words. We link this inflation in the
predictivity of arousal in the smaller dataset to the fact that monosyllabic words, as compared to the full word set, are significantly
shorter in length (4.36 vs 7.21 characters), higher in (log 10) frequency (2.70 vs 1.99), higher in valence (5.16 vs 5.08) and lower in
arousal (4.05 vs 4.20), among other differences (all ps < 0.01). The discrepancy serves as another argument against selecting data
samples that differ in relevant ways from the language's lexicon as found “in the wild”. In this case, a consideration of an exclusively
or even predominantly monosyllabic data set would lead to a perception of arousal as a stronger predictor than it proves to be in a
more exhaustive analysis.
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also Adelman & Estes, 2013), that both interact with frequency (Kahan & Hely, 2008; Scott

et al., 2009, 2012; Sheikh & Titone, in press), and that they affect lexical decisions more

than naming (Estes & Adelman, 2008a; Larsen et al., 2008). On the other hand, our findings

1, 2, and 4 are novel and inconsistent with some prior results. We consider each of these

empirical discrepancies in turn.

The observed functional form of the valence effect is novel and contradicts prior claims that

this effect is either a step function or an inverted-U function (Estes & Adelman, 2008a;

Kousta et al., 2009; Vinson et al., 2013). Our additional analyses indicate that this

discrepancy is likely due to a combination of factors. First, the present dataset is much (9-13

times) larger than the ones used in previous studies. This advantage yields a more natural

representation of the ranges of frequency, arousal and valence; a more precise account of

nonlinear functional relations between frequency, valence and arousal; and a higher

accuracy of estimated curves and hyperbolic surfaces that characterize the effects of

emotional variables over and above frequency and other statistical controls. One aspect that

a larger dataset may have remedied is an over-representation of extremely negative words in

prior studies (Estes & Adelman, 2008a; Kousta et al., 2009; Vinson et al., 2013). Those

studies were based on an original or slightly extended ANEW data set, which was

specifically developed to include a preponderance of emotional words. To illustrate, whereas

the extremely negative words (i.e., those with a mean rating of less than 2 on a 1-to-9 scale)

constitute 4.8% of the ANEW sample, they constitute only 0.7% of the Warriner et al.

(2013) sample. That is, the relative frequency of extremely negative words is about 7 times

higher in ANEW than in Warriner et al.'s randomly sampled word set that we use here. Yet

very negative words come with a spike in frequency in all of the three corpora considered

(Figure 1): for instance, the bottom 5% bin of the valence distribution (valence: 1.34-2.76)

has a higher mean log frequency than any single bin between 5 and 35% of the valence

distribution (valence: 2.77-4.74). The over-representation of relatively frequent words in the

narrow very negative subrange of valence may have led to the attribution of the response

speedup in negative words to the valence effect, whereas it is in fact due to the effect of

frequency.

Second, ours is the first study to consider interactions of frequency and emotion in lexical

decision and naming. We show that the inverted-U shape of the valence and arousal effects

is only observed when emotion × frequency interactions are not accounted for in the analysis

(Figure 2). When considered in specific frequency bands, valence and arousal show

monotonic near-linear effects, and never the inverted U-shaped effects (see Figure 3). The

same monotonic effects are also observed when word frequencies are estimated from HAL

instead of SUBTLEX. This suggests, again, that the inverted-U shape may be an artifact of

skewed distributions of frequency across the valence range, with higher frequency

associated both with very negative and very positive words. The interactions in which strong

effects of emotion are observed in low-frequency bands (negative for valence, and positive

for arousal) and attenuating effects are observed in words of increasing frequency dovetails

perfectly with earlier findings that effects of imageability, age-of-acquisition and other

lexical variables are the strongest in lowest-frequency words (e.g., Cortese & Schock, 2013;

Gerhand & Barry, 1999a, 1999b).
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The monotonic positive effect of arousal is also novel: Kousta et al. (2009) found no effect

of arousal, and although Estes and Adelman (2008a) did obtain significant effects of arousal,

those effects were in the opposite direction to the effect observed here. The fact that Kousta

et al. (2009) found no effect of arousal is unsurprising, considering the extremely small

magnitude of the effect that we observed here. The fact that Estes and Adelman (2008a)

found a negative effect of arousal can be explained by differences in corpora used to

estimate word frequencies. Figure 1 shows that highly arousing words are relatively more

frequent in the SUBTLEX and HAL corpora than the TASA12 corpus (i.e., films and

websites are more exciting than textbooks). This underestimation of the frequency of high

arousal words in TASA12 as compared to SUBTLEX or HAL corpora leads the statistical

models to misattribute the facilitative effect of their frequency to a facilitative effect of

arousal instead. Because the frequency underestimation is at the high end of the arousal

range, this produces an erroneously negative effect of arousal on word recognition.

However, when the relatively high frequency of high arousal words is fully accounted for

(via SUBTLEX or HAL frequencies), the relation between arousal and word recognition is

shown to be positive rather than negative (see Figure 3).

Finally, the independent nature of the valence and arousal effects is novel and fails to

replicate the interaction reported by Larsen et al. (2008) in lexical decisions, though it is in

line with Vinson et al.'s (2013) findings. While we cannot identify the exact source of

discrepancy, it is may stem from our more accurate estimation of effects and interactions

due to a larger dataset, the use of hyperbolic surfaces rather than planes in the three-

dimensional space to approximate interactive terms, and finally, from our consideration of

emotion × frequency interactions, which could have absorbed the variance otherwise

attributable to valence × arousal interactions.

One may reasonably wonder, then, why our results should be preferred over prior studies.

First, it must be noted that the three preceding studies in Table 1 were not independent

analyses. Larsen et al. (2008) analyzed the same dataset as Estes and Adelman (2008a), and

Kousta et al. (2009) also analyzed a largely overlapping dataset with about 70% of the same

stimulus words. So even in cases where our result differs from all three prior studies – as in

the arousal effect – this should not be counted as three observations weighed against one

observation, because those three observations were based effectively on a single dataset that

was analyzed in three ways. Second, whereas the stimuli in prior studies were sampled for

their emotionality, the stimuli in the present study represent all words rated as known by at

least 70% of raters in the norming study of Kuperman et al. (2012), and without regard for

their emotionality. Thus, our sample of stimuli presumably is more representative of natural

language. Third, our stimulus sample is about 10 times larger than the previous studies. So

again, our stimuli presumably are more representative. Fourth, our analyses included about

twice as many lexical and semantic control factors as the prior studies, including multiple

sources of word frequency estimates, and including the emotion × frequency interactions

that are so important in word recognition. This greater stimulus control results in stronger

internal validity for our study than for prior studies. Thus, overall, our results are more likely

to be both internally and externally valid than prior results.
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Theoretical Implications

The results also necessitate a new explanation of the affective effects in word processing.

Previously, the automatic vigilance model was used to describe the origin of a valence effect

that was thought to be categorical (Estes & Adelman, 2008a, 2008b), an inverted-U (Kousta

et al., 2009), or interactive with arousal (Larsen et al., 2008). The present analyses revealed

instead (1) that increasing valence speeds up lexical decisions, (2) that the effect is present

across the entire range going from negative, over neutral, to positive words, (3) that the

effect interacts with word frequency, and (4) that it does not interact with arousal (which

itself has a small positive effect). The finding that the effect of valence is present across the

entire continuum is a problem, for instance, for a view which attaches special status to

negative (threatening) words, as this would predict a considerable difference between

negative and neutral words but not between neutral and positive words. In fact, these results

are problematic for all three of the prior models of automatic vigilance, as the effect of

valence on RTs was neither categorical, an inverted-U, nor interactive with arousal. The

present results instead suggest a gradient model of automatic vigilance, whereby a stimulus

elicits a heightened effect in proportion to its negativity, and fine discriminations between

negative, neutral and positive stimuli occur fast enough to influence the lexical decision or

naming process.

Our results also reveal, for the first time, that arousal has a detrimental effect on word

recognition times. More exciting words elicited slower responses. Among infrequent words

this effect was about 40 ms in both lexical decision and naming, and again this effect was

halved to about 20 ms among frequent words. The challenges are to explain why the effect

(1) is detrimental, (2) is observed across the entire range, (3) interacts with word frequency,

but (4) does not interact with valence. At the same time, it should be kept in mind that the

contribution of arousal to lexical decision times is very small (.1% for the full dataset), so

that it may not be warranted (yet) to come up with very strong theoretical proposals.

Factors influencing lexical decisions and naming can affect two processing stages: (1) the

activation of word representations in the lexico-semantic system, and (2) the use of this

information to execute a response (see Yap & Seow, 2013). Our correlational results do not

allow us to pin down the sources of the effects, but plausible hypotheses do emerge from

existing models of word recognition (e.g., Grainger & Jacobs, 1996; Norris, 2006) and

affective priming (the finding that positive targets are processed faster after positive primes

and negative targets faster after negative primes; e.g., Schmitz & Wentura, 2012; Spruyt, De

Houwer, Hermans, & Eelen, 2007; Topolinski & Deutsch, 2013). These possible sources of

the emotional effects on word processing are considered in detail below.

Lexico-semantic explanations of automatic vigilance—As Schmitz and Wentura

(2012) report, there is a long-standing debate about the representation of valence in semantic

memory. Bower (1991) suggested there were nodes for positive and negative valence in the

semantic network with which valence-laden concepts were associated. In this way, the

valence of concepts was not only known, but concepts (and hence words) could prime

concepts of similar valence as well (i.e., affective priming). An alternative view was

proposed by Masson (1995) and McRae, de Sa, and Seidenberg (1997). In their distributed
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models, valence was coded in a series of units (roughly representing semantic features) and

shared units between concepts made it easier to activate one concept on the basis of another.

Topolinski and Deutsch (2013) showed that participants’ affect changes briefly (for around

1 s) when stimuli with a strong positive or negative valence are presented, and critically for

our purposes here, the degree of semantic priming is larger after positive affect inductions

than after negative affect inductions. Thus, positive words may briefly lift the affect of the

participants, increasing the affective or semantic priming of subsequent positive words.

Negative words, in contrast, would temporarily induce negative affect and therefore prime

responses to negative words, but crucially this negative affective priming would be smaller

than positive affective priming.

Another possibility is that there are more positive word types than negative. A small but

significant positivity bias is indeed observed in the rating study of Warriner et al. (2013), as

55.6% of about 14 thousand words were rated above the midpoint of the valence scale (5):

positivity biases of a similar magnitude were also observed in multiple other corpora, see

Kloumann et al. (2012) and references therein. Given that there are more positive words

than negative words, more affective priming could occur for positive words than for

negative words. Thus, positive words may elicit greater priming than neutral and negative

words because (a) positive words are slightly more common (Warriner et al., 2013), and/or

(b) positive words induce larger priming effects (Topolinski & Deutsch, 2013). That is,

automatic vigilance could be due to affective priming, as positive words could produce more

frequent or larger priming effects than negative words.

A lexico-semantic origin of the valence effect would also offer a parsimonious explanation

of why the effect interacts with word frequency (see Kahan & Hely, 2008; Scott et al., 2009,

2012; Sheikh & Titone, in press for similar results in other tasks). Among less frequent

words, the size of the valence effect was estimated by the regression model to be about 50

ms in lexical decisions and about 35 ms in naming (Figure 3). Among more frequent words,

however, the effect of valence was reduced to about half that magnitude. This modulation by

word frequency is common among lexico-semantic factors affecting word recognition. For

instance, age of acquisition, letter-sound consistency, and imageability effects are also larger

among low frequency words than among high frequency words (Cortese & Schock, 2013;

Gerhand & Barry, 1999; Strain, Patterson, & Seidenberg, 1995). Typically, when two

factors exert an interactive effect on word recognition, those factors are assumed to arise at

the same stage of processing: If the two factors operated at different processing stages, it is

unclear how they could interact. So given that frequency effects arise at the lexico-semantic

stage of processing, and that frequency interacts with emotional factors, those emotional

effects presumably also arise at the lexico-semantic stage.

Decision-response explanations of automatic vigilance—A second locus of the

valence effect could be response execution (Yap & Seow, 2013). For instance, automatic

vigilance could arise from task-specific processes. Much research in this respect has been

done about the decision stage of the lexical decision task (see Kinoshita & Lupker, 2003, for

context effects in naming). Two findings are particularly important: (1) lexical decisions are

not always made on a full processing of the stimulus materials, and (2) any difference

between word and nonword trials speeds up the decision process. Grainger and Jacobs
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(1996) convincingly showed that “yes”-responses to words are partly based on the overall

activation in the lexico-semantic system induced by the stimulus. That is, a yes-decision can

be based on the fact that the stimulus activates many resembling word representations rather

than on the identification of the stimulus itself. This explains why nonwords with many

word neighbors elicit more erroneous responses than nonwords with few word neighbors,

and why reaction times to words are faster when the nonwords do not resemble words than

when they do (because then the overall activity elicited by the stimulus makes it possible to

come to a correct decision). Within this view, positive words could result in faster responses

because they have a lower response threshold, perhaps because positive stimuli are less life-

threatening than negative stimuli and/or because humans in general seem to show a

positivity bias in information processing (Walker, Skowronski, & Thompson, 2003). This

would also explain why the valence effect is smaller (or even reversed) in participants with

depression (Sharot, 2011) and when participants are brought into a situation that questions

unrealistic optimism (Shepperd, Ouelette, & Fernandez, 1996).

Finally, it is simply possible that nonwords in general are perceived as slightly negative

because they are unfamiliar: Warriner et al. (2013) show that lower-frequency words tend to

be rated with lower valence. If this is the case, the valence of the stimulus will provide

information about its “wordness” and will speed up the acceptance of positive words (e.g.,

Keuleers & Brysbaert, 2011). Thus, the automatic vigilance hypothesis – that negative

stimuli engage attention longer than other stimuli – can be translated into “require more

word-specific activation” or a “higher level of activation” to exceed the response threshold

in a lexical decision task.

An explanation in terms of decision factors makes sense of seemingly contradictory results.

Because negative stimuli in general require faster responses, they tend to be detected more

rapidly. For instance, Nasrallah and colleagues (2009) subliminally presented negative,

neutral, and positive words in an emotion detection task, and they found that negative words

were identified more accurately than positive words. This finding suggests that negative

stimuli are identified faster, or earlier, than other stimuli. However, the automatic vigilance

hypothesis was developed to account for the observation that these same words in other

tasks elicit slower responding (see also Pratto & John, 1991; Williams et al., 1996). A

simple solution is that negative stimuli hold attention longer than other stimuli (Fox et al.,

2001), and this sustained attention to negativity delays responding on other tasks such as

color naming. After all, if the adaptive significance of automatic vigilance is to facilitate

avoidance of dangerous stimuli, then negativity should speed rather than slow responding.

Estes and Verges (2008) tested this hypothesis directly by having participants make either

lexical decisions or valence judgments to the same set of negative words and positive words.

Whereas the negative words slowed lexical decisions (as in the present study), they elicited

faster valence judgments than positive words. Thus, automatic vigilance does not work by

generally slowing responses to negative stimuli. Rather, by this account, negativity slows

lexical decisions and color naming because valence is irrelevant to those judgments and

therefore must be ignored or disengaged (cf. Fox et al., 2001; Kuperman, 2013).

An explanation in terms of decision factors also readily accounts for the finding that valence

has a smaller effect on naming than on lexical decision, because the naming task is less
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susceptible to decision processes (but see Kinoshita & Lupker, 2003, for evidence that it is

not completely insusceptible to decisional factors). Whereas valence and arousal collectively

explained 2% of the variance in lexical decision latencies, they explained only 0.3% of the

variance in naming latencies.

Lexical processing—Finally, this research also contributes to our understanding of

which variables affect performance in word processing tasks. Adelman et al. (2013)

demonstrated that even after removing the random noise in word recognition times, the

currently best-performing models and sets of word features leave unexplained a relatively

large percentage of the variance in word recognition times. Similarly, although Rey and

Courrieu (2010) noticed that there is 85% systematic variance in megastudy lexical decision

data, current models do not go beyond 65% (e.g., Kuperman et al., 2012). Therefore

Adelman et al. (2013) issued a general call to the field to search for additional factors that

affect word recognition, and the present research does just that. Given the broad influence of

emotion on cognitive tasks, it is rather surprising that current psycholinguistic models of

word recognition entirely neglect the effects of emotion. Although valence and arousal

exerted very modest effects on naming times (see also Adelman et al., 2013), we found that

valence and arousal collectively explained a reasonably substantial amount (about 2%) of

the unique variance in lexical decision times, with most of that effect arising from valence

rather than arousal. Although this is a modest effect, it is a further step towards our

understanding of which variables do and do not matter in language processing. For instance,

it appears that valence may be a more important variable than many of the semantic richness

variables recently proposed as relevant for characterizing word recognition.
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Figure 1.
Functional relation between valence and word frequency (left) and arousal and word

frequency (right). Log (10)-transformed word frequencies are estimated for the SUBTLEX

corpus based on subtitles to US films and media, the TASA12 corpus based on reading

materials for American 12th graders, and the HAL corpus based on internet

communications. Valence and arousal are binned into twenty 5% quantiles and the mean log

frequency is shown for each quantile.
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Figure 2.
Functional relationships of valence (top row) and arousal (bottom row) with lexical decision

latencies (left column) and naming latencies (right column) across all frequency levels (i.e.

emotion × frequency interactions are unaccounted for). The shape of valence and arousal

effects was evaluated using cubic splines. Each curve is reported with the 95% confidence

interval (the gray area).
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Figure 3.
Functional relationships of valence (top row) and arousal (bottom row) with lexical decision

latencies (left column) and naming latencies (right column), displayed by quintiles of word

frequency (SUBTLEX). The highest-frequency words are the 5th quintile. The shape of

valence and arousal effects was evaluated using cubic splines. Each curve is reported with

the 95% confidence interval (the gray area).
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Table 1

Regression studies of the influence of emotion on word recognition latencies. EA (2008a) = Estes and

Adelman (2008a); Kousta = Kousta et al. (2009); Lex Dec = lexical decision; ns = nonsignificant;

EA (2008a) Larsen et al. (2008) Kousta

N 1011 1021 1446

Lex Dec Naming Lex Dec Naming Lex Dec

Emotional Factors

Arousal *** ** ns ns ns

Valence *** *** *** *** *

Arousal × Valence *** ns

Control Factors

Letters *** *** *** *** ***

Syllables ns *

Morphemes ns

Frequency ** ns *** *** ***

Familiarity ***

Contextual diversity ns *

Orthographic N ns ns ns ns ***

Initial Phoneme ***

Imageability ns

Age of Acquisition ***

Bigram frequency ns

Best R2 53.24% 52.58% 58.70% 40.00% 64.55%

*
p < .05;

**
p < .01;

***
p < .001.
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Table 2

Generalized mixed additive model fitted to log-transformed lexical decision latencies. Linear effects (Part A)

include linear predictors, whereas smooth terms (Part B) include nonlinear predictors and interactions.

A. Linear effects Estimate SE t p

    Intercept 6.5702 0.0047 1390.7666 < 0.0001

    PC2 −0.0016 0.0021 −0.7743 0.4388

B. Smooth terms edf Ref.df F p

    PC1 6.5178 7.6971 244.5655 < 0.0001

    PC3 5.0416 6.1925 38.5429 < 0.0001

    Age of acquisition (residual) 4.8625 6.0297 128.1196 < 0.0001

    Contextual diversity (residual) 5.2017 6.3745 52.2712 < 0.0001

    Frequency × valence (tensor product) 12.0771 14.4453 39.9977 < 0.0001

    Frequency × arousal (tensor product) 5.0539 20.0000 1.3966 < 0.0001

Note. Part of speech and First phoneme were both categorical predictors with multiple levels (4 and 32 respectively). For brevity we omit their
inferential estimates from the model's output. edf = estimated degrees of freedom, Ref.df = reference degrees of freedom.
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Table 3

Generalized mixed additive model fitted to log-transformed naming latencies. Linear effects (Part A) include

linear predictors, whereas smooth terms (Part B) include nonlinear predictors and interactions.

A. Linear effects Estimate SE t p

    Intercept 6.4860 0.0039 1657.4851 < 0.0001

B. Smooth terms edf Ref.df F p

    PC1 5.6380 6.8167 251.5300 < 0.0001

    PC2 6.5550 7.7254 2.9642 0.0030

    PC3 6.6463 7.7718 43.1921 < 0.0001

    Age of acquisition (residual) 5.9141 7.1296 143.4290 < 0.0001

    Contextual diversity (residual) 3.1576 4.0278 18.9447 < 0.0001

    Frequency × valence (tensor product) 7.4234 8.1773 25.6161 < 0.0001

    Frequency × arousal (tensor product) 3.8260 20.0000 0.9284 0.0001

Note. Part of speech and First phoneme were both categorical predictors with multiple levels (4 and 32 respectively). For brevity we omit their
inferential estimates from the model's output. edf = estimated degrees of freedom, Ref.df = reference degrees of freedom.
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Table 4

Spearman's correlations of valence and arousal with semantic richness measures.

Measure Valence Arousal

Body-object interaction
.15

*
−0.15

*

Imageability
.19

*
−.09

*

Number of senses
.11

* .00

Semantic diversity
.07

* .00

Sensory experience
.07

*
.19

*

*
p < .05.
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Table 5

Generalized Mixed Additive Model Fitted to Log-Transformed Naming Latencies: Smooth Terms Include

Nonlinear Predictors and Interaction

Smooth terms Estimated df Reference df F p

PC1 5.6380 6.8167 251.5300 <0.0001

PC2 6.5550 7.7254 2.9642 0.0030

PC3 6.6463 7.7718 43.1921 <0.0001

Age of acquisition (residual) 5.9141 7.1296 143.4290 <0.0001

Contextual diversity (residual) 3.1576 4.0278 18.9447 <0.0001

Frequency Valence (tensor product) 7.4234 8.1773 25.6161 <0.0001

Frequency Arousal (tensor product) 3.8260 20.0000 0.9284 0.0001

Note. df = degrees of freedom; PC = principal component.
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