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Carbapenem-resistant Enterobacteriaceae (CRE) are emerging global pathogens. The spread of CRE to
transplant recipients and patients with hematologic malignancies has ominous implications. These patients
rely on timely, active antibacterial therapy to combat gram-negative infections; however, recommended
empirical regimens are not active against CRE. Approximately 3%–10% of solid organ transplant (SOT)
recipients in CRE-endemic areas develop CRE infection, and the infection site correlates with the transplanted
organ. Mortality rates associated with CRE infections approach 40% in SOT recipients and 65% in patients with
hematologic malignancies. Given that the current antimicrobial armamentarium to combat CRE is extremely
limited, a multifaceted approach that includes antimicrobial stewardship and active surveillance is needed to
prevent CRE infections in immunocompromised hosts. Improving outcomes of established infections will re-
quire the use of risk factor–based prediction tools and molecular assays to more rapidly administer CRE-active
therapy and the development of new antimicrobial agents with activity against CRE.
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Enterobacteriaceae cause approximately 30% of health-
care-associated infections in the United States [1]. With
the emergence of extended-spectrum β-lactamase
(ESBL)–producing Enterobacteriaceae, carbapenems
have been increasingly used against these organisms [2].
Unfortunately, carbapenem resistance among Enterobac-
teriaceae has now emerged, particularly in Klebsiella
pneumoniae. The percentage of Klebsiella isolates from
UShospitals that are carbapenem-resistant increased from
<1% in 2000, to 8% in 2006–2007, to 12% in 2009–2010
[1, 3, 4]. Although initially largely confined to New York
hospitals, carbapenem-resistantEnterobacteriaceae (CRE)

have now been identified in 42 US states [5]. CRE also
have become endemic in parts of South America, Europe,
Africa, and Asia, posing a major international public
health threat [6]. Infections caused by CRE are associated
with mortality rates approaching 50% [7, 8].

Immunocompromised hosts depend on the immedi-
ate receipt of active antibacterial agents to combat
gram-negative infections. However, recommended em-
pirical regimens in these patients [9], such as antipseu-
domonal β-lactams, are not active against CRE and
identification of CRE from clinical specimens typically
takes 2–4 days [10]. Thus, the emergence of CRE in im-
munocompromised hosts has grave implications.

Given these concerns, we reviewed all published
English-language manuscripts and abstracts of CRE infec-
tions in transplant recipients andpatientswithhematologic
malignancies to summarize the current understanding of
the epidemiology of CRE infections in these populations.
We also review carbapenem resistance mechanisms and
treatment options and propose strategies to minimize
this threat.
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CARBAPENEM RESISTANCE MECHANISMS
AMONG ENTEROBACTERIACEAE

Carbapenem resistance among Enterobacteriaceae is due to ei-
ther a carbapenem-hydrolyzing enzyme (carbapenemase), the
most common mechanism, or changes in outer membrane por-
ins combined with overproduction of AmpC β-lactamases or
ESBLs [6] (Table 1). Carbapenemases, like other β-lactamases,
are organized by amino acid homology in the Ambler classifica-
tion system [15]. Ambler Class A, C, and D β-lactamases have a
serine at their active site, whereas class B enzymes require zinc
and thus are called metallo-β-lactamases (MBLs).

Klebsiella pneumoniae carbapenemase (KPC) is a class A β-
lactamase and is the most common carbapenem resistance mech-
anism among Enterobacteriaceae in the United States, South
America, Mediterranean Europe, Israel, and China [6, 11–13].
KPC hydrolyzes all β-lactams and is stable against available β-
lactamase inhibitors. KPC-producing isolates are also frequently
resistant to agents of other classes, such as fluoroquinolones and
aminoglycosides, leaving few therapeutic options [8, 11, 16]. The
gene blaKPC is located on plasmids that can be transferred within
bacterial species and to different species and genera. Although
KPC is most common in K. pneumoniae, it has also emerged
in Enterobacter species and Escherichia coli [17, 18].

MBLs also hydrolyze carbapenems and other β-lactams and
are stable against available β-lactamase inhibitors [6]. Unlike
KPC, MBLs do not hydrolyze monobactams. Until recently, Ve-
rona integron–encoded (VIM) and IMP types were the most
common MBLs among Enterobacteriaceae. However, in 2009,
a novel plasmid-encoded enzyme, New Delhi MBL (NDM),
was identified and quickly established as the dominant carbape-
nemase in India, Pakistan, and the United Kingdom [19]. Like
KPC, NDM has spread to genera other than Klebsiella [20]. To

date, few NDM-producing isolates have been reported in the
United States, and all were from patients with recent travel to
the Indian subcontinent [21].

OXA-type enzymes are class D β-lactamases named after
their ability to hydrolyze oxacillin. Within this family, OXA-
48-type enzymes have substantial carbapenemase activity and
are prominent in Turkey, North Africa, and India [14].

CRE IN SOLID ORGAN TRANSPLANT
RECIPIENTS

Enterobacteriaceae, and in particular K. pneumoniae, have be-
come increasingly common causes of infections in recipients of
solid organ transplant (SOT) [22]. Thus, one would expect the
emergence of CRE to disproportionately affect this population.
Indeed, a large proportion of CRE bacteremias occur in SOT re-
cipients, and organ transplant is an independent risk factor for
CRE infection [8]. Reports focusing on CRE in SOT recipients
are outlined in Table 2.

Centers fromCRE-endemic areas report a 3%–10% incidence of
carbapenem-resistant K. pneumoniae (CRKP) infection in SOT re-
cipients with similar rates after liver, kidney, lung, and heart trans-
plant [23–26, 28, 31, 32]. The site of infection correlates with the
transplanted organ, with pneumonia being most common after
lung transplant, bacteremia and intra-abdominal infection after
liver transplant, and urinary tract infection (UTI) after kidney
transplant. SOT recipients infected with CRKP have a 30-day mor-
tality rate of 37% (34 of 91 patients) [25–28, 30, 32, 33], and post-
transplant CRKP bacteremia is associated with greater mortality
than carbapenem-susceptible K. pneumoniae (CSKP) bacteremia
[33]. Although KPC-producing K. pneumoniae (KPC-Kp) is the
most common type of CRE in SOT recipients, infections caused

Table 1. Prominent Mechanisms of Carbapenem Resistance Among Enterobacteriaceae

Carbapenemases
Ambler

Molecular Class

Requirement
for Enzymatic

Activity Gene Location Geographic Distributiona [6, 11–14]

KPC A Serine Plasmid US, Colombia, Brazil, Argentina, Greece,
Italy, Malta, Israel, China

NDM B Zinc Plasmid India, Pakistan, Bangladesh, United Kingdom
VIM B Zinc Plasmid Greece

IMP B Zinc Plasmid Japan, Taiwan

OXA-48-types D Serine Plasmid Turkey, Morocco, Algeria, Tunisia, India
Other mechanisms

ESBL or AmpC-type
β-lactamase +OMP mutation

A/C Serine Plasmid or chromosomal Worldwideb

Abbreviations: ESBL, extended-spectrum β-lactamase; IMP, “active on imipenem”; KPC, Klebsiella pneumoniae carbapenemase; NDM, New Delhi metallo-
β-lactamase; OMP, outer membrane porin; VIM, Verona integron–encoded metallo-β-lactamase.
a Locations with the highest prevalence for each carbapenem resistance mechanism.
b Carbapenem resistance is more commonly due to carbapenemase production than these mechanisms in the geographic locations listed above.
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by NDM-producing K. pneumoniae and KPC-producing Entero-
bacter cloacae also have been reported [34, 35].

The emergence of CRKP has been best evaluated in liver
transplant recipients, for whom the incidence of posttransplant
CRKP infection in endemic areas is approximately 5% [23–25,
28]. CRKP infections occur early (median, 12–24 days) after
liver transplant, 55% of infections are intra-abdominal, and
two-thirds involve bacteremia. Lethal necrotizing soft tissue in-
fections have also been reported [36]. In multivariate analysis,
the mortality of patients with posttransplant CRKP infection

is 5-fold higher than those without CRKP infection [25]. Liver
transplant recipients also have been index cases of hospital-wide
CRKP outbreaks [37].

CRKP primarily causes UTIs in kidney transplant recipients
[24, 28, 29, 31]. In a study of 27 CRKP bacteriuria episodes in
this population, only 3 (11%) had concurrent bacteremia [29].
Seventeen of 21 (81%) treated episodes achieved microbiologic
clearance, but 8 (38%) had recurrence of CRKP bacteriuria.
CRKP bacteriuria after transplant was associated with increased
mortality compared with CSKP bacteriuria.

Table 2. Studies of Carbapenem-Resistant Klebsiella pneumoniae Infections in Solid Organ Transplant Recipients

Reference
Geographic
Location

Incidence of
Posttransplant
CRE Infection

Median Time
From Transplant

to Infection Type of Infectiona Mortality Rate

Liver transplants

[23] NYC 3.6% (25/691) 20 d Bacteremia: 60%
Intra-abdominal: 76%

52% (in-hospital)

[24] Italy 6.3% (16/252) NR Bacteremia: 50%
SSI: 50%

NR

[25] NYC 8.0% (14/175) 12 d Bacteremia: 86%
Intra-abdominal: 79%

50% (30-day)

[26] Pittsburghb 1.3% (8/610) 24 d Bacteremia: 100%
Pneumonia: 50%

25% (30-day)

[27] Germany NR (8 episodes) 23 d Bacteremia: 63%
Pneumonia: 50%

50% (30-day)

[28] Brazil 12.9% (4/31) 16 d Bacteremia: 100%
Pneumonia: 25%

25% (30-day)

Kidney transplants

[29] NYC NR (23 bacteriuria episodes) 65 d UTI: 100%
Bacteremia: 11%

40% (overall)

[24] Italy 9.4% (12/128) NR UTI: 67%
Bacteremia: 33%

NR

[30] Italyb NR (8 episodes) NR UTI: 100%
Bacteremia: 100%

0% (30-day)

[31] Argentina 13.3% (6/45) 36 d UTI: 83%
Bacteremia: 17%

33% (overall)

[28] Brazil 26.3% (5/19) 17 d UTI: 60%
Bacteremia: 60%

60% (30-day)

Lung transplants
[32] Israel 6.6% (9/136) 25 d Pneumonia: 56%

Bacteremia: 22%
56% (30-day)

[24] Italy 4.2% (2/48) NR Pneumonia: 50%
Bacteremia: 50%

NR

[26] Pittsburghb 0.4% (2/546) 218 d Bacteremia: 100% 0% (30-day)

Heart transplants

[24] Italy 7.5% (4/53) NR Bacteremia: 50%
SSI: 50%

NR

[28] Brazil 16.7% (2/12) 90 d Bacteremia: 50%
Pneumonia: 50%

50% (30-day)

All transplants

[33] Cleveland NR (23 bacteremia episodes) 73 d Bacteremia: 100% 43% (30-day)

Abbreviations: CRE, carbapenem-resistant Enterobacteriaceae; NR, not reported; NYC, New York City; SSI, surgical site infection; UTI, urinary tract infection.
a The 2 most common sites of infection are listed.
b The study evaluated episodes of CRE bacteremia only.
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Two donor-derived CRKP infections have been reported. In the
first case, the donor’s respiratory tract was found to be colonized
with CRKP after transplant of his organs [38]. Recipients of each
of his lungs were given prophylactic intravenous colistin. However,
one lung recipient developed CRKP pneumonia 4 weeks after
transplant and died. The recipient’s isolate was phenotypically
identical to the donor’s isolate. Recipients of the donor’s liver
and kidneys did not receive prophylaxis against CRKP and
never developed CRKP infection. In the second case, the donor
was known to have CRKP pneumonia and meningitis [39].
Four patients received organs from this donor and all received
perioperative tigecycline. One of these patients, a kidney and
liver recipient, developed peritonitis and an infected hematoma
due to CRKP shortly after transplant. His isolates were genetically
identical to the donor’s isolates and he was successfully treated.

CRE IN PATIENTS WITH HEMATOLOGIC
MALIGNANCIES AND HEMATOPOIETIC STEM
CELL TRANSPLANT RECIPIENTS

Patients with hematologic malignancies and hematopoietic
stem cell transplant (HSCT) recipients may be particularly vul-
nerable to CRE infection because of chemotherapy-induced
gastrointestinal mucositis, prolonged hospitalizations and neu-
tropenia, and frequent use of broad-spectrum antibacterial
agents. Previous reports of CRE infections have included

patients with hematologic malignancies and HSCT recipients
[8, 40], but few have focused exclusively on these populations.

To examine the threat posed by CRE to these immunocom-
promised hosts, we reported 18 patients with hematologic malig-
nancies who developed CRE bacteremia [41]. Despite using
recommended regimens [9], empiric therapy was inadequate in
almost all cases. Three patients died before antimicrobial suscep-
tibilities were available and never received active therapy. There
was a median of 55 hours from blood culture collection until re-
ceipt of an active agent in the other 15 patients. Nine of 13 (69%)
neutropenic patients died, with a median of 4 days from presen-
tation until death. Infections were caused by a heterogeneous
group of isolates, including KPC-producing K. pneumoniae,
E. cloacae, E. coli, and Klebsiella oxytoca, and isolates resistant
to carbapenems because of altered outer membrane porins and
ESBL production. Other reports have confirmed these observa-
tions of high in-hospital mortality rates for CRE bacteremia in
this highly immunocompromised population (65%; 22 of 34 pa-
tients). Moreover, the majority of these deaths were attributable
to CRE infection (Table 3) [40–45].

THERAPEUTICS

The only available antibacterial agents with activity against CRE
are polymyxins (colistin and polymyxin B), tigecycline, fosfo-
mycin, gentamicin, and amikacin (Table 4).

Table 3. Studies of Carbapenem-Resistant Enterobacteriaceae Bacteremia in Hematopoietic Stem Cell Transplant Recipients and
Patients With Hematologic Malignancies

Reference
Geographic
Location

Patients,
No.

CRE Isolate(s)
(No.)

Hematologic
Malignancies (No.)

HSCT
Recipients,

No.

Neutropenic
Patients,

No.

In-Hospital
Mortality
Rate

CRE-
Attributed
Mortality
Rate

[41] NYC 18 Klebsiella
pneumoniae
(14)

Enterobacter
cloacae (3)

Polymicrobial (1)a

Acute leukemia (11)
Lymphoma (4)
Multiple myeloma (2)
Myelofibrosis (1)

6 13 56%b 56%

[42] Israel 8 K. pneumoniae Acute leukemia (3)
Lymphoma (2)
Aplastic anemia (2)
Multiple myeloma (1)

5 7 50% 38%

[40] Bethesda,
Maryland

6 K. pneumoniae Aplastic anemia (2)
Lymphoma (2)
Primary
immunodeficiency (2)

4 NR 100% 67%

[43] Israel 1 K. pneumoniae Acute leukemia 0 1 1/1 1/1

[44] Israel 1 Escherichia coli Acute leukemia 1 0 NR 0/1
[45] NYC 1 Enterobacter

gergoviae
Acute leukemia 0 1 1/1 1/1

Abbreviations: CRE, carbapenem-resistant Enterobacteriaceae; HSCT, hematopoietic stem cell transplant; NR, not reported; NYC, New York City.
a Infection with carbapenem-resistant Klebsiella pneumoniae, carbapenem-resistant Klebsiella oxytoca, and carbapenem-resistant Escherichia coli.
b The mortality rate in neutropenic patients was 69%.
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Table 4. Approved and Investigational Antibacterial Agents With Activity Against Carbapenem-Resistant Enterobacteriaceae

Antimicrobial
Agent Mechanism of Action Dosage

Dosage
Adjustment for

Renal Impairment Limitations

Approved agents

Polymyxins (IV) [46–54]

Colistin Binds to LPS and phospholipids in
the outer membrane, leading to
leakage of intracellular contents

Administered as a prodrug: CMS

• US: Coly-MycinM: 2.5–5 mg/kg/d of CBA
(divided into 2–4 doses)

• Europe: Colomycin: 6–9 million IU/da

(divided into 2–3 doses)b

Yes • Nephrotoxicity and neurotoxicity
• Suboptimal clinical efficacy when used as monotherapy
• Optimal dosing regimen and antimicrobial susceptibility

testing method unclear
• Heteroresistance common
• Low concentrations in the respiratory tract

Polymyxin B Same as colistin, except
administered as an active drug

1.5–2.5 mg/kg (15 000–25 000 units) per day No Same as colistin, except also achieves low concentrations in
the urinary tract

Tigecycline
(IV) [55, 56]

Binds to the 30S ribosomal subunit,
blocking the binding of tRNA

100 mg loading dose, followed by 50 mg
every 12 h

No • Low bloodstream and urinary tract concentrations
• Not bactericidal
• Use associated with increased mortality in randomized

trials
Fosfomycin
(IV or oral)
[57–59]

Inhibits peptidoglycan (and thus cell
wall) biosynthesis

• US: oral formulation only: 3 g in 3–4 oz of
water (once, or every 2–3 d for 3 doses)

• Europe: IV formulation available: 2–4 g
every 6–8 h

No • IV formulation not available in the United States
• Optimal dose vs CRE is unknown
• Low barrier to the development of resistance
• Limited efficacy data vs CRE

Aminoglycosidesc (IV) [19, 60–64]

Gentamicin Binds to a 16S rRNA portion of the
30S ribosomal subunit, blocking
mRNA translocation.

Also binds to the outer membrane,
leading to leakage of intracellular
contents.

• Extended-interval: 5–7 mg/kg every 24 h
• Conventional: 2–3 mg/kg loading dose,

followed by 1.5–2 mg/kg every 8 h

Yes • Nephrotoxicity and otovestibular toxicity
• Suboptimal clinical efficacy when used as monotherapy for

bacteremia
• Low concentrations in the respiratory tract and diminished

activity in acidic environments
• Variable activity vs CRE (40% of KPC producers in the

United States and nearly all NDM producers are resistant)

Amikacin Same as gentamicin • Extended-interval: 15 mg/kg every 24 h
• Conventional: 7.5 mg/kg every 12 h

Yes • Same as gentamicin, except:
• Less nephrotoxicity and ototoxicity
• Less activity vs CRE

Investigational agents in phase 3 clinical trials

Avibactam (IV)
[65–67]

A non–β-lactam, β-lactamase
inhibitor with activity against class
A carbapenemases

The combination of ceftazidime-avibactam at
doses of 2000/500 mg every 8 h is being
evaluated in phase 3 trials

Yes Not active against metallo-β-lactamase producers (eg, NDM)

Plazomicin (IV)
[68]

Same mechanism as other
aminoglycosides, but its activity
is not diminished by
aminoglycoside-modifying
enzymes

A dose of 15 mg/kg every 24 h is being
evaluated in phase 3 trials

Yes • Less nephrotoxic and ototoxic than other aminoglycosides
• Not active against isolates that are aminoglycoside-

resistant due to ribosomal methyltransferases (eg, most
NDM producers)

Abbreviations: CBA, colistin base activity; CMS, colistimethate sodium; CRE, carbapenem-resistant Enterobacteriaceae; IV, intravenous; KPC, Klebsiella pneumoniae carbapenemase; LPS, lipopolysaccharide; mRNA,
messenger RNA; NDM, New Delhi metallo-β-lactamase; rRNA, ribosomal RNA; tRNA, transfer RNA.
a One million IU of CMS is equivalent to approximately 30 mg CBA.
b A loading dose of 9 million IU may be considered to quickly achieve sufficient plasma colistin concentrations [49].
c Tobramycin is rarely active against CRE.
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Each of these agents has significant limitations. Polymyxins are
associated with nephrotoxicity rates of 43%–60% and also cause
neurotoxicity [46–48]. The optimal dosing of polymyxins is un-
clear, as pharmacokinetic and pharmacodynamic properties are
only recently being elucidated [48–50].Antimicrobial susceptibil-
ity testing for polymyxins is problematic. Polymyxins are large
cations that diffuse poorly in agar and bind to glass and plastic
surfaces, leading to concentrations in test systems that are lower
than expected [51]. Additionally, many CRE isolates have resis-
tant subpopulations (heteroresistance) [52]. Thus, common anti-
microbial susceptibility testing methods, such as disk diffusion
and Etest, are often inaccurate [53]. Compounding this problem,
the ability to interpret results is limited by the absence of break-
points for polymyxins and the Enterobacteriaceae. In addition to
these concerns, polymyxins have suboptimal clinical efficacy. Ob-
servational studies suggest that infections treated with polymyxin
monotherapy have worse clinical outcomes than those treated
with β-lactams, even after adjustment for confounders [54, 69].

Tigecycline’s limitations against CRE are even more prob-
lematic. It is not bactericidal [55], which may limit its effective-
ness in immunocompromised patients, and is not active against
Pseudomonas aeruginosa. Tigecycline achieves low bloodstream
and urinary tract concentrations and thus is inadequate for bac-
teremias and UTIs [55]. It has US Food and Drug Administra-
tion (FDA) approval for complicated skin, soft tissue, and
intraabdominal infections and community-acquired pneumo-
nia. However, even when used for these indications, random-
ized trials show increased mortality and lower cure rates with
tigecycline compared with other antibiotics [56]. Thus, tigecy-
cline cannot be relied upon to treat serious CRE infections in
immunocompromised hosts.

Fosfomycin is available as an intravenous formulation in Eu-
rope, but only as a powder that is mixed with water and ingested
in the United States. Rates of CRE susceptibility to fosfomycin
vary (45%–93%) and depend on the testing methodology used
[57, 58]. The optimal dosage and duration of fosfomycin for
treatment of CRE infections is unknown. Moreover, data sup-
porting its efficacy for CRE infections are limited, and resistance
may develop rapidly on therapy [59].

The activity of aminoglycosides against CRE is variable, as
isolates from Israel and Italy have higher gentamicin suscepti-
bility rates (>90%) [16, 60] than do isolates from the United
States and Greece (13%–61%) [8, 61, 62]. CRE are more likely
to be susceptible to gentamicin than amikacin and are almost
always resistant to tobramycin [61, 62]. NDM-producing CRE
are typically resistant to aminoglycosides [19]. Even when active
in vitro, aminoglycosides are suboptimal therapies because of
high rates of nephrotoxicity and otovestibular toxicity [63],
poor penetration into lung tissue [64], and comparatively
poor efficacy when used as monotherapy for gram-negative bac-
teremia in immunocompromised patients [69, 70].

Not only do polymyxins, tigecycline, fosfomycin, and amino-
glycosides have major limitations, but resistance to each of these
agents has been increasingly reported among CRE [62, 71].
Given these considerations, combination therapy for CRE infec-
tions should be considered. In vitro synergy has been docu-
mented between polymyxins and both carbapenems and
rifampin against CRE [61, 72], despite resistance to carbape-
nems and rifampin alone. In an observational study of 125 pa-
tients with KPC-Kp bacteremia, 30-day mortality was lower in
patients who received combination regimens, compared with
single-agent regimens (34% vs 54%) [60]. Other studies have
confirmed these findings, most often demonstrating a benefit
to polymyxin-carbapenem combination therapy [7, 73]. The
polymyxin-rifampin combination is difficult to administer in
transplant recipients because rifampin severely decreases levels
of calcineurin and mTOR inhibitors and triazole antifungals.

The optimal treatment of CRE infections that are resistant to
all of these agents is unknown. One approach for pan-resistant
KPC-Kp infections is to combine ertapenem with imipenem,
meropenem, or doripenem. The rationale for this combination
is that KPC has greater affinity for ertapenem than for other car-
bapenems. This binding of the enzyme by ertapenem reduces its
availability for hydrolysis of the other carbapenem. This ap-
proach has been effective in vitro and in a murine model
[74], and has been used to successfully treat 4 patients with
pan-resistant KPC-Kp infections [75, 76].

The pharmacokinetic limitations of CRE-active agents must
be considered when treating pneumonia. Aminoglycosides and
polymyxins achieve low concentrations in pulmonary epithelial
lining fluid when administered intravenously [64, 77]. Aerosol-
ized formulations of colistin and aminoglycosides deliver high
drug concentrations at the site of infection, and thus should be
considered as adjunctive therapies for CRE pneumonia [78–80].
Observational studies of patients with carbapenem-resistant
gram-negative ventilator-associated pneumonia have demon-
strated improved clinical cure rates [78, 80] and decreased dura-
tion of mechanical ventilation [80] in patients who received
aerosolized and intravenous colistin, compared with matched
controls who received only intravenous colistin. The role of
aerosolized aminoglycosides for CRE pneumonia has not
been evaluated.

FUTURE DIRECTIONS TO MINIMIZE THE
IMPACT OF CRE ON IMMUNOCOMPROMISED
HOSTS

Infection Prevention
Given the limited therapeutic options, prevention of CRE infec-
tion in these vulnerable populations is of paramount impor-
tance. The Centers for Disease Control and Prevention has
established a CRE Toolkit for guidance on CRE prevention in
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healthcare facilities [81]. Recommendations include optimizing
compliance with hand hygiene and contact precautions, educat-
ing healthcare personnel, minimizing the use of indwelling de-
vices (eg, central venous catheters), antimicrobial stewardship,
and screening for CRE colonization.

Limiting unnecessary uses of antimicrobial agents through
multidisciplinary stewardship programs is critical to minimize
the emergence of CRE in immunocompromised patients. Anti-
microbial exposures are consistently identified as risk factors for
CRE infection in the general inpatient population and undoubt-
edly are also risk factors in immunocompromised hosts [8, 16].
Not only do carbapenems predispose to CRE, but other β-
lactams and fluoroquinolones are also independent risk factors
for CRE infection [8, 16].

Surveillance cultures of the gastrointestinal tract identify a
relatively large number of asymptomatic patients who are colo-
nized with CRE [82]. Rates of subsequent CRE infection in pa-
tients found to be colonized by screening cultures are 9% among
the general inpatient population [83], 27% among intensive care
unit patients [82], and perhaps even higher among neutropenic
patients. In a study of 15 patients with hematologic malignan-
cies who were colonized with CRKP, 8 developed CRKP bacter-
emia after chemotherapy or HSCT, despite receiving oral
gentamicin [42]. Collecting surveillance cultures to identify col-
onized immunocompromised hosts also may limit nosocomial
CRE transmission. Active surveillance, when accompanied by
implementation of contact precautions for colonized patients,
daily decontamination of environmental surfaces, and cohort-
ing of patient care staff, has led to major reductions in CRE in-
fection rates in outbreak and endemic settings [84–86]. Given
these considerations, institutions with a high prevalence of
CRE should consider screening patients for gastrointestinal col-
onization prior to transplant or administration of chemothera-
py and periodically thereafter during their admission.

To prevent donor-derived CRE infections, transplant centers
should consider performing surveillance rectal, urine, and re-
spiratory tract cultures of donors from a CRE-endemic area.
This approach identified a high rate of asymptomatic CRE col-
onization among potential donors at an Italian center [87]. The
safety of transplanting organs from CRE-colonized donors is
unclear. Of the 9 reported organ recipients from colonized do-
nors, 2 developed CRKP infection and 1 died [38, 39].The death
of a lung recipient from a donor with respiratory tract CRE col-
onization warrants caution in the use of organs that are colo-
nized with CRE [38]. If organs from CRE-colonized donors
are used, CRE-active therapy should be administered to donors
prior to harvest and to recipients before and after transplant.

Improving Outcomes of Infected Patients
Unless CRE-active therapy is administered empirically, relying
on culture-based techniques to identify CRE leads to a 48- to

72-hour delay from blood culture collection until administra-
tion of appropriate therapy [41]. Given the high mortality
rates with CRE infections and the association between delay
in active therapy and mortality from gram-negative bacteremia
[70, 88], strategies are needed to administer CRE-active therapy
in a more timely manner. The administration of an empirical
polymyxin to all transplant or neutropenic patients who devel-
op fever or sepsis is not justifiable because of high toxicity rates
and the potential for the emergence of resistance to these last-
line agents. Instead, a rational strategy to pursue in CRE-
endemic areas is to use colonization status and epidemiologic
risk factors to administer polymyxins empirically, in combina-
tion with a broad-spectrum β-lactam, only to patients at high
risk for CRE infection. However, more data are needed on
risk factors that are unique to immunocompromised hosts,
such as immunosuppressive therapies, neutropenia, and trans-
plant-associated surgical procedures, before this strategy can be
successfully implemented.

Another important approach to decrease the time until ad-
ministration of active therapy is the use of novel molecular di-
agnostic tests to rapidly identify CRE. Polymerase chain
reaction (PCR)–based assays are available that detect the most
common carbapenemase-encoding genes, such as blaKPC, and
can be performed directly on blood from culture bottles that sig-
nal for growth of gram-negative rods [10]. Matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry assays
are also promising tools that detect bacterial species and carba-
penemases within a few hours [89]. If these assays were imple-
mented, the time from culture collection until identification of
CRE could be decreased from 2–3 days to <24 hours. Not only
would earlier identification of CRE lead to more rapid admin-
istration of appropriate therapy, but in cases where toxic CRE-
active therapies are administered empirically, it would lead to
more rapid de-escalation from these agents. Further research
is needed to improve these assays and optimize their use in
clinical care.

The paucity and limitations of available CRE-active antimi-
crobial agents underscore the urgent need for new agents
with activity against CRE. The investigational CRE-active com-
pounds that are closest to FDA approval are avibactam (NXL-
104) and plazomicin (ACHN-490) (Table 4). Avibactam is a
novel β-lactamase inhibitor that inhibits class A and C β-lacta-
mases, including KPC [65].The combination of ceftazidime and
avibactam has excellent in vitro activity against KPC-producing
Enterobacteriaceae and is in phase 3 clinical trials. Notably, avi-
bactam does not have activity against MBLs. Phase 2 trials of
ceftazidime-avibactam show comparable safety and efficacy to
carbapenems for intraabdominal infections and UTIs due to
carbapenem-susceptible organisms [66, 67]. Plazomicin is a
next-generation aminoglycoside that is in phase 3 trials and
has activity against CRE that are resistant to traditional

1280 • CID 2014:58 (1 May) • IMMUNOCOMPROMISED HOSTS



aminoglycosides due to aminoglycoside-modifying enzymes,
including KPC-producing isolates [68]. However, plazomicin
is not active against most NDM producers, which are typically
resistant to aminoglycosides due to ribosomal methylation. The
limitations of these new agents, as well as the lack of other
promising investigational compounds, highlight the urgency
of increasing the investment in antibiotic development [90].
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