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In studying interacting proteins, complementary insights are provided by

analyzing both the association model (the stoichiometry and affinity constants of

the intermediate and final complexes) and the quaternary structure of the

resulting complexes. Many current methods for analyzing protein interactions

either give a binary answer to the question of association and no information

about quaternary structure or at best provide only part of the complete picture.

Presented here is a method to extract both types of information from X-ray or

neutron scattering data for a series of equilibrium mixtures containing the initial

components at different concentrations. The method determines the association

pathway and constants, along with the scattering curves of the individual

members of the mixture, so as to best explain the scattering data for the

mixtures. The derived curves then enable reconstruction of the intermediate and

final complexes. Using simulated solution scattering data for four hetero-

oligomeric complexes with different structures, molecular weights and

association models, it is demonstrated that this method accurately determines

the simulated association model and scattering profiles for the initial

components and complexes. Recognizing that experimental mixtures contain

static contaminants and nonspecific complexes with the lowest affinities (inter-

particle interference) as well as the desired specific complex(es), a new

analytical method is also employed to extend this approach to evaluating the

association models and scattering curves in the presence of static contaminants,

testing both a nonparticipating monomer and a large homo-oligomeric

aggregate. It is demonstrated that the method is robust to both random noise

and systematic noise from such contaminants, and the treatment of nonspecific

complexes is discussed. Finally, it is shown that this method is applicable over a

large range of weak association constants typical of specific but transient

protein–protein complexes.

1. Introduction
Gaining a deeper understanding of the functions and

mechanisms of protein–protein interactions requires

extending the binary information (interaction or not)

provided by high-throughput techniques and characterizing

the stoichiometries, affinities and three-dimensional structures

of protein complexes. However, experimental methods for the

detailed study of protein complexes typically fall into two

separate categories: some (e.g. X-ray crystallography and

NMR spectroscopy) enable structure determination but do

not readily reveal the association model, while others [e.g. H/

D exchange (Codreanu et al., 2005), analytical ultra-

centrifugation (Lebowitz et al., 2002), titration calorimetry

(Velazquez-Campoy et al., 2004) and composition gradient

static light scattering (Attri & Minton, 2005; Kameyama &

Minton, 2006)] enable characterization of the stoichiometry

and strength of interaction but provide no or very limited

structural information.

As we show here, small-angle scattering in solution (SAS)

(Feigin & Svergun, 1987) provides an alternative experimental

technique that can simultaneously provide both structural and

association information for a complex. SAS has recently
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gained popularity in low-resolution structural studies of

protein monomers and tight complexes (Svergun & Stuhr-

mann, 1991; Walther et al., 2000; Chacón et al., 1998; Svergun,

1999; Svergun et al., 2001), as it is applicable to proteins of

practically any size under physiological conditions, while data

can now be collected rapidly at new higher-flux X-ray or

neutron sources. However, its applicability to the study of

complexes has been limited owing to the requirement for a

homogeneous and monodisperse sample, rendering SAS

unsuitable for important, more weakly binding, transient but

specific complexes (e.g. those associated with cellular

signaling, which contain mixtures of the component mono-

mers and intermediate and final complexes).

We recently described a method for the elucidation of

weaker homo-oligomeric complexes from solution scattering

data (Williamson et al., 2008), and subsequent reports of

similar numerical approaches applied to experimental data

(Bernadó et al., 2009) have demonstrated the value of such

methods. However, these methods were only applied to homo-

oligomers and were limited in their ability to handle

systematic noise in the scattering data. Here, we extend our

earlier method so as to characterize hetero-oligomeric

complexes and we develop a new analytical approach to

handle contaminants in the mixtures, thereby yielding a

method with potential applicability to an even broader range

of biological systems and experimental conditions.

An equilibrium mixture of protein components contains

multiple different molecular species, including the initial

components (often monomers), the desired higher-affinity

complexes (both intermediate and final), nonspecific

complexes of the lowest affinity (sometimes thought of as

interparticle interference) and perhaps static contaminants.

The method presented here focuses on the initial components

and higher-affinity complexes, and includes an extension for

particular static contaminants (such as a nonparticipating

monomer or homo-oligomeric aggregate). The method

determines the association model (stoichiometry and affinity

constants) for the higher-affinity complexes from SAS data

collected from a set of solutions containing the initial

components in varying concentrations. In addition to the

association model, this method accurately reconstructs the

individual scattering curves of all the molecular species. These

reconstructed curves can form the basis for low-resolution

structural analysis of the intermediate and final complexes.

While not addressed by the present method, the handling of

interparticle interference is important, and interesting future

work and possible ways to deal with the lowest-affinity non-

specific complexes are discussed.

Scattering from such equilibrium mixtures can be approxi-

mated as a fractional mass-weighted linear combination of the

‘pure’ scattering from the initial components and specific

complexes (an approximation that is most accurate under

conditions when the lowest-affinity nonspecific complexes and

contaminants make only a small contribution). First, low-rank

approximation is employed to remove from the observed

mixture data some of the experimental noise and contribu-

tions from minor species. A search is then carried out over

possible association models (which define a set of expected

fractional masses for all the species), establishing a least-

squares problem for each. Solution of the least-squares

problem yields reconstructions of the pure scattering curves.

These hypothesized reconstructions are evaluated for consis-

tency with the data and with the postulated association model,

and the best model is selected. If no model is of sufficient

quality, the search can be expanded to consider association

models containing a static contaminant. We have investigated

the situation where the contaminant is either a nonpartici-

pating monomer or a homo-oligomeric aggregate of one of the

initial components, since these represent the most important

practical situations where the contaminants are less likely to

be removed by biochemical means during preparation of the

initial components. In these cases, the least-squares approach

is no longer applicable, so, at the cost of computational time, a

convex quadratic program is employed to compute scattering

curves that are consistent with the data and which satisfy the

additional constraints expected of physically realistic scat-

tering curves.

We demonstrate the effectiveness of this method on simu-

lations of four hetero-oligomeric complexes with different

association pathways, association constants, molecular weights

and three-dimensional structures. Our simulation studies

further demonstrate the robustness of the method to both

random noise and systematic noise due to contaminants. In all

cases, it is possible to infer the correct association pathway and

obtain association constants that are very close to those used

in the simulation, as well as scattering curves that closely

approximate those of the monomers and oligomers.

2. Methods

When several molecules are present in a solution, the

observed scattering curve is the mass-fraction-weighted linear

combination of the scattering intensities for the individual

components. Starting with scattering intensities collected from

the equilibrium mixtures of a series of different concentrations

of the initial components, the goal is to infer the association

model, along with the underlying scattering curves of the

molecular species involved, including the initial components

and intermediate and final complexes. Fig. 1 provides an

overview of the present approach for an example in which the

initial components A and B form an AB complex, with an

association constant KAB establishing the fractional amount of

each of these forms at equilibrium. Each molecular species has

an underlying scattering curve, but the association model and

underlying scattering curves are unknown (gray shaded box in

Fig. 1). At given initial concentrations of A and B, the scat-

tering curve for the equilibrium mixture is the weighted sum of

those for pure A, pure B and pure AB, weighted by the

equilibrium fractional masses. The experimentally measured

curve (normalized by the total mass concentration of the

mixture) is then composed of this weighted sum, plus

experimental error. A series of such curves is collected (or for

the results presented here, simulated) over a range of initial

concentrations of A and B. A search is then carried out over
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possible association models, considering

alternative pathways and values for the

corresponding association constants (here

only KAB). When considering a possible

pathway, an associated number p of molecular

species present is hypothesized, and thus a

corresponding reduced set of scattering curves

with random experimental noise partly

removed can be extracted. When considering

a set of association constants under this

pathway, a set of fractional masses is hypo-

thesized and these are used to reconstruct the

underlying curves. To determine the best

association model and reconstructed curves,

first a broad coarse-grid search is performed

over possible association constants, followed

by a narrow fine-grid search, and each is

scored for quality of fit to the observed data

and agreement between the scattering curves

and proposed stoichiometries of the

complexes. Finally, the best pathway and

constant are returned, along with the corre-

sponding reconstructed curves.

More formally, the input scattering data are

represented as an m � n matrix S, with n

columns for n samples at different concen-

trations of the initial A and B components,

each with m rows for the scattering intensities

at a fixed set of m scattering angles. Each

scattering curve normalized to the mass

concentration (column in S) represents a

linear combination of p curves (the initial components and

intermediate and product oligomers, each at the standard mass

concentration), weighted according to their equilibrium frac-

tional masses. Collecting the curves into an m � p matrix O

(one column per molecular species) and the fractional masses

into a p � n matrix F (one row per set of initial monomer

concentrations), and adding experimental noise E (one value

per data point), we obtain

S ¼ OF þ E: ð1Þ

While S is the observed data, the values in the other matrices

are unknown. The goal is to infer the association model, which

determines F and the set of curves O. These in turn produce

the observed matrix S.

We now detail each of the steps in the following subsections.

The presentation is generalized from that of our previous

homo-oligomeric study (Williamson et al., 2008) and refocused

directly on solving the underlying least-squares problem. We

initially assume that only the species in the modeled associa-

tion are present in the various mixtures. We subsequently

show how to modify the methods to handle potential situa-

tions where the presence of a contaminant that is a non-

participating monomer or homo-oligomeric aggregate alters

the ideal situation.

2.1. Low-rank approximation

When considering an association pathway (recall that the

search will be carried out over the possibilities), the number p

of molecular species that are present at equilibrium is known.

Since the relationship between their mass fractions (and hence

between rows of F) is nonlinear, and since the number of

concentrations is greater than the number of molecular

species, a p-rank approximation Sp can be extracted. This low-

rank approximation Sp is a ‘de-noised’ version of S (i.e. with E

partially removed) containing the appropriate number p of

curves with which to reconstruct the scattering curves

according to the association model.

Singular value decomposition (SVD) is a popular technique

for low-rank approximation and has been employed by us

(Williamson et al., 2008) and others (Segel et al., 1998, 1999;

Chen et al., 1996) in the analysis of scattering data. SVD

computes the low-rank approximation with the smallest

distance to the input matrix, as measured by the Frobenius

norm of the matrix difference,

kS� SpkF ¼
P
i;j

Sði; jÞ � Spði; jÞ
� �2

( )1=2

: ð2Þ

The SVD of the m � n matrix S is given by S = U�VT, where

m � m matrix U and n � n matrix V are orthogonal matrices

whose column vectors are the left and right singular vectors,
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Figure 1
An overview of the present method for an example one-stage system. The association model
and scattering curves of the various molecular species are unknown. Scattering curves are
collected over a series of different initial concentrations of the components. Each observed
scattering curve is a linear combination of the unknown curves of the different species,
according to the association model and initial concentrations of the components, plus noise.
A systematic search is carried out over possible association models; for each, a
corresponding low-rank approximation is used to de-noise the data, and a least-squares
formulation is employed to reconstruct the scattering curves of the different species. The
agreement of the reconstructed curve of each model with the experimental data is evaluated
and the best model selected. This ideal framework is then extended to account for the most
problematic possible contaminants (nonparticipating monomers and homo-oligomeric
aggregates have been tested) by including an additional unknown scattering curve and
fractional mass, and solving a quadratic optimization problem for reconstruction.



respectively, and m � n matrix � is a diagonal matrix whose

elements are the singular values associated with the corre-

sponding left/right singular vectors. The singular values are in

order along the diagonal from largest to smallest, weighting

the contributions from the most to the least important singular

vectors. To compute the pth low-rank approximation, the

smallest m � p singular values on the diagonal of � are

replaced with zero to give �p, and then Sp = U�pVT is

computed.

2.2. Reconstruction

When considering a set of association constants for a

pathway (recall that a grid search will be conducted over

possible values for the association constants), standard asso-

ciation equilibria can be applied to compute the resulting

equilibrium fractional mass of each of the p molecular species.

These fractional masses are collected into a matrix ~FF (where

the tilde indicates that it is a reconstruction of the ‘true’

unobserved matrix F). Combining this with the low-rank

approximation Sp in a de-noised version of equation (1), the

least-squares solution is computed in order to reconstruct the

scattering curves of the various species:

~OO ¼ Sp
~FFy; ð3Þ

where ~FFy denotes the Moore–Penrose pseudo-inverse. This

formalization in terms of a p-rank approximation is a gener-

alization of the approach given by Williamson et al. (2008),

where using basis vectors from SVD was an explicit part of the

equations. It clarifies the role of the decomposition and allows

the use of alternative approximation approaches. It is also

different from the approach of Bernadó et al. (2009), where a

related approach employs principal component analysis to

find the number of components in the solution.

If the least-squares solution ~OO has more than 10% negative

intensity values or contains negative values in the small scat-

tering angle range considered for Guinier analysis (Dervichian

et al., 1952), it is considered to be nonphysical and the

reconstruction is rejected without further analysis.

The solution ~OO is then used to compute ~SS, an approximation

of the observed scattering curves of the equilibrium mixtures,

by linearly combining the curves of the species involved at the

appropriate fractional masses:

~SS ¼ ~OO ~FF ¼ Sp
~FFy ~FF: ð4Þ

Thus, the low-rank approximation is used to reconstruct the

scattering data so as to be consistent with the hypothesized

association model.

2.3. Evaluation

An association model is assessed in terms of how well the

reconstructed scattering curves ~SS match the experimental ones

S. The two scoring approaches of our homo-oligomeric work

(Williamson et al., 2008) are employed, customized for hetero-

oligomers.

First, a �2 score quantifies the differences over the entire set

of scattering curves, weighted by the estimated error �(i, j) for

each experimental data point:

�2
¼

1

mðn� pÞ

Xn

j¼1

Xm

i¼1

Sði; jÞ � ~SSði; jÞ

�ði; jÞ

� �2

: ð5Þ

The sum of the squared differences between points on the

reconstructed and original curves is normalized by m(n � p)

degrees of freedom to yield a �2 score. While there are mn

data points, p of the n degrees of freedom are fixed by the low-

rank approximation. In practice, this score is observed to be

approximately 1 for the best fit to the data with Gaussian

simulated noise.

Second, the mean-squared mass ratio difference (MSMRD)

score calculates whether the zero-angle intensities match the

stoichiometry of the hetero-oligomeric forms. The scattering

intensity at zero angle, estimated by Guinier analysis (Dervi-

chian et al., 1952), is proportional to the molecular weight.

Thus, for example, one would expect I(0) for species AB,

denoted IAB(0), to equal IA(0) + IB(0), and thus IAB(0)/

[IA(0) + IB(0)] = 1. Thus, the MSMRD score computes the

average, over the various hetero-oligomeric forms, of the

deviations of such ratios from the ideal value of 1. Its expected

value is thus zero. For a hetero-oligomer formed by A and B

monomers, we compute the MSMRD as

MSMRD ¼
1

p� 2

X
ða;bÞ2C

1�
IAaBb
ð0Þ

a IAð0Þ þ b IBð0Þ

� �2

; ð6Þ

where C is a set of (a, b) pairs indicating the various AaBb

hetero-oligomeric forms and IAaBb
(0) represents their zero-

angle intensity. For example, if the association model is

A + B! AB, AB + B! AB2, then

MSMRD ¼
1

2
1�

IABð0Þ

IAð0Þ þ IBð0Þ

� �2

þ 1�
IAB2
ð0Þ

IAð0Þ þ 2IBð0Þ

� �2
( )

:

ð7Þ

These two scores are complementary. The �2 value is global,

assessing the overall agreement between the reconstruction

and the data. However, two related association pathways (with

an appropriate choice of association constants) can generate

similar solutions and similar �2 values. For example, this can

happen with a one-stage association pathway A + B ! AB

and the extended two-stage association pathway A + B!AB,

A + B! AB2, with similar association constants KAB for both

cases and a very weak KAB2
for the second (see Results, x3).

This is because equation (4) can give similar solutions for two

different matrices F, as long as the column space spanned by

the fractional matrix is the same. On the other hand, the

MSMRD is very local, ignoring the agreement over most of

the curve and focusing on the zero-angle intensity in order to

assess the agreement between the independent (and not

directly optimized) expected molecular weights and the stoi-

chiometry. We have found that considering both �2 and the

MSMRD improves the determination of the correct associa-

tion model (see Results, x3).
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2.4. Association model search

We have discussed how to reconstruct and evaluate scat-

tering curves for a given association model defined by a

pathway and a corresponding set of association constants. In

order to determine the best model, models for a set of plau-

sible pathways are separately reconstructed and evaluated

over a grid of possible association constants.

The pathways to be considered are chosen from the set of

oligomers that could possibly be present in the equilibrium

mixture. Although that set is potentially infinite, a most likely

set of oligomers can be selected, for example, from an analysis

of the zero-angle scattering or by the radii of gyration of the

experimental scattering curves. Then all pathways that could

form complexes with the allowed sets of subunits are consid-

ered. For example, if it is known that there are two monomers,

A and B, and it has been determined that the final oligomer

has at most three subunits, then the one-stage associations

2A ! A2, 2B ! B2 and A + B ! AB would be evaluated,

along with the two-stage associations that extend these to

yield A2B and AB2. Like other approaches, for example

analytical ultracentrifugation, where postulated association

models are fitted to the data, assumptions have to be made for

the most likely models to be assessed.

Coarse- and fine-grid searches are performed over possible

values for the association constants. Each association constant

is an independent dimension in the grid. The results presented

below use grids covering the range of plausible constants: 10�6

to 1025 for a one-stage association and 101 to 1015 for a two-

stage association. An initial coarse grid is searched at integer

multiples of the powers of 10 (e.g. 1� 103, 2� 103, 3� 103, . . . ,

9 � 103, 1 � 104, 2 � 104, . . . ). For each point (representing

one or a pair of association constants), the curves are recon-

structed and evaluated by �2 and MSMRD, as described

above. The constants with the best scores establish a region for

a fine-grid search, plus or minus one unit in each dimension,

with a spacing of 1% of that of the coarse grid. Fine-grid

searches are only performed for the models with the best �2

and MSMRD values from the coarse-grid search and for which

the best coarse-grid association constants from the �2 and

MSMRD scores are in sufficient agreement. Finally, the model

with the best fine-grid �2 and MSMRD scores is selected,

determining the corresponding pathway, association constants

and reconstructed curves. In cases where the fine-grid search

fails to yield an acceptable model, owing to either a high �2 for

the best fine-grid point or a large disagreement between the

best �2 and MSMRD fine-grid points, the methods in the next

section can be employed to account for contaminants.

2.5. Accounting for contaminants

An extension to the current methodology has been devel-

oped to deal with the case when the scattering data contain a

substantial contaminant. Since contaminants that are unre-

lated to the initial components are generally readily purified

out by current protein-separation methods, we seek to solve

the biochemical situations that arise most frequently. Thus, our

focus is on cases in which the contaminant is either a non-

participating monomer or a large homo-oligomeric aggregate

of one of the components.

Let us assume that the contaminant is a nonparticipating

monomer or homo-oligomeric aggregate of A (the metho-

dology works the same for any component and could be

generalized to multiple such contaminants). Note that, in our

approach, the contributions from all species in a polydisperse

homo-oligomeric aggregate can be accounted for by one

combined scattering curve and one total contaminant fraction.

Let c be the unknown mass fraction of A that forms the

contaminant. As part of the grid search, possible values for c

will be considered along with those for the association

constant(s). Given hypothesized values for c and the asso-

ciation constant(s), a fractional mass matrix ~FF must be built

for each, now containing p + 1 rows, with the extra row for the

contaminant. In constructing this matrix, let ai be the initial

amount of A in sample i. Then the amount of ai still partici-

pating in the hypothesized association (rather than in the

contaminant) is ai(1� c). The equilibrium concentrations, and

thereby the masses of the other forms, are determined from

the reduced A concentration and the initial concentrations of

the other initial component(s).

Unfortunately, the extended matrix ~FF is no longer of full

rank in the presence of contaminant, as the fractional mass

vector for the contaminant is linearly dependent on A. This in

turn implies that there is an infinite set of widely varying least-

squares solutions ~OO satisfying ~OO ~FF ¼ Sp. One of these, denoted
~OO0, is the solution from equation (3), ~OO0 ¼ Sp

~FFy. Using this
~OO0 to reconstruct ~SS, as in equation (4), gives Sp

~FFy ~FF, denoted

Sp; ~FF . Each least-squares solution ~OO produces this same Sp; ~FF

and thus cannot be distinguished by comparison with the data

S or the de-noised data Sp. This equivalence of solutions ~OO is

due to the fact that the set of least-squares solutions is

composed of the sum of ~OO0 with an infinite set of matrices of

row vectors (that is, adjustments to the scattering curves) from

the null space of ~FFT. Post-multiplication by ~FF then reduces the

second matrix in this sum to zero, resulting in no change in

Sp; ~FF .

In summary, there are an infinite number of reconstructions

of the pure curves ~OO, but each produces the same recon-

structed data Sp; ~FF . Since the reconstructed data are used to

compute �2 [equation (5)], the best association model (best ~FF)

can be found via coarse- and fine-grid searches as before, with

an additional dimension of the contaminant fraction in addi-

tion to the association constant(s). However, this approach

does not produce correct reconstructed pure scattering curves

and thus also does not give MSMRD values. Therefore, after

identifying the best �2 point (or a set of feasible points for

consideration), one must search over the space of satisfying ~OO
to reconstruct and evaluate pure scattering curves and identify

the best one.

A quadratic optimization framework has been developed

that seeks a solution ~OO that not only explains the data (which

all ~OO do equally) but also has properties desirable of physi-

cally realistic scattering curves. In particular, smoothness is

established as the objective function and constraints are

incorporated limiting the sub-optimality of �2, while the
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expected decaying exponential trend in the Guinier region of

the scattering curves is also enforced, as well as the expected

ratios of I(0) values (as also employed in the MSMRD score).

Note that, if the contaminant only involves form A, for

example, then the row for B in the fractional mass matrix is

linearly independent of the contaminant and yields a unique

least-squares solution (the same in ~OO for any ~OO0). Thus, after

computing ~OO0, the row for initial component B is removed

from ~FF and from Sp; ~FF (via its row in ~FF and its column in ~OO0).

For simplicity, we continue to refer to ~OO and ~FF without

distinguishing the reduced-parameter versions.

We now outline the components of the quadratic program:

the objective to optimize and the constraints to limit the

considered solutions.

2.5.1. Objective: smoothness. With the available freedom

in ~OO, there are curves that use wildly fluctuating values to

obtain good �2 scores upon post-multiplication by ~FF. Since

physical curves are expected to be relatively smooth, a discrete

evaluation of smoothness is established as the objective

function. A finite difference matrix D is constructed that,

when multiplied by ~OO, approximates the second-order deri-

vative at each point on the curve. The quadratic program then

seeks to minimize the total of the squared differences, i.e.

the square of the Frobenius norm of D ~OO:

min
~OO
jjD ~OOjj2F : ð8Þ

2.5.2. Constraint: v2 deviation. A reconstruction is sought

with the optimum �2 (as with all the ~OO, satisfying ~OO ~FF ¼ Sp; ~FF),

but since the data are noisy, one may sacrifice a little in the �2

score in order to ensure a feasible optimization problem and

do better in terms of smoothness and other characteristics.

Thus, a constraint is imposed that the reconstructed curves are

no more than a tolerance "fit away from the one that gives the

lowest �2. This tolerance should be set fairly low to keep the

identified curves near the optimum one; for the present results,

a value of 10�3 is used. The constraint then requires

ð1� "fitÞSp; ~FF �
~OO ~FF � ð1þ "fitÞSp; ~FF : ð9Þ

2.5.3. Constraint: non-negativity. This requires that the

scattering curves are non-negative,

~OO � 0: ð10Þ

2.5.4. Constraint: Guinier. Scattering curves decay expo-

nentially in the Guinier region (Dervichian et al., 1952).

Therefore, a constraint is imposed that the curves are non-

increasing (within a tolerance) in the initial Guinier region. To

approximate the Guinier region in the scattering curves in ~OO
without iterating on Rg (radius of gyration) values, qmax = 1.33/

Rg (Guinier & Fournet, 1955) and a fixed Rg = 40 Å are used.

To allow for noise, this property is enforced only to within a

tolerance "Guinier: within the Guinier region, a given intensity

is no more than (1 + "Guinier) times the intensity at the next

lower scattering angle. A reasonable value for "Guinier can be

estimated by examining some pure intensity curves that have

been reconstructed from uncontaminated simulations with

standard noise; a value of 2 � 10�2 is used here. Note that this

value is dependent on the extent of the noise and the spacing

of the scattering angles. This constraint is formulated with a

matrix G which, when multiplied by ~OO, gives the differences

between (1 + "Guinier) times a particular point and the next

point, for points in the scattering curves in ~OO at q < qmax:

G ~OO � 0: ð11Þ

2.5.5. Constraint: molecular weights. When considering a

contaminant X that is a nonparticipating form of A (either

monomer or aggregate), its native mass must be at least that of

A, i.e. MX > MA. Thus, the zero-angle intensity of its scattering

curve should be at least equal to that of IA(0). Since the

extrapolation to obtain I(0) requires an exponential fit (which

would render the system nonlinear), the intensity at the

smallest angle measured, I(qmin), is used instead:

IXðqminÞ � IAðqminÞ � 0; ð12Þ

where the scattering curves IA and IX (for A and the

contaminant X) are particular vectors of ~OO.

Imposing this constraint on I(qmin) instead of I(0) results in

negligible error, since, from the Guinier relationship,

IXðqminÞ

IAðqminÞ
¼

MX

MA

exp �
1

3
q2

min RgðXÞ
2
� RgðAÞ

2
� �� �

: ð13Þ

Given that q2
min is generally quite small (of the order of 10�6 in

experimental data), the difference in radii of gyration is not

large enough to impact the results substantially.

Furthermore, since a unique scattering curve for B has been

found, its intensity at qmin can be used to constrain the

intensity at qmin of the scattering curve for A and other forms

(excluding the contaminant). For example, it is expected that

IAðqminÞ

IBðqminÞ
’

MA

MB

: ð14Þ

Essentially, this is encoding MSMRD (relative to the inde-

pendent form B) as a constraint, but for intensities at qmin

instead of at zero angle. As with most other constraints, a

tolerance is used to allow for some noise. Thus, the approx-

imate equality of the intensity ratio and the mass ratio is

encoded as a constraint on the ratio between these two ratios –

it must be within a tolerance "MSMRD of the desired value of 1.

A value of "MSMRD = 0.1 has been found to work well for the

present tests, but for other data this tolerance could poten-

tially be tightened further, as long as feasible solutions still

result. For the scattering from A (IA) and every other mol-

ecular species AkBl (IAk
Bl), constraints are added of the form

IAðqminÞ � ð1� "MSMRDÞIBðqminÞ
MA

MB

; ð15Þ

IAðqminÞ � ð1þ "MSMRDÞIBðqminÞ
MA

MB

; ð16Þ
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IAkBl
ðqminÞ � ð1� "MSMRDÞIBðqminÞ

kMA þ lMB

MB

; ð17Þ

IAkBl
ðqminÞ � ð1þ "MSMRDÞIBðqminÞ

kMA þ lMB

MB

; ð18Þ

where again the scattering curves I are particular vectors in ~OO.

2.5.6. Solving the system. While the objective and

constraints have been written in terms of ~OO and other

matrices, these matrices can be reshaped into long vectors (i.e.

by stacking columns). The combination of the objective

function and constraints yields a convex quadratic optimiza-

tion problem that can be solved by numerous solvers. If the

quadratic optimization program is not feasible for a hypo-

thesized association model, that model is discarded. If more

than one feasible model were to remain, MSMRD values

could be computed and the best selected, but that did not

happen in the simulation studies presented below.

2.6. Implementation

The methods have been implemented in a platform-inde-

pendent Python package that is available from the authors

upon request. The package calls the IBM ILOG CPLEX

optimizer to solve the system of equations. The program

allows a user to search over possible association models based

on specifications provided via the command line or in an input

file. The package contains implementations for both a

contaminant-free search and an extension to handle non-

participating monomers and homo-oligomeric contaminants.

In addition to the methods in this paper, it also contains an

implementation for homo-oligomeric association models from

our previous work (Williamson et al., 2008).

To obtain the results presented below, coarse- and fine-grid

searches for a one-stage model took less than a minute, while

searches for a two-stage model took a few minutes on a single-

core Intel Xeon 2.50 GHz processor. The three-stage searches

took a few hours. Grid searches with contaminant for one-

stage association took a few minutes, while contaminant

searches for two-stage association took a few hours. The

quadratic program solver usually took less than a minute.

3. Results

In order to evaluate the effectiveness of the present method in

a range of scenarios, an extensive set of simulation studies

were performed with different association pathways and

association constants, and varying levels of random noise, data

resolution and monomer size. Fig. 2 summarizes the

complexes used in these studies, and illustrates their crystal

structures and the simulated scattering curves of the mono-

mers and intermediate and final oligomers at a constant mass

concentration. The complex structures were taken from the

Protein Data Bank (PDB; Berman et al., 2000) (PDB codes

indicated), and monomer and intermediate complex structures

were extracted. The association models for simulation were

not taken from experimental data; instead, they were chosen

to challenge the ability of the method to determine the correct

model even in the presence of alternatives that have inter-

mediate and final complexes of similar mass (note the simi-

larity of the initial component masses in the bovine IFN-� and

human growth hormone-receptor cases). Association

constants were chosen in the middle of a feasible range.

However, the impact of the constants was explicitly assessed in

one set of simulations.

It was found that as few as eight different initial concen-

trations provides a sufficient set of different scattering curves

for subsequent reconstruction, and the results shown are
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Figure 2
The four case studies discussed in this article.



based on eight for all test cases. The initial concentrations used

(Supplementary Tables 1 and 21) are all in the 0.5–5.0 mg ml�1

range, where SAS data are easily collected. They were chosen

so as to yield a diverse set of row vectors (fractional masses) in

the fractional mass matrix F, adequately sampling the space

and ensuring that important vectors (scattering from inter-

mediate and final complexes) are included in the low-rank

approximation. Even so, the equilibrium mixtures are rarely

more than 70% of one form. In practice, of course, F cannot be

assessed initially, but it is still recommended that the user

ensures that there is a diverse set of initial concentrations, with

different combinations of low and high monomer concentra-

tions. In the absence of approximate knowledge of the asso-

ciation constants that determine F, a first-round analysis can

be used to identify a definitive set of initial concentrations

from which to collect data. Pure monomer solutions (only A,

only B) are included as initial components so as to char-

acterize them better and account for their contributions to the

mixtures. Of course, pure monomers may not be biochemically

available, but the method is not dependent on this and any

available components could be used.

The program CRYSOL (Svergun et al., 1995) was used at

the default settings to simulate noiseless scattering intensities

O from the three-dimensional structures of each initial

component and complex. The noiseless equilibrium mixture

intensities were then simply calculated as OF. Note that these

curves include only the scattering within the initial compo-

nents and complex members and do not capture contributions

from any weak interparticle interactions. Noise E was then

added, following the method employed by Williamson et al.

(2008), to simulate realistic angle-dependent Gaussian noise

based on noise levels observed in experimental samples. Ten

data sets were generated for each example, with different

random noise added for each data set.

While two one-stage associations and two two-stage asso-

ciations were studied, detailed results are presented for only

one of each and the second is summarized, since the results

were similar in each category. We first show that the method

yields the correct association model on the initial simulated

data, for both one-stage and two-stage examples. We then

demonstrate the robustness of the method to noise and

investigate the range of association constants for which the
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Figure 4
Residuals between pure simulated scattering intensities and the reconstructed ones for bovine IFN-� �2 optimum association models.

Figure 3
Association constant searches for one bovine IFN-� data set, for the correct A + B! AB pathway. The ‘�’ mark on the x axis indicates the simulated
association constant (3.43 � 106).

1 Supporting information discussed in this paper is available from the IUCr
electronic archives (Reference: KK5143).



method is applicable. Finally, we consider

test cases with simulated contamination

and present results from the expanded

method that accounts for the contami-

nant.

3.1. Baseline simulations

3.1.1. Bovine IFN-c (one stage). We

first examine the results for one of the ten

simulated data sets (i.e. one Gaussian

noise matrix E), with the correct pathway

A + B! AB and varying the association

constants on a coarse grid (Fig. 3, left) and

fine grid (Fig. 3, right). Both plots show a

steep decline in �2 and MSMRD scores

around the simulated association constant

value (3.43� 106), with a minimum �2 of 1.59 at 3.34� 106 and

a minimum MSMRD of 1.67 � 10�11 at 3.65 � 106. The close

agreement of these association constants and the high quality

of the scores under these complementary metrics gives

confidence in this solution.

Whereas in an experimental setting one would not have

access to the ‘true’ scattering curves of the various molecular

species (O), here one does (from the CRYSOL calculation on

the model components and complexes), and one can evaluate

how well the reconstructed curves agree with them [ ~OO,

computed by equation (3)]. Fig. 4 shows the approximately

random residuals between the reconstructed and simulated

curves, at the association constant KAB = 3.34 � 106 which

yields the best �2 score. [The apparent deviation from random

residuals seen at higher resolution for component B (Fig. 4,

middle) is not explained by deviation between simulated and

best �2 association constants.] To quantify the extent of

agreement, the median of the absolute relative deviation

(MARD) is computed as a percentage deviation of the

reconstructed curve from the simulated one; a MARD value

close to zero indicates that the reconstructed curve is very

close to the original noiseless CRYSOL curve. MARD scores

confirm the agreement illustrated in the figure: A has a

MARD of 0.24%, B 0.16% and AB 0.22%, averaged across

the ten data sets with different simulated noise.

Table 1 summarizes the results of the best-scoring pathway

(which is the correct one) over all ten simulated noisy data

sets; Supplementary Table 3 includes results for alternatives.

The A + B! AB pathway was always chosen and the average

association constant was close to the simulated one, with only

a small variation between data sets. Only the related two-stage

pathways A + B! AB, AB + B! AB2 and A + B! AB,

AB + A!A2B obtained coarse-grid �2 scores (averaging 1.62

and 1.55, respectively) competitive with that of the correct

model (1.53); the rest were much worse. Both alternative

models extend the correct model with an additional associa-

tion of weak affinity, keeping the A + B! AB association as

the primary one. Any additional association has an adverse

effect on the MSMRD scores (1.19 � 10�3 and 8.21 � 10�4,

versus 3.74 � 10�7 for the correct model), as the low-angle

data do not support an oligomer with a molecular weight

corresponding to AB2 or A2B. In addition, while the optimum

association constants for �2 and MSMRD are very similar for

the correct model, the best association constants by these two

metrics are quite different for the alternative models.

Furthermore, there is no choice of constants that scores

moderately well under both metrics, and the association

constants giving the best �2 score yield a poor MSMRD score

and vice versa. For pathway A + B! AB, AB + B! AB2, the

MSMRD for the association constant with the best �2 score

averages 9.53 � 10�2 across the ten data sets, versus an

average best MSMRD of 1.19 � 10�3. On the other hand, the

�2 score for the association constants with the best MSMRD

score is 33.45 on average. These values are more than an order

of magnitude worse than the best �2 and MSMRD scores for

the correct pathway. Similar results are found for the second

alternative pathway. Even though the �2 scores are not good

discriminators, the substantial deterioration in the MSMRD

and the disagreement between MSMRD and �2 metrics for

the alternative models point to the correct A + B ! AB

pathway.

3.1.2. BAF–emerin complex (two stage). Fig. 5 shows both

�2 and MSMRD scores on the coarse and fine grids for the

correct A + B ! AB, AB + B ! AB2 pathway, for one

example noisy data set. As in the one-stage case, there are well

defined minima, with the best association constants yielding

much better �2 and MSMRD scores than nearby alternatives,

at both coarse and fine resolutions. Again there is good

agreement as to the best association constants under the two

scores: �2 gives KAB = 3.16 � 105, KAB2
= 4.16 � 105, and

MSMRD gives KAB = 3.27 � 105, KAB2
= 4.35 � 105, with the

simulated constants being KAB = 3.21� 105, KAB2
= 4.23� 105.

Interestingly, under both metrics, the best association

constants lie on a diagonal line in which KAB and KAB2

increase at a similar rate, ensuring that if more AB is produced

than the data dictate it is also converted to AB2. While this

keeps the fraction of AB relatively constant, the resulting

excessive depletion of A and excessive formation of AB2 yield

worse scores at points along the diagonal line other than the

minimum. The reconstructed intensities at the best association
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Table 1
Coarse- and fine-grid search results for the best-scoring (and correct) models for uncontaminated
simulations, over ten sets of simulated noise.

Simulated association constants: bovine IFN-�, K1 = 3.43� 106; BAF–emerin complex, K1 = 3.21� 105,
K2 = 4.23 � 105.

Search K1 K2 Score

Bovine IFN-�, A + B! AB
Coarse �2 3.30 � 106

� 4.8 � 105 – 1.53 � 0.11
Coarse MSMRD 3.70 � 106

� 4.8 � 105 – 3.74 � 10�7
� 3.0 � 10�7

Fine �2 3.40 � 106
� 7.1 � 104 – 1.49 � 0.12

Fine MSMRD 3.64 � 106
� 5.2 � 105 – 1.82 � 10�11

� 1.8 � 10�11

BAF–emerin complex, A + B! AB, AB + B! AB2

Coarse �2 3.00 � 105
� 0.0 4.00 � 105

� 0.0 1.17 � 0.24
Coarse MSMRD 3.00 � 105

� 0.0 4.00 � 105
� 0.0 1.33 � 10�6

� 6.8 � 10�7

Fine �2 3.21 � 105
� 4.5 � 103 4.24 � 105

� 6.9 � 103 1.12 � 0.24
Fine MSMRD 3.24 � 105

� 1.3 � 104 4.29 � 105
� 1.9 � 104 1.03 � 10�9

� 6.6 � 10�10



constants are quite similar to the original simulated noiseless

ones, as illustrated in the residuals (not shown) and quantified

by average MARD values of 0.08% for A, 0.08% for B, 0.15%

for AB and 0.06% for AB2.

Table 1 summarizes the results from ten simulations for the

correct, best-scoring model; Supplementary Table 4 includes

those for alternatives. The best coarse-grid �2 score, averaging

1.17, is obtained by the correct pathway (A + B ! AB,

AB + B! AB2). The next best �2 scores, averaging 1.28 and

4.49, are obtained by alternative three-stage pathways that

add weak association reactions AB2 + B ! AB3 or

AB2 + A ! A2B2 to the correct pathway. As before, larger

changes in the MSMRD scores are seen. The first alternative

(adding AB3) has an MSMRD score that is more than 40 times

higher than the best MSMRD score (6.09 � 10�5, compared

with 1.33 � 10�6 for the correct pathway). The second alter-

native (adding A2B2) has an MSMRD score (2.50� 10�3) that

is almost 2000 times worse. Furthermore, comparing the best

�2 association constants against the best MSMRD constants in

these alternative pathways reveals that they differ by

approximately 100 in K1 and 103 in K2. In addition, as before,

neither alternative pathway has a set of constants that score

well under both metrics. Thus, using �2 and MSMRD scores

together, the correct pathway can be determined.

3.2. Robustness to noise

The simulated data sets include a realistic estimate of

Gaussian noise found in experimental data sets at third-

generation synchrotron sources (Williamson et al., 2008), but

the present simulation framework enables easy assessment of

how robust the method is to much noisier data. As one

example, ten noisy data sets were generated for the one-stage

bovine IFN-� with the resolution-dependent Gaussian noise

scaled up by a factor of two. The correct A + B!AB pathway

was still the clear winner in all the data sets. It achieved a very

good fine-grid �2 score (an average of 1.23 across ten data sets,

compared with 1.49 with standard noise) at a nearly correct

association constant (3.40 � 106, the same as with standard

noise and near the simulated value of 3.43 � 106). It also

achieved a good fine-grid MSMRD score (3.41 � 10�11

compared with 1.82 � 10�14) with a good association constant

(3.86 � 106).
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Figure 5
Association constant searches for one BAF–emerin complex data set, for the correct A + B! AB, AB + B! AB2 pathway. The ‘�’ marks indicate the
simulated association constants (KAB = 3.21 � 105, KAB2

= 4.23 � 105). The white regions in the coarse-grid plots indicate constants yielding nonphysical
scattering curves (those with substantial negative intensities).



The performance of the method was then tested over a

range of noise levels, increasing the Gaussian width up to five-

fold, generating ten data sets for each noise level. The results

were assessed in terms of identification of the association

constant, as well as reconstruction of the underlying scattering

curves of the monomers and oligomers. For association

constants, the error was assessed with the absolute difference

between the base-10 logs of the correct K�AB and the inferred

KAB, i.e. j log10 K�AB � log10 KABj. For scattering curves, the

evaluation is the MARD discussed above. Fig. 6 illustrates

these error measures with respect to increasing noise (aver-

aged over the ten data sets for each level). The figure shows

that, as the noise increases, the best fine-grid points and

reconstructions gradually become further away from the

correct ones. Even at five times the noise, the errors in the

association constants remain acceptable, approaching 10%

(averaged across ten data sets), while the MARD values

remain under 1% (0.6% for A, 0.7% for B and 0.4% for AB,

averaged across ten data sets). Thus, we conclude that the

method is indeed robust to such random noise. Robustness to

some aspects of systematic noise (contamination with non-

participating molecules) is discussed below.

3.3. Robustness across ranges of association constants

The ability of the method to recover the contribution from a

particular species depends on that species making a non-

negligible contribution to the mixture scattering data. That in

turn depends on the association constants. The present simu-

lations used physiologically reasonable constants, selected to

ensure non-negligible quantities of each molecular species at

equilibrium. However, since there is a wide range of reason-

able values for weak association, a set of one- and two-stage

simulations was conducted with varying association constant

pairs to assess the range of values suitable for the method. For

each association constant or pair of association constants, the

simulated value was compared with the best �2 constants

(results with MSMRD are similar and are not shown).
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Figure 6
The effect of noise level (left) on the error in the association constant, assessed by the absolute difference in log10KAB, and (right) on the reconstructed
scattering curves, assessed by MARD. Values are for the bovine IFN-� best �2 fine-grid point, averaged over ten data sets at each noise level. The
association constant plot shows the means and standard deviations for the ten data sets at each noise level; only means are shown in the MARD plot, for
clarity.

Figure 7
The error in inferring the simulated association constant for (left) one-stage bovine IFN-� and (right) two-stage BAF–emerin complex. The error for an
association constant is the absolute log difference between the simulated and inferred association constants; for the two-stage case, the overall error is
the square root of the sum of the squared errors.



Absolute log differences were used to assess the differences

between the simulated and inferred values. For two associa-

tion constants, the Euclidean distance dE was evaluated

dE ¼

h
log10 K�AB � log10 KABð Þ

2

þ log10 K�AB2
� log10 KAB2

� 	2
i1=2

: ð19Þ

Fig. 7 shows the error over the range of association

constant(s). For the one-stage bovine IFN-�, the present

method works best for values of KAB between 100 and 108. For

the two-stage BAF–emerin complex, the method works best

(i.e. has an absolute log difference of around 2 or less) for most

combinations over a broad range of KAB values between 10

and 1011 and KAB2
values between 100 and 109. Poor scores for

the one-stage association at low and high KAB values can be

attributed to near-zero fractional masses of the initial or final

components at those extremes. Likewise, for the two-stage

association, poor scores for low KAB values can be attributed

to the near-zero fractional mass of AB (and hence AB2) in

such cases. The error is also large with high KAB2
values, owing

to the very small amount of AB remaining at equilibrium.

3.4. Robustness to monomers and complex size and shape

The performance of the present method was also studied on

two other complexes that are quite different in molecular

weight and structure from the two that have been discussed so

far. While the main one-stage study, bovine IFN-�, has

monomers that are relatively small and close in molecular

weight (14.2 and 13.3 kDa), the additional study, human

calcineurin, has monomers that are larger and have very

different molecular weights (43.6 and 18.8 kDa) and shapes.

The main two-stage study, BAF–emerin complex, has mono-

mers with weights of 5.7 and 10.1 kDa, while the additional

study, HGH-receptor complex, has monomers with weights of

21.0 and 22.5 kDa and different shapes.

In both cases, the present method inferred the correct

pathway and association constants and reconstructed scat-

tering curves that are very similar to the simulated ones. For

the one-stage human calcineurin (Supplementary Table 5), the

�2 value averaged 1.08 over ten simulated data sets, with

association constants averaging 4.24 � 104 (which was the

simulated value). The resulting MARDs for the best �2

association constant averaged 0.24% for A, 0.16% for B and

0.22% for AB. As in our initial one-stage study, an alternative

two-stage model yielding both AB and AB2 scored well by �2

(1.28) but poorly by MSMRD (1.06 � 10�3), with substantial

disagreement on the best association constants (KAB =

4.30 � 104, KAB2
= 5.35 � 102 for �2, and KAB = 3.00 � 104,

KAB2
= 5.10 � 102 for MSMRD). The �2 score at the best

MSMRD point and the MSMRD score at the best �2 point

were also worse. Several other pathways scored moderately

well by �2, but all of these could be eliminated by evaluating

the MSMRD scores and the disagreement between the best

association constants.

Similarly good results were seen for the HGH-receptor

complex (Supplementary Table 6). The lowest �2 was on

average 0.98 at association constants averaging KAB =

8.43 � 105, KAB2
= 6.26 � 104 (which were the simulated

values). The average MARDs across ten data sets at the

lowest �2 points were 0.08% for A, 0.09% for B, 0.10% for AB

and 0.10% for AB2. Alternative models that extend the

correct two-stage pathway with AB2 + A ! A2B2 or

AB2 + B! AB3 third stages also have low �2 scores (1.38 and

1.33, respectively), but poorer MSMRD scores and large

disagreement on the best association constants.

3.5. Contaminated data

A frequent problem in the analysis of associating systems is

the presence of ‘incompetent protein’ contaminants, either

monomer protein that behaves similarly to ideal material

during purification but does not participate in associations, or

oligomers that do not dissociate (irreversible aggregates) (Xu,

2004). In both cases the protein appears in the initial

concentrations but not in any complex. For example, we found

in our previous work on homo-oligomers that the addition of

2% of another oligomeric form would lead to large �2 values

and incorrect association constants and reconstructions

(Williamson et al., 2008).

To test the robustness of the present method to such

contaminants, a nonparticipating fraction of monomer A was

used as a contaminant in the one-stage bovine IFN-�. Also, a

nonparticipating A13 aggregate was used in the two-stage

BAF–emerin complex, using a single aggregated form to

represent the total possible contribution from multiple

aggregated forms. To construct an A13 structure for this

simulation, copies of A were repeatedly docked together using

the software GRAMM-X (Tovchigrechko & Vakser, 2006).

Scattering curves from all forms were again simulated using

CRYSOL. Data were simulated with off-grid values of 0.0047,

0.0113 and 0.0231 contaminant mass fraction in the initial mass

of A, using the same association constants as before. Ten data

sets were generated for each case with different random

Gaussian noise.

First, the regular coarse- and fine-grid searches were

performed on the simulated data with contaminants, assuming

as in previous sections the absence of any contaminant

(Supplementary Tables 7 and 8). All of the alternative

(incorrect) association pathways were immediately eliminated

owing to high �2 or inconsistency between best �2 and best

MSMRD (not shown).

Using the correct association pathway for bovine IFN-�, the

�2 values increase monotonically with contaminant fraction.

As expected, in the presence of a nonparticipating monomer,

the apparent association constants also shift towards smaller

values. When the contaminant fraction increases to 0.0231 the

�2 score more than doubles, indicating a clear problem in the

analysis. The MSMRD scores also increase significantly

(although these scores do not have a standard baseline to

reference).

The behavior of the BAF–emerin complex is similar. The �2

scores also increase monotonically with contaminant fractions.

The behavior of the MSMRD score is more variable, perhaps
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because the A13 contaminant used here has a disproportionate

effect on the I(0) values. For the 0.0231 contaminant fraction,

even the coarse-grid search is unable to identify the nearest

grid point. Here again, a significantly increased �2 and

disagreement between the best �2 and best MSMRD asso-

ciation constants indicates problems for the 0.0113 and 0.0231

contaminant fractions. The increasing presence of the A13

contaminant shifts the association constants to larger values,

forming more of the larger complexes.

In both cases, the presence (or suspicion) of an incorrect

analysis (particularly disagreement between the best �2 and

best MSMRD values) signals the need for a more sophisti-

cated analysis. We have developed a convex quadratic opti-

mization method specifically to deal with problems arising

from nonparticipating contaminants.

Grid searches extended to include a contaminant fraction

were performed for all cases. The coarse contaminant fraction

grid dimension ranged from 0 to 0.1 in steps of 0.01. Fine-grid

searches (including contaminant fraction) were then

performed for all pathways with a �2 value for the extended

coarse-grid search within 1.0 of the best �2 pathway (note that

the MSMRD value cannot be used to assess the quality of

these searches because scattering curves are only generated

upon applying the quadratic optimization). The fine
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Table 2
Fine-grid �2 results for contaminated simulations with coarse-grid �2 within 1.0 of the lowest scoring model.

Simulated association constants: Bovine IFN-�, K1 = 3.43 � 106; BAF–emerin complex, K1 = 3.21 � 105, K2 = 4.23 � 105.

Contamination K1 K2 �2 cA† cB†

Bovine IFN-�, A + B! AB
0.0000 4.80 � 106

� 6.3 � 105 1.61 � 0.1 4.10 � 10�3
� 6.0 � 10�4 (�9) 2.00 � 10�3

� 0.0 (�1)
0.0047 3.59 � 106

� 3.6 � 105 1.51 � 0.1 5.30 � 10�3
� 9.5 � 10�4 N/A

0.0113 3.41 � 106
� 1.3 � 105 1.43 � 0.1 1.13 � 10�2

� 6.7 � 10�4 N/A
0.0231 3.39 � 106

� 1.7 � 105 1.46 � 0.1 2.34 � 10�2
� 5.2 � 10�4 N/A

Bovine IFN-�, A + B! AB, AB + B! AB2

0.0000 3.94 � 1013
� 9.6 � 1013 1.01 � 1011

� 2.0 � 1011 1.51 � 0.1 5.18 � 10�2
� 4.2 � 10�2 (�6) 1.08 � 10�2

� 6.8 � 10�3 (�4)
0.0047 8.81 � 1014

� 2.5 � 1015 2.70 � 1012
� 7.6 � 1012 1.45 � 0.2 5.39 � 10�2

� 4.2 � 10�2 N/A
0.0113 5.39 � 1012

� 1.1 � 1013 1.55 � 109
� 3.2 � 109 1.42 � 0.2 1.37 � 10�2

� 8.6 � 10�3 N/A
0.0231 1.26 � 1014

� 2.6 � 1014 1.94 � 1011
� 4.1 � 1011 1.46 � 0.1 3.11 � 10�2

� 1.6 � 10�2 N/A

Bovine IFN-�, A + B! AB, AB + A! A2B
0.0000 1.02 � 1010

� 3.2 � 1010 1.33 � 106
� 3.1 � 106 1.60 � 0.1 N/A 1.70 � 10�2

� 2.2 � 10�2

0.0047 3.91 � 1012
� 1.2 � 1013 6.63 � 109

� 2.1 � 1010 1.55 � 0.3 N/A 1.66 � 10�2
� 2.3 � 10�2

0.0113 7.25 � 106
� 5.1 � 106 6.65 � 103

� 9.1 � 103 1.40 � 0.0 1.04 � 10�3
� 8.4 � 10�4 N/A

0.0231 4.59 � 1010
� 1.5 � 1011 8.75 � 105

� 2.7 � 106 1.19 � 0.4 2.24 � 10�2
� 7.3 � 10�4 (�9) 8.00 � 10�2

� 0.0 (�1)

BAF–emerin complex, A + B! AB, AB + B! AB2

0.0000 5.44 � 105
� 4.3 � 103 8.00 � 105

� 0.0 1.78 � 0.1 N/A 6.60 � 10�3
� 5.2 � 10�4

0.0047 6.87 � 105
� 9.2 � 105 1.04 � 106

� 1.6 � 106 1.74 � 0.0 1.00 � 10�2
� 0.0 (�8) 8.50 � 10�3

� 7.1 � 10�4 (�2)
0.0113 3.13 � 105

� 1.2 � 104 4.08 � 105
� 2.2 � 104 1.49 � 0.1 1.18 � 10�2

� 9.2 � 10�4 N/A
0.0231 3.60 � 105

� 1.7 � 104 4.92 � 105
� 3.0 � 104 1.56 � 0.1 2.09 � 10�2

� 8.8 � 10�4 N/A

† The search considers only A or B contaminant. Rows with values for both cA and cB are the result of different identified contaminants for different simulations (number of times in
parentheses).

Figure 8
Simulated intensities compared with reconstructed ones computed by the quadratic program (opt) and the initial least squares ~OO0 (lsq), for one 0.0231
contaminant fraction data set of (left) bovine IFN-� and (right) BAF–emerin complex. The IB reconstruction, which is independent of contaminant, is
not shown.



contaminant grid then ranged from the point below the

identified coarse-grid contaminant fraction to that above it,

with a step size of 0.001. The grid searches were performed

considering either an A or B homo-oligomeric contaminant

(but not both). Optimized scattering intensities were then

computed for the best �2 fine-grid association constants by

solving the quadratic program with constraints and parameter

values as presented in Methods, x2.

Table 2 summarizes the fine-grid contaminant search

results. For the one-stage bovine IFN-� contaminated with

nonparticipating A, three pathways passed the �2 cut-off: the

correct model and the same two alternatives that were found

in the baseline studies. While it is hard to distinguish the three

solely on the basis of �2, the intensity reconstruction optimi-

zation procedure found no feasible solution for the alternative

models but successfully yielded scattering curves for the

correct model, in all ten data sets. For the two-stage BAF–

emerin complex contaminated with the A13 aggregate, only the

correct model passed the �2 filter and its intensity recon-

struction optimization was successful. For both cases and at all

contaminant levels, the identified fine-grid association

constants and contaminant fractions are close to the simulated

values (bovine IFN-�: K1 = 3.43 � 106; BAF–emerin complex:

K1 = 3.21 � 105 and K2 = 4.23 � 105) and, for the higher

contaminant fractions, notably closer than the values obtained

in the contaminant-free searches.

Scattering intensities optimized using the quadratic

program (labeled OPT/opt) were compared with simulated

intensities (labeled TRUE/true) and those computed by least

squares (labeled LSQ/lsq), both visually (Fig. 8) and by

calculating MARD (Table 3). Here the quadratic program is

consistently successful. MARD scores are substantially

improved for the optimized reconstructions, with the greatest

improvement at the higher contaminant fractions, although

even the lower ones benefit, presumably as a result of the

added constraints. Examining the scattering curve reveals that

the greatest deviations from the simulated data and the

greatest improvement come at small q values. Note that IB is

an independent vector in the intensity matrix, and thus the

MARD values are the same for the two methods. The

reconstructed scattering curve for the contaminating molecule

(not shown) was not a close approximation to the true curve,

probably because of the extremely small fraction of

contaminant in the solution.

As a final test, contaminant grid searches were carried out

on uncontaminated data (0.0000 entries in Tables 2 and 3).

This approach did not perform as well as the contaminant-free

search on uncontaminated data. As expected, fitting the

additional contaminant parameter drives the association

constants somewhat away from their best values.

3.6. Application of contaminant methods to homo-oligomers

Contamination with aggregates proved to be a problem for

our earlier method for characterizing homo-oligomers

(Williamson et al., 2008). Thus, the present contaminant search

and reconstruction were performed on the case studied

previously: octameric purE from Escherichia coli (PDB code

1qcz; Mathews et al., 1999), under a monomer–tetramer–

octamer association with a 2% mass fraction of a 16-mer as

contaminant. The best association constants resulting from the

contaminant search were K12 = 4.00 � 1012, K23 = 1.25 � 101,

close to the simulated association constants K12 = 2.87 � 1012,

K23 = 1.29 � 101, although the identified contaminant fraction

was higher than simulated, at 6.6%. The association model

found by the previous method (Williamson et al., 2008) was

K12 = 3.46 � 1012, K23 = 1.00 � 101, also close to the simulated

association constants. However, the present reconstructed

monomer scattering curve is much better than the previous

one, whose �2 is four times worse. The optimized monomer

intensity curve is much closer to the simulated curve than that

computed by least squares (after a contaminant search) or that

found without contaminant search [as done by Williamson et
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Table 3
MARDs (%) for contaminated reconstructions.

Contaminant
fraction Method IA IB IAB IAB2

Bovine IFN-�
0.0000 LSQ 0.83 � 0.2 0.28 � 0.2 0.41 � 0.1 –

OPT 0.27 � 0.1 0.24 � 0.1 0.22 � 0.1 –
0.0047 LSQ 0.53 � 0.1 0.17 � 0.0 0.17 � 0.0 –

OPT 0.20 � 0.0 0.17 � 0.0 0.09 � 0.0 –
0.0113 LSQ 1.13 � 0.1 0.16 � 0.0 0.34 � 0.0 –

OPT 0.42 � 0.0 0.16 � 0.0 0.14 � 0.0 –
0.0231 LSQ 2.28 � 0.1 0.17 � 0.0 0.69 � 0.0 –

OPT 0.83 � 0.0 0.17 � 0.0 0.29 � 0.0 –

BAF–emerin complex
0.0000 LSQ 0.08 � 0.0 0.64 � 0.1 0.20 � 0.0 0.20 � 0.0

OPT Not feasible
0.0047 LSQ 2.32 � 0.0 0.08 � 0.0 0.85 � 0.0 0.56 � 0.0

OPT 1.91 � 0.0 0.08 � 0.0 0.77 � 0.1 0.53 � 0.0
0.0113 LSQ 4.45 � 0.1 0.08 � 0.0 0.90 � 0.1 0.42 � 0.1

OPT 2.41 � 0.2 0.08 � 0.0 0.56 � 0.1 0.27 � 0.1
0.0231 LSQ 8.72 � 0.1 0.08 � 0.0 1.41 � 0.1 0.60 � 0.1

OPT 1.31 � 0.1 0.08 � 0.0 0.31 � 0.1 0.21 � 0.0

Figure 9
Reconstructed pure monomer intensity from a monomer–tetramer–
octamer association contaminated with a 16-mer. IA (Williamson) is
computed using the original grid search with no contaminant fraction and
subsequent intensity reconstruction, as done by Williamson et al. (2008).



al. (2008)], especially at low q (Fig. 9). Thus, the contaminant

search plus the quadratic program reconstruction produce a

curve that closely approximates the true one, while the

contaminant-free and least-squares reconstructions introduce

substantial error. Note again that the least-squares curve is

just one of the infinitely many satisfying solutions, and thus it

is not too surprising that it is actually much worse. The curves

for the tetramer and octamer are not plotted, since for both

methods they are extremely similar to the true curves. These

results demonstrate that the present method can also be

profitably applied to homo-oligomers in the presence of

contaminants.

4. Discussion

We have presented a method to infer an association model

(pathway and association constants), along with the under-

lying scattering curves of the initial components and inter-

mediate and final complexes, from solution scattering data for

a set of equilibrium mixtures undergoing hetero-association

with different initial component concentrations. The method

searches over possible association models and contaminant

fractions, reconstructing the underlying scattering curves

either by a least-squares method in the absence of ‘incompe-

tent protein’ contaminants or by a convex quadratic program

in their presence. The model and scattering curves are eval-

uated in terms of how well they can then reconstruct de-noised

input data. Two complementary scores are used: a �2 to assess

the overall fit between the data and the association model

combined with reconstructed scattering, and the MSMRD to

assess the consistency between the association model stoi-

chiometry and the reconstructed scattering. The convex

quadratic program provides an optimization-based method for

the difficult problem of reconstructing the underlying scat-

tering curves in the presence of either nonparticipating

monomers or irreversible aggregates.

In a variety of simulated test cases covering one- and two-

stage association pathways, this approach correctly deter-

mined the pathway, accurately estimated the association

constants with generally less than 2% error and accurately

reconstructed the scattering curves to within an average

deviation of less than 0.25%. While such accuracy cannot be

expected for all experimental scattering data, the potential for

such accurate evaluation exists in the most favorable cases.

The good accuracy for reconstructing the scattering curve

bodes well for the application of three-dimensional structural

modeling based on the reconstructed scattering curves. The �2

and MSMRD were found to be effective as complementary

metrics. Cases where an alternative model with an extra

association step obtained a fairly good �2 value could be ruled

out by a greater MSMRD and inconsistency between the best-

scoring association constants under one metric versus the

other. The method was also found to be amenable to a range

of association constants, Gaussian noise levels, different

complex sizes and shapes, and contaminants.

The range of association constants that were found accep-

table for the method (Fig. 7) compares well with the range of

104–109 routinely available from analytical ultracentrifugation

(Lebowitz et al., 2002), while also revealing the molecular

weight of each complex [via I(0) calculations] calibrated by

the molecular weights of the initial components. At the same

time, the SAS method provides complex scattering curves that

can serve as the basis for three-dimensional reconstruction. In

addition, this range of affinities is explored with the same fixed

set of initial concentrations used in the earlier simulation. The

initial concentrations could also be adjusted upwards to

explore weaker interactions (limited by the solubility of the

proteins) and downwards to explore stronger ones (limited by

the strength of observed scattering). The strongest beamlines

at third-generation sources can generate accurate scattering

profiles at concentrations as low as 0.05 mg ml�1 (Williamson

& Friedman, unpublished results), a fact that also aids in the

reduction of noise from interparticle interference (see below).

At realistic contaminant levels, the present method is able

to reconstruct the scattering curves quite accurately, a result

not possible by previous methods which assumed an absence

of contaminants. While by no means perfect, the objective and

set of constraints chosen here yield good solutions in practice.

Smoothness is taken as the primary objective, and the

potential for over-smoothing is mitigated by a counter-

balancing constraint from the �2 constraint. Other constraints

could potentially be incorporated in order to encode shape

characteristics and relationships between the different forms.

It is not possible to determine adequately the exact contami-

nant fraction or its scattering curve, but the incorporation of

additional constraints could help. Extensions to other forms of

contamination and systematic noise may be amenable to

analogous techniques.

As discussed in the Introduction, we have focused only on

the contributions from the modeled molecular species – initial

components, higher-affinity intermediate and final complexes,

and possibly static contaminants. Experimental scattering data

also contain contributions from interparticle interference,

arising from the lowest affinity, typically most transient,

protein–protein complexes. A study of and extension to

handle interparticle interference remains very interesting

future work, which is likely to increase the power and

applicability of this approach. There are several possible ways

in which the method could be extended to account for this

non-ideality. Some weak interparticle interactions of a

different stoichiometry from the primary modeled association

may become factored out as noise in the low-rank approx-

imation or as residuals in the modeling. Other interparticle

interactions may be captured as a form of explicit contami-

nant. Alternatively, data from dilution series towards zero

concentrations (where these interactions become vanishingly

small) could be collected and incorporated into the model.

When the weak interactions are of the same stoichiometry as

the modeled associations, they are linearly inseparable and

thus cannot be directly accounted for in a ‘bottom-up’ analysis

like that presented here. However, ‘top-down’ structural

information could be exploited to constrain the scattering

curves according to the structural characteristics of the

monomers and complexes, a modification of our approach for
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NMR (Potluri et al., 2006; Martin et al., 2011; Chandola et al.,

2011). Perhaps an iterative approach could even be employed,

starting with an initial factorization as presented here, and

then iteratively alternating between inferring a structure

based on the current factorization and improving the derived

model and curves based on the current structural information.

In the test cases, pure A and pure B were included as two of

the samples. This suggests an alternative strategy to use the

intensity curves of these pure samples to reduce the number of

unknowns (removing known intensity column vectors for A

and B in ~OO) in the computations. However, when contami-

nants are present, there may be no such thing as a ‘pure’

sample. Likewise, this approach works with a self-associating

system which does not contain pure monomers even at the

lowest concentration. In preliminary studies (not shown), we

have found that, even without using pure A and pure B in the

set of samples, the correct model can still be obtained as long

as the equilibrium mixtures contain sufficiently diverse

concentrations of species.
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