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Abstract

Objective—Inferring the times of sequences of action potentials (APs) (spike trains) from

neurophysiological data is a key problem in computational neuroscience. The detection of APs

from two-photon imaging of calcium signals offers certain advantages over traditional

electrophysiological approaches, as up to thousands of spatially and immunohistochemically

defined neurons can be recorded simultaneously. However, due to noise, dye buffering and the

limited sampling rates in common microscopy configurations, accurate detection of APs from

calcium time series has proved to be a difficult problem.

Approach—Here we introduce a novel approach to the problem making use of finite rate of

innovation (FRI) theory (Vetterli et al 2002 IEEE Trans. Signal Process. 50 1417–28). For

calcium transients well fit by a single exponential, the problem is reduced to reconstructing a

stream of decaying exponentials. Signals made of a combination of exponentially decaying

functions with different onset times are a subclass of FRI signals, for which much theory has

recently been developed by the signal processing community.

Main results—We demonstrate for the first time the use of FRI theory to retrieve the timing of

APs from calcium transient time series. The final algorithm is fast, non-iterative and

parallelizable. Spike inference can be performed in real-time for a population of neurons and does

not require any training phase or learning to initialize parameters.

Significance—The algorithm has been tested with both real data (obtained by simultaneous

electrophysiology and multiphoton imaging of calcium signals in cerebellar Purkinje cell

dendrites), and surrogate data, and outperforms several recently proposed methods for spike train

inference from calcium imaging data.

1. Introduction

Understanding how information processing occurs in neural circuits is one of the principal

problems of systems neuroscience. Information is encoded in the firing of action potentials
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(APs, or spikes) by individual neurons, and information processing involves the

coordination of AP firing by large populations of neurons organized into neural circuits. To

understand neural information processing, we thus must monitor the activity of neural

circuits at a spatial resolution sufficient to resolve many individual neurons, and a temporal

resolution sufficient to resolve individual APs on individual experimental trials. Of the

currently available techniques for conducting neurophysiological experiments, only

multiphoton calcium imaging (Denk et al 1990, 1994, Svoboda et al 1999, Stosiek et al

2003) and multielectrode array electrophysiology (Csicsvari et al 2003, Blanche et al 2005,

Du et al 2009) offer this capability. Of these, only multiphoton calcium imaging currently

allows precise three-dimensional localization of each individual monitored neuron within

the region of tissue studied, in the intact brain.

In order to monitor cellular activity, neurons must be labelled with a fluorescent indicator,

and a number of approaches have been used to do this. Single cells can be labelled by filling

the cell with dye during a whole-cell or intracellular recording (Kitamura et al 2008,

Helmchen et al 1999). Alternatively, populations of neurons can be simultaneously labelled

with acetoxy-methyl (AM) ester calcium dyes (Stosiek et al 2003), allowing simultaneous

monitoring of AP induced calcium signals in a plane (Ohki et al 2005) or volume (Göbel

and Helmchen 2007) of tissue. To investigate information processing in neural circuits, it is

necessary to relate these calcium signals to the properties of the spike trains fired by the

neurons, ideally by detecting the times of occurrence of spikes with single AP resolution. A

number of methods have previously been used to detect spike trains from calcium imaging

data, including thresholding the first derivative of the calcium signal (Smetters et al 1999),

and the application of template-matching algorithms based on either fixed exponential (Kerr

et al 2005, 2007, Greenberg et al 2008) or data-derived (Schultz et al 2009, Ozden et al

2008) templates. Machine learning techniques (Sasaki et al 2008) and probabilistic methods

based on sequential Monte Carlo framework (Vogelstein et al 2009) or fast deconvolution

(Vogelstein et al 2010) have also been proposed.

Some broadly used methods such as template matching or derivative-thresholding have the

disadvantage that they do not deal well with multiple events occurring within a time period

comparable to the sampling interval. Unfortunately, given that laser-scanning two-photon

imaging systems are largely limited to scan rates of 8–30 Hz when frame-scanning with

sufficient spatial resolution to capture many neurons, and that neurons in many brain areas

have a propensity to fire spikes in bursts, this is a relatively common occurrence in

neurophysiological calcium signals. Bursts of spikes have been found to convey information

with high reliability in some sensory systems (Reinagel et al 1999, Gabbiani et al 1996), and

have been suggested to carry distinct sensory signals (Wang et al 2007). It is thus desirable

to develop calcium transient detection algorithms that accurately detect multiple spike

calcium events. As there is a trade-off between the area of tissue imaged and signal to noise

ratio (SNR) (zooming in on a region of tissue allows the collection of more photons per

neuron, thus offering better SNR, but limits the number of neurons that can be studied) and

similarly between sampling rate and the area of tissue that can be imaged, it is desirable to

improve algorithms for the detection of APs from calcium fluorescence time series.
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In this paper we present a novel approach that extends modern sampling theory based on

finite rate of innovation (FRI) theory. In the absence of noise, the FRI algorithm perfectly

retrieves the locations of APs using a variation of a fast non-iterative algebraic method

called annihilating filter (a.k.a. Prony’s method). This method reconstructs complex

exponentials in noise from a set of samples. We have combined this with a novel double

consistency sliding window technique that improves performances in noisy scenarios. To

reconstruct the time series we construct a Toeplitz matrix from the samples. The key

characteristic of this matrix is that, in the noiseless case, it is rank deficient, and its rank is

always equal to the number of APs in the observation window. We run the algorithm twice,

firstly with a large time window to estimate the number of spikes by singular value

decomposition (SVD), and secondly, with a time window containing only a small number of

spikes. In both cases, for each position of the sliding window, the algorithm outputs the

locations of the K spikes assumed within the window. When the estimate of K is correct, the

retrieved locations are stable among different sliding windows, and when incorrect,

unstable. We construct a joint histogram of the retrieved locations with the two different

window sizes. The final spike time estimates are obtained from histogram peaks,

corresponding to consistent positions among different windows.

The proposed algorithm is robust in high noise scenarios, and fast enough to allow real-time

spike train inference for tens of neurons. We show that for surrogate data with a temporal

resolution of 27 Hz and a SNR of 10 dB the algorithm presents a spike detection rate above

95% with a false-positive rate below 0.02 Hz. Moreover, this algorithm is able to retrieve

the spike locations with a precision higher than the temporal resolution of the acquired data.

2. Methods

2.1. Experimental methods

The data used in this study, and the experimental methods used to collect them, have been

previously described (Schultz et al 2009). Briefly, Sprague-Dawley rats (P18–P29) were

anaesthetized with urethane (1.2 g kg−1) or with ketamine (50 mg kg−1) / xylazine (5 mg

kg−1). A craniotomy was made over area Crus IIa of the cerebellum, filled with 1.5–2%

agarose in Ringer’s solution, and a coverslip clamped above the agarose to suppress brain

movement, while leaving a window open for microelectrode access. A micropipette was

inserted to a depth of around 100–200 μm below the pia mater, and AM-ester calcium dye

(Oregon Green BAPTA-1 AM) pressure-ejected. Imaging was performed from 30 min

following dye ejection, using a two-photon laser scanning microscope (Prairie

Technologies). A pulsed Titanium:Sapphire laser was used for excitation, operating at 810

nm (MaiTai, SpectraPhysics) with <100 fs pulse width and 80 MHz repetition rate, and

focused using a 40×, 0.8 Numerical Aperture objective lens (Olympus).

Image frames were acquired using ScanImage software (Pologruto et al 2003) for MATLAB

(MathWorks). Raster lines making up each frame were of 2 or 2.3 ms duration, resulting in

frame rates of 7–16 Hz. For each region imaged, a high resolution reference image was first

acquired (512 × 512 pixels, average of five frames), followed by movies at 256 × 64 or 256

× 32 pixel resolution. Fluorescence time series for each neuron were obtained by defining

regions of interest (ROIs) using a combination of human operator and spatial independent
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component analysis (Schultz et al 2009, Reidl et al 2007), and for each time bin, averaging

the values of each pixel within the ROI.

To validate our event detection algorithms, we simultaneously performed targeted

extracellular recordings from imaged neurons. Patch micropipettes (~4 MΩ) were filled with

artificial cerebrospinal fluid (ACSF), together with Alexa 594 to aid visualization of the

pipette. The pipette was navigated until the tip was adjacent to a Purkinje cell soma or

dendrites and CS could be observed with high SNR. We emphasize that we are using two-

photon targeted (visualized) juxtacellular recording, using a patch-pipette filled with dye.

Using this technique, we can observe that the pipette is attached to a cell in which

fluorescence changes are observed for each AP, meaning that there is no ambiguity

concerning which cell is being recorded from. Electrophysiological and imaging data were

then simultaneously acquired from the same neuron (figure 1).

2.2. Mathematical model

At time t we consider the fluorescence measurement for a given ROI to be proportional to

the calcium concentration plus additive Gaussian noise (Vogelstein et al 2009):

(2.1)

where [Ca2+]t is the intracellular calcium concentration at time t, constant β represents the

baseline calcium concentration of a particular cell and ∊t the noise at time t. The noise is

independently and identically distributed according to a normal distribution with zero mean

and σ2 variance.

The signal that we will consider is the normalized fluorescence

(2.2)

abbreviated as ΔF/F. F0 is the average background pre-stimulus fluorescence.

To model mathematically the calcium dynamics [Ca2+]t, some assumptions have to be made

(Vogelstein et al 2009). We assume that when a neuron is activated, the calcium

concentration jumps instantaneously, and each jump has the same amplitude A. The

concentration then decays exponentially with time constant τ, to a baseline concentration.

The one-dimensional fluorescence signal can therefore be characterized by convolving the

spike train with a decaying exponential and adding noise:

(2.3)

where the index k represents different spikes, the different tk their occurrence times and u(t)

the unit step function. Hence, the goal of the spike detection algorithm is to obtain the values

tk.
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2.3. Spike detection

Our spike detection algorithm is based on connecting the calcium transient estimation

problem to the theory of FRI signals. We therefore first provide an overview of this theory

and then present our spike detection method.

2.3.1. Overview of FRI theory—FRI theory applies to specific classes of signals which

are completely specified by a finite number of free parameters. The goal of FRI algorithms

is to reconstruct a signal that best fit the model given the available measurements. This is

achieved by building specific matrices whose singular values and singular vectors provide

the information necessary to retrieve the free parameters of the signals. Specifically, the

canonical expression of a signal with FRI is given by:

(2.4)

If the function g(t) is known, the signal x(t) is completely determined by the coefficients ak

and the shifts tk, these are the free parameters. Introducing a counting function Cx(ta, tb) that

counts the free parameters or degrees of freedom of x(t) over the time interval [ta, tb], the

rate of innovation is defined as (Vetterli et al 2002)

(2.5)

We can then define FRI signals as those with a finite ρ. A typical example of such signals is

a stream of K Diracs, . This signal is not-bandlimited, but we only

need to know the K pair of coefficients (ak, tk) to perfectly reconstruct it. Classical sampling

theory does not allow sampling and perfect reconstruction of this type of signal. However,

recent work in FRI theory has shown that this is possible (Vetterli et al 2002). In the sequel

we show how it is possible to acquire the signal  and perfectly

reconstruct it from a finite set of samples.

Acquisition devices are usually modelled as a filtering stage followed by a sampling stage as

illustrated in figure 2. Filtering signal x(t) with h(t) = ψ(−t/T) and retrieving samples at

instants of time t = nT is equivalent to computing the inner product between x(t) and ψ(t/T –

n). Specifically, the filtered signal is given by

(2.6)

Moreover, sampling y(t) at regular intervals of time t = nT leads to

(2.7)
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Hence, samples yn correspond to the projection of x(t) onto the set of functions

.

The function ψ(t) is called sampling kernel and has to satisfy specific properties to be able to

perfectly reconstruct the signal x(t). Exponential reproducing kernels satisfy the required

conditions (Dragotti et al 2007). This is a family of kernels that together with its shifted

versions can reproduce exponentials of the form eαmt
:

(2.8)

where m = 0, 1, … , P. This expression is satisfied for a proper choice of coefficients dm,n.

The computation of these coefficients is detailed in appendix A.1. The parameters αm can be

chosen arbitrarily. However we require αm = α0 + mλ in order to be able to use the

annihilating filter method described later on. Moreover, we choose them to be

. They are selected to be purely imaginary because they are more robust

against noise and in complex conjugate pairs in order to have a real valued kernel ψ(t). E-

splines are a type of functions that are able to reproduce exponentials and have the

advantage of being of compact support (Urigüen et al 2011). An E-spline of order P can

reproduce P + 1 different exponentials as in (2.8). Figure 3 shows an example with P = 1.

This E-spline is able to reproduce two different exponentials.

Given the samples yn, we now want to retrieve the degrees of freedom . If we

combine these samples with coefficients dm,n, we obtain

(2.9)

where m = 0, 1, … , P. The new samples sm are the exponential moments of the signal x(t).

In the particular case where the input signal is a stream of Diracs, and αm can be written as

αm = α0 + mλ, the exponential moments can be expressed as a sum of exponentials (see

appendix A.2):

(2.10)

where bk = ak eα0tk and uk = eλtk. We are now faced with the problem of having to retrieve

bk and uk from the sequence sm. The problem is linear in the parameters bk, but it is

nonlinear in the parameters uk. Therefore the difficulty is in finding the nonlinear terms. We

solve the problem by applying the annihilating filter method. The annihilating filter is a filter

of length K + 1 with zeros at locations . The z transform of the impulse response of

the filter is thus

Oñativia et al. Page 6

J Neural Eng. Author manuscript; available in PMC 2014 May 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



(2.11)

This method is based on the observation that if we filter the sequence sm with a filter with

zeros at uk the output is zero. To convince ourselves of this fact let us assume that we have a

sequence with only one exponential: . The corresponding annihilating filter is 1 – u1

z−1. This filter computes finite differences weighted by u1. The output of the filter is thus sm

– u1sm–1. The sequence sm is cancelled out as the weight u1 is exactly the rate of growth of

the sequence. If we have more than one exponential we can annihilate the signal by

cascading unitary filters where each of them cancels out one exponential. Figure 4 illustrates

this concept. The z transform of filters connected in series is the product of their transfer

functions. Thus the transfer function of the annihilating filter is

(2.12)

and we have that

(2.13)

since . If 2K + 1 samples of sm are available, the convolution

hm * sm can be expressed in matrix form as Sh = 0:

(2.14)

The matrix S is rank deficient with rank K; the system is therefore overdetermined and the

solution is not unique. If we impose h0 = 1, the system has a unique solution. Once h has

been found, the locations tk are directly determined from the roots of the polynomial H(z) as

u = eλtk, where λ is the parameter of the coefficients αm = α0 + mλ. From (2.14) and

imposing h0 = 1, it can be seen that we need at least 2K samples sm. This imposes a lower

limit to the order P of the E-spline as we compute the measurements sm for m = 0, 1, … , P,

where P is its order.

Retrieval of the parameters of a sum of exponentials in noise in the form given in (2.10) is a

recurrent problem in spectral estimation. We refer the reader to Stoica and Moses (2005) for

further details.
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The previous theory has been presented for continuous-time signals and an analogue

sampling kernel. However it can easily be extended to discrete-time signals. We can assume

that the independent variable t of the input signal x(t) is discrete. For a given temporal

resolution Tres, we define discrete time values as t = nTres, where . The filter is then

replaced by a discretized version of ψ(t) and the convolution is computed as a summation

instead of an integral. Moreover, if we set the sampling period at the output of the filter to be

the temporal resolution, that is T = Tres, the sampling stage after the filter can be omitted, as

the filter’s output y(t) is a discrete sequence that directly corresponds to samples yn. The T =

Tres condition also applies to the scaling factor of the kernel which becomes ψ(t/Tres).

2.3.2. Data processing—Based on the above framework, we now develop a method for

spike detection in calcium transient signals. Recall that the input signal can be expressed as

a stream of decaying exponentials. Moreover, we assume that there is a finite number K of

spikes within the observation period. Therefore the noiseless calcium concentration

variation, denoted c(t), can be expressed as

(2.15)

Here the variable t is discrete. The detection process requires filtering the measured signal.

The filter has an impulse response h(t) = φ(—t) where φ(t) is able to reproduce exponentials

as in (2.8), specifically

(2.16)

The signal c(t) is filtered with h(t) = φ(–t). The output of the filter h(t) are the samples yn

that correspond to the inner product between c(t) and shifted versions of the kernel: yn =

⟨c(t), φ(t – n)⟩. Samples yn can also be expressed as yn = ⟨x(t), ρα(–t) * φ(t – n)⟩ (see

appendix A.3). One of the key points of the previously described FRI framework is that the

filtered and sampled stream of Diracs is combined with the dm,n coefficients from (2.8) to

obtain the sum of exponentials given in (2.10). It will become clearer in what follows, that

despite the fluorescence signal being composed of a stream of decaying exponentials, this

first filtering stage with the exponential reproducing function φ(t) will allow us to turn the

problem into retrieving the locations of a stream of Diracs.

The next step of the algorithm is to compute finite weighted differences of samples yn in

order to obtain new samples zn. This is a second filtering stage with a filter with transfer

function G(z) = 1 – e−αT z−1. These steps are illustrated in figure 5. Filtering signal c(t) with

φ(–t) and computing samples zn = yn – yn−1 e−αT is analogous to filtering the stream of

Diracs x(t) with a different kernel ψ(t) (see appendix A.4). At this stage, the problem has

been turned into a sampling process of a stream of Diracs. This new kernel, ψ(t), is still able
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to reproduce exponentials (Unser and Blu 2005). That is, there exists coefficients dm,n such

that ∑n dm,n ψ(t – n) = eαmt.

The problem of estimating the calcium transients and the problem of reconstructing an FRI

signal are now equivalent. In fact, we now have a set of samples zn = ⟨x(t), ψ(t – n)⟩ which

are equivalent to those that we would obtain if we were sampling the stream of Diracs x(t)

with the exponential reproducing kernel ψ(t). We can therefore apply FRI techniques to

retrieve the location of the Diracs and, as highlighted in (2.15), those correspond exactly to

the activation times of the APs. We summarize this inference method in algorithm 1.

Algorithm 1

FRI spike train inference (noiseless scenario)

Input: c(t): calcium concentration, K: number of spikes

Output: {tk}k=1
K : spike locations

 1: Filter with exponential reproducing kernel: yn = ⟨c(t), φ(t – n)⟩

 2: Compute weighted finite differences: zn = yn – yn–1 e−αT

 3: Obtain new measurements: sm = ∑n dm,n zn

 4: Compute the annihilating filter: hm * sm = 0

 5: Retrieve locations from roots of the annihilating filter: H (z) = ∑m=0
K h mz −m = ∏k=1

K (1 − uk z −1), where

uk = eλtk

2.3.3. Spike inference in practice—Real data presents two main issues. Firstly, in the

presence of noise, the matrix S from (2.14) is not rank deficient. And secondly, the number

of spikes (K) within a time interval is unknown.

In the noiseless case, the matrix S has rank K. The SVD of this matrix has therefore only K

non-zero singular values. When noise is added to the input signal, the matrix S becomes full

rank and if we do not have prior knowledge of K, estimating its value becomes part of the

problem. In a low noise scenario and when K is not zero, K can be estimated from the

singular values of S. In this case, the contribution of the signal in the singular value of S is

more important than the contribution of the noise, and a clear separation can be established

to estimate the number of singular values that are due to the signal.

Another effect of the noise is that equation (2.14) is not satisfied exactly. We have followed

two different approaches to overcome this situation. The first approach (Blu et al 2008)

starts with denoising the matrix S with an iterated algorithm (Cadzow 1988). The matrix S is

Toeplitz by construction, but is not rank deficient due to the presence of noise. The iterated

algorithm makes the matrix S be of rank K (using the previously estimated value of K)

setting to zero the smallest singular values. This new matrix S′ has rank K but is not Toeplitz

anymore. A new matrix is built averaging the diagonal elements of matrix S′. These two

steps are repeated until some stop condition is reached. The next step is to solve equation

(2.14). This is done computing the total least squares solution that minimizes ∥Sh∥2 subject

to ∥h∥2 = 1 The second approach is based on the matrix pencil method (Hua and Sarkar

1990) which is in essence based on the same principle that is used in the ESPRIT algorithm
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(Paulraj et al 1985) for the estimation of directions of arrival of signals in arrays of antennas.

This approach has already been successfully used in the FRI framework (Maravić and

Vetterli 2005). This method is based on the particular structure of the matrix S, which is

Toeplitz and each element is given by a sum of exponentials as shown in (2.10). Let S0 be

the matrix constructed from S by dropping the last row and S1 the matrix constructed from S
by dropping the first row. It can be shown that in the matrix pencil S0 – μS1 the parameters

 are rank reducing numbers, that is, the matrix S – μS has rank K – 1 for μ = uk and

rank K otherwise. The parameters  are thus given by the eigenvalues of the

generalized eigenvalue problem (S0 – μS1)v = 0. Both approaches lead to similar

performances whilst the second is computationally more efficient.

Correct estimation of the number of spikes within the time window where we are searching

for spikes is crucial to obtain good performance. The previously described approach, where

K is estimated from the singular values of the matrix S, has two main issues: firstly, we

never detect the K = 0 case, and secondly, in very noisy scenarios (low SNR), the estimation

is not very accurate. To overcome these inaccuracies we perform a double consistency

analysis. In order to extract the spikes from a long data stream, the signal is sequentially

analysed with a sliding window. For each position of the window, we first estimate the

number of spikes within the window, and we then extract the locations of the corresponding

spikes. Figure 6 illustrates this procedure. If the window has size Δt and the window

progresses by steps of tstep, the time interval processed within the ith window is

(2.17)

where t0 is the instant of time of the first sample of the data stream. We select tstep to be

equal to the temporal resolution of the data, so the window advances sample by sample.

Consecutive windows, importantly, overlap to guarantee that a spike is detected among

different windows. Figure 7 illustrates this sequential processing of a real fluorescence

sequence. In figures 7(a) and (b) the red dots represent the retrieved locations for different

positions of the sliding windows; the vertical axis represents the index of the window, and

the horizontal axis the time location of the retrieved spikes. Figure 7(a) corresponds to a

window size of 32 points and figure 7(b) to a window size of 8 points. The blue lines

represent the locations of the real spikes, this is the ground truth data. When a spike is

detected among different windows, we can see that the red dots are aligned vertically

because different windows output the same location.

Algorithm 2

FRI spike train inference (noisy scenario)

Input: c(tn), where n = i, … , i + N − 1: windowed calcium sequence (N = 32 or 8), Optional parameter K: number of
spikes

Output: {tk}k=1
K : spike locations

  1: Filter with exponential reproducing kernel: yn = ⟨c(t), φ(t – n)⟩

  2: Compute weighted finite differences: zn = yn – yn–1 e−αT
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  3: Obtain new measurements: sm = ∑n dm,n zn

  4: Create Toeplitz matrix S from samples sm

  5: if K is not fixed then

  6:   Compute normalized singular values of S

  7:   K is the number of singular values greater than 0.3

  8: end if

  9: Create matrix S0 from S by dropping first row

 10: Create matrix S1 from S by dropping last row

 11: Retrieve {uk}k=1
K  from the eigenvalues of the generalized eigenvalue problem S0 – μS1

 12: Obtain {tk}k=1
K  from uk = eλtk

The double consistency approach consists in running the algorithm twice following two

different strategies in each execution. First, with a sufficiently large time window (32 points

of the input signal) we estimate the number of spikes from the singular values of the matrix

S. Second, with a sufficiently small window (8 points of the input signal) we assume that we

always have a single spike within this observation window. In both cases, for each position

of the sliding window, the algorithm outputs the locations of the spikes assumed to be within

that window. When the retrieved locations correspond to real spikes, the locations we

retrieve are stable among the different positions of the window that capture these spikes, but

when the locations correspond to noise they are not stable. We construct a joint histogram of

the retrieved locations with the two different window sizes. This is shown in figure 7(c). The

locations of the real spikes are estimated from the peaks of the histogram. These peaks

correspond to positions that are consistent among different windows. Figure 7(d) shows the

fluorescence data with the real and the detected spikes. The algorithm is summarized in

algorithm 2.

2.4. Generating surrogate data

We generated surrogate data with similar properties to the experimental data, in order to

investigate the changes in performance of the spike detection algorithm in terms of

parameters such as data SNR and the sampling frequency. We assume that the spike

occurrence follows a Poisson distribution with parameter λ spikes/s. Experimental data

presents occurrences between 0.45 and 0.5 spikes per second. The probability of having k

spikes in the interval considered in parameter λ (one second) is given by the probability

mass function of the Poisson distribution:

(2.18)

To generate a spike train for a time interval L we divide this interval in N slots. Each slot

corresponds to a time interval of  seconds. The λ′ parameter that corresponds to this

new time interval is λ′ = λ · Δt. We then create a vector k = (k1, … , kN) of size 1 × N where
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each ki is a realization of the independent random variables Ki ~ Pois(λ′). The ith element of

this vector, ki, gives the number of spikes that occurred during the ith time slot. We then

have to generate the precise instant of time when the spike occurred. For a given time slot,

we generate the ki spike locations according to a uniform distribution. The total number of

spikes in the time interval L is . Once we have generated the locations of the K

spikes  the waveform given by the exponential decaying model is:

(2.19)

where α = 1/τ. We then generate the simulated fluorescence sequence sampling equation

(2.19) at instants t = nTres for a temporal resolution of Tres seconds. The data sequence is

slightly smoothed before sampling in order to have a differentiable function. We can then

add white Gaussian noise to satisfy a certain SNR. The SNR is computed as the ratio

between the power of the signal and the power of the noise, expressed in the logarithmic

decibel scale. Figure 8 shows an example of generated data with a SNR of 10 dB.

2.5. Real-time processing

The algorithm is fast enough to perform real-time spike inference. The most demanding

stages in terms of computation requirements are the estimation of the number of spikes and

the retrieval of the locations for each position of the sliding windows. The joint histogram’s

peak detection has a negligible complexity when compared to the previous stages. For each

new data sample the algorithm has to perform the number of spikes estimation and locations

retrieval for the 32 points and 8 points windows. Since previous locations are stored in

memory, the histogram can be computed sequentially.

Performance measurements have been done for the current MATLAB implementation using

a commercial laptop (tested on a 2.5 GHz Intel Core i5 CPU). In our setup, the 32 points

window takes on average (value obtained averaging the execution time of 1000 windows)

1.25 ms to perform the number of spikes estimation and location retrieval, and the 8 points

window takes 0.49 ms. Therefore, when a new data sample is available the algorithm takes

1.74 ms to process it. The sampling period is 147.2 ms, the current implementation can thus

process up to 84 data streams in parallel. The algorithm requires the samples from a whole

window before being able to output a location. Therefore the output has a maximum delay

of 32 samples × 147. 2 ms/sample = 4.71 s.

3. Results

In this section we present the performance of the spike detection algorithm with real and

surrogate data. The electrophysiological measurements give us a ground truth for the spiking

activity of the monitored neuron which allows measuring the performance of the algorithm

with real data. A detected spike is considered to correspond to a real spike if the difference

between the real location and the estimated location is smaller than or equal to a threshold.

We set this threshold to be equal to the temporal resolution of the data, Tres. If we denote by

tk the real location of a spike and  an estimated location, we consider that the real spike has
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been detected if . When a spike is assumed to correspond to a real

spike, we can measure the error on the estimated location. From this error measurement we

obtain a mean square error of the overall algorithm.

A limitation of the real data is the temporal resolution, which is imposed by the frame rate of

the calcium imaging dataset. With the surrogate data we can control this resolution when we

generate the data stream to measure the impact of this parameter to the algorithm’s

performance.

3.1. Real data

The real data is a data stream of 133 s with a temporal resolution Tres = 0.147 s. Hence there

are 903 samples. This data stream contains 62 spikes at a rate of 0.466 Hz.

The sliding window algorithm is performed twice, first with a big window of 32 samples

estimating K from the estimated rank of the S matrix (thresholding of the singular values),

and second with a small window of eight samples and a fixed K = 1. The spikes are detected

from the resulting histogram of the union of the locations retrieved in both iterations. The

algorithm correctly detects 83.9% of the spikes. The standard deviation of the locations is

0.0503 s. There are a total of 9 false positives, this corresponds to a false positive rate of

0.0598 Hz or 1.1% if measured as the rate between false positives and total negative

samples.

3.2. Surrogate data

The real data presents a spike rate of 0.466 spikes per second. We have generated surrogate

data assuming that the spike occurrence follows a Poisson distribution with a parameter λ =

0.5 spikes/s and a total number of 1000 spikes. The noiseless calcium concentration signal

have been generated once for a given spike distribution and with three different temporal

resolutions. To analyse the performance variation for different levels of noise we have run

the algorithm over 100 different realizations of noise for each level of SNR. Figure 9

summarizes the obtained performances.

From figure 9 it can be seen that the success rate of the algorithm strongly depends on the

temporal resolution of the data. The higher the temporal resolution, the better the spike

detection rate. The real data we have analysed presents a low temporal resolution because of

the low frame rate of the calcium images , but recent publications

(Sadovsky et al 2011, Katona et al 2012) show that the acquisition techniques are

improving, with in some situations frame rates up to 125 Hz now available. At these frame

rates, our algorithm presents success rates above 95%. The performances of the detection

algorithm are not particularly influenced by the noise for SNRs above 10 dB, and deteriorate

slightly for lower SNRs. Increasing temporal resolution has a minor drawback, the amount

of false positives slightly increases. However, the false positive rate is very low (about 15

false positives for a stream of 2000 s represents a rate of false positives below 0.01 Hz)3.

3In the aid of reproducible research our code is available from the authors on request.
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3.3. Comparison with existing methods

Various methods for spike inference from two-photon imaging have been presented in

recent years, but to the best of our knowledge, none of them achieve these performances for

real-time processing. Greenberg et al (2008) present a method based on finding a least-

square solution to fit the observed fluorescence signal. With real data similar to ours,

temporal resolution of 96 ms and neural activity with firing rate of 0.44 Hz, they obtain

higher detection rates, 95% detection of electrically confirmed AP with a false-positive rate

of 0.012 Hz. However, this method is very slow and is not suitable for real-time processing.

It also has to be noted that this data was acquired from cell bodies and our from dendrites.

Sasaki et al (2008) describe a new approach that combines principal component analysis and

support vector machine. This method requires a learning phase to tune some parameters. The

results show similar performances in terms of detection rate, with error rates <10%, but the

precision of this method is lower as only a fraction of the detected spikes are detected in the

correct time frame. Vogelstein et al (2009) present a sequential Monte Carlo method to infer

spike trains. Again, this method is not suitable for real-time processing due to its high

computational complexity. Vogelstein et al (2010) describe a fast nonnegative

deconvolution filter to infer the most likely spike train given the fluorescence. The code that

implements this method in MATLAB is publicly available and we have tested it with our

data. The computational complexity of this method is comparable to ours. The output of this

algorithm is a probability between 0 and 1 of having a spike in a given time frame.

Thresholding this probability vector is how we decide if the neuron has been activated in a

given time frame. The lower the threshold, the higher the detection rate, but this also

increases the false positive rate.

Figure 10 presents receiver operating characteristic (ROC) curves in order to compare our

algorithm (FRI) and the fast nonnegative deconvolution technique with surrogate data. We

have also included simulation results for two other standard algorithms, derivative-

thresholding and filter and thresholding. The latter method filters the fluorescence sequence

with a derivative of a Gaussian filter in order to smooth the noise and detect spikes. All four

methods have a thresholding stage to infer the spike train. A lower threshold provides a

higher success rate but with the penalty of having more false positives. The simulations have

been performed with the same spike train we generated to obtain the performance

measurements in figure 9 and with the same realization of the noise in all four methods. We

present the results for two different levels of noise. The two axis of the ROC curves are

unitless as they present a ratio between true positive or negative samples and obtained

positive or negative samples. The surrogate data contains 1000 true spikes and 13 587

samples (2000 s/Tres). Thus an operating point with a false positive rate of 0.01 and a true

positive rate of 0.9 correctly detects 900 spikes but throws 126 false positives. It can be

observed that the FRI algorithm presents better performances although it has to be noted that

the fast deconvolution algorithm is faster. The time required to process a 13 600 points

stream (which corresponds to the 2000 s stream of surrogate data in figure 10(a)) is around

3.85 s for the fast deconvolution algorithm and around 23.64 s for the FRI algorithm.

With real data, FRI achieves a success rate of 83.9% (52 trues spikes correctly detected out

of 62) with only nine false positives. To achieve similar success rates on the same data with
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the fast deconvolution method, we obtain more than 100 false positives, this is more false

positives than true spikes. Derivative-thresholding presents more than 200 false positives for

a success rate of 83.9% and filter and threshold more than 110 false positives.

4. Discussion

We have presented a novel spike inference technique based on FRI theory. Spikes are

detected from calcium transients in fluorescence measurements. To do this, the existing FRI

framework has been extended to a new class of signals that is formed by a stream of

decaying exponentials. The data obtained in this type of measurements presents low

temporal resolution and is corrupted with noise. To overcome these limitations we propose a

sequential non-iterative algorithm that is able to detect spikes in real-time. The proposed

algorithm achieves very high success rates with a low number of false positives. These

promising results are a direct consequence of the fact that the fluorescence sequence can be

parametrized as a signal recoverable in the FRI setup. FRI guarantees that the recovered

signal is within a specific model, and this strong prior is what makes this algorithm very

effective.

Techniques for spike train inference from two-photon imaging have begun attracting

substantial attention in recent years due to the promise of being able to monitor spike trains

from large numbers of localized neurons simultaneously. Improvements in acquisition

techniques and increasing temporal resolution demand efficient spike inference algorithms

to process all this information. Our algorithm is fast and parallelizable, and is thus well-

suited to this context.
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Appendix A

A.1. Exponential reproducing kernels and dm,n coefficients computation

Exponential reproducing kernels are a family of kernels that together with its shifted

versions can reproduce exponentials of the form eαmt:

(A.1)

for a proper choice of the coefficients dm,n. The coefficients dm,n are given by

(A.2)

where  is chosen to form with ψ(t) a quasi-biorthonormal set (Dragotti et al 2007). This

includes the particular case where  is the dual of ψ(t), that is,

. From (A.2) we can express dm,n in terms of dm,0
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(A.3)

If we plug this expression in (A.1) we can derive an expression to compute dm,0 for each m

= 0, … , P:

(A.4)

valid for any value of t. Setting t = 0, we have dm,0 = (∑n e−αmn ψ(n))−1. Note that the

summation is finite because ψ(t) is of compact support. For each m we can then compute

dm,n for any n as dm,n = eαmn dm,0.

A.2. Exponential moments of a stream of Diracs

We define the exponential moments of a signal x(t) as

(A.5)

If the input signal is a stream of Diracs, , and the exponent’s

parameter can be expressed as αm = α0 + mλ, the exponential moments are given by

(A.6)

where bk = a eα0tk and uk = eλtk.

Figure A1.
Filtering process of a stream of decaying exponentials.

A.3. Filtering a stream of decaying exponentials

Let
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(A.7)

We know from (2.7) that filtering signal c(t) with a filter with impulse response h(t) =

φ(−t/T) and taking samples at regular intervals t = nT can be expressed as

. Replacing c(t) by x(t) * ρα(t) and denoting with φn,T(t) the

function  then leads to:

(A.8)

where (a) follows from a change of variable t – τ = −ν. It is then clear that

(A.9)

which is also illustrated in figure A1.

A.4. Computing weighted finite differences of the samples

We now show that filtering signal  with

φ(−t/T) and computing samples zn = yn – yn–1 e−αT is analogous to sampling the stream of

Diracs x(t) with a different kernel ψ(−t/T ). The weighted differences can be written as

(A.10)

since the inner product is linear and samples yn can be expressed as yn = ⟨x(t), ρα(t) * φ(t/T –

n)⟩. Applying Parseval’s theorem, and considering that

 we can also write

(A.11)
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 is the Fourier transform of the time reversed decaying exponential. Since

, . If we replace this in the above

we obtain:

(A.12)

In the second part of this inner product we can recognize an expression which is similar to

the Fourier transform of a first order E-Spline, . If we consider

 it follows that

(A.13)

Applying again Parseval’s theorem yields

(A.14)

If we name ψ(t) = βαT(−t) * φ(t), the expression in (A.14) shows that samples zn are

equivalent to sampling the stream of Diracs x(t) with ψ(−t/T).
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Figure 1.
Simultaneous multiphoton calcium imaging with electrophysiology. (a) Maximum intensity

projection showing juxtacellular recording from a Purkinje cell dendrite. The tissue was

loaded with Oregon Green BAPTA-1 AM calcium indicator dye (green), and the pipette

filled with Alex 594 (red) to aid visualization during targeted recording. (b) Imaged location,

corresponding to grey horizontal line in (a). (c) Mask showing region of interest for the

recorded Purkinje cell. (d) Simultaneous acquisition of fluorescence time series (shown

unfiltered) and dendritically recorded complex spikes (CS), showing CS-driven calcium

transients.
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Figure 2.
Filtering and sampling.
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Figure 3.
First order E-spline that reproduces two different exponential functions. (a) First order E-

spline. (b) Reproduction of e−2. (c) Reproduction of e+t/2.
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Figure 4.
The annihilating filter is a cascaded interconnection of unitary filters with zeros at uk. Any

signal formed by a linear combination of the exponential sequences  is filtered out.
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Figure 5.
Filtering process of the measured signal.
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Figure 6.
Fluorescence signal processing with a sliding window. For each time interval, the number of

spikes within that interval is first estimated and then the location of each spike is retrieved.
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Figure 7.
Double consistency spike search with real data. (a) and (b) show the detected locations in

red and the locations of the original spikes in blue for two different window sizes. In (a) the

algorithm estimates the number of spikes within the sliding window (window size 32

samples). In (b) the algorithm assumes K = 1 for each position of the sliding window

(window size 8 samples). (c) shows the joint histogram of the detected locations. (d) shows

the fluorescence signal in black with the original spikes in blue and the detected spikes in

red.
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Figure 8.
Surrogate data. Temporal resolution Tres = 147.2 ms and SNR = 10 dB.
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Figure 9.
Algorithm’s performance measurement with surrogate data. The surrogate data contains

1000 spikes in a time interval of 2000 s. For each noise level, the experiment has been

repeated for 100 different realizations of the noise. (a) The success rate is measured as the

percentage of true spikes that have been correctly detected. (b) False positives are given as

number of false positives per second (Hz). (c) Standard deviation of the retrieved locations

with respect to the true locations.
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Figure 10.
Simulations showing FRI algorithm achieving better performances in spike train inference

than the fast deconvolution technique from Vogelstein et al (2010) and different filtering

and thresholding approaches. (a) Surrogate data generated with a temporal resolution Tres =

147.2 ms and SNR = 10 dB. There are total of 1000 spikes with a rate of 0.5 spikes per

second. (b) ROC curves comparing FRI (solid line), fast deconvolution (dashed line),

derivative and thresholding (dashed-dotted line) and filtering and thresholding (dotted)

techniques. (c) and (d) present the results of the same experiment in a lower noise scenario

(SNR = 15 dB). The x and y axis are unitless as they present a ratio between true positive or

negative samples and obtained positive or negative samples.
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