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Abstract

Diffusion MRI measures micron scale displacement of water molecules, providing unique insight

into microstructural tissue architecture. However, current practical image resolution is in the

millimeter scale, and thus diffusivities from many tissue compartments are averaged in each voxel,

reducing the sensitivity and specificity of the measurement to subtle pathologies. Recent studies

have pointed out that eliminating the contribution of extracellular water increases the sensitivity of

the diffusion measures to tissue architecture. Moreover, in brain imaging, estimation of the

extracellular volume appears to indicate pathological processes such as atrophy, edema and

neuroinflammation. Here we study the free-water method, which assumes a bi-tensor model. We

add low b-value shells to a regular DTI acquisition and present methods to improve the estimation

of the model parameters using the extra information. In addition, we define a Laplace-Beltrami

regularization operator that further stabilizes the multi-shell estimation.

1 Introduction

Diffusion MRI (dMRI) measures the displacement of water molecules, which in a typical

brain imaging experiment displace a few tens of microns. This makes dMRI sensitive to

normal and pathological architecture in the cellular scale. Indeed, dMRI based sequences,

such as diffusion tensor imaging (DTI), have been found extremely useful in identifying

subtle changes, especially in white-matter, that occur in normal development, as well as in

many types of diseases, abnormalities and disorders [1]. Nevertheless, current image

resolution is in the millimeter scale, introducing partial volume of different tissue types -

white matter, gray matter, glia cells, cerebrospinal fluid (CSF) - which reduces the

sensitivity and specificity of most indices derived from dMRI and DTI [2].

Correcting for extracellular water is required to eliminate CSF contamination, thus

improving DTI’s sensitivity in the vicinity of the ventricles [3] and important for the

delineation of fibers such as the fornix [4, 5]. Moreover, the fractional volume of the

extracellular water, relative to the remaining hindered or restricted water molecules, appears

to provide important information with regard to pathological processes that modify the

interstitial extracellular space, such as edema [4], neuroinflammation [6] and atrophy [7].
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Indeed, the extracellular volume was shown to be sensitive to pathologies that appear in

aging [7], schizophrenia [8], Multiple-Sclerosis [6], and Alzheimer’s disease [9].

In this work we present a method to estimate the extracellular volume and the diffusivities of

the remaining tissue using a multi-shell dMRI acquisition. Motivated by increasingly more

designs that already choose multi-shell for clinical studies, we enable estimation of free-

water from such acquisitions in a novel way that utilizes the additional information instead

of discarding it.

2 The Free-Water Model

The free-water model estimates and corrects for the contribution of the extracellular space

[4]. The model assumes that the diffusion signal originates from two molecular

compartments, co-existing within a voxel, with slow exchange between the compartments

[4]:

(1)

Here, Ai is the signal (normalized by the b0) of the ith applied diffusion gradient with

orientation qi, and b-value bi. The first term reflects the tissue compartment, where D is the

diffusion tensor of this compartment and f is the relative contribution of the compartment.

The second term reflects an isotropic compartment, with a fixed diffusion coefficient, d, set

to the diffusion coefficient of water in body temperature, 3 × 10−3mm2/s. Thus, the isotropic

compartment models free-water, i.e., molecules that do not experience hinderance. In a

cellular environment such as brain tissue, free-water can only be in the extracellular space.

The free-water model adds only one more parameter, f, to the DTI model. However, unlike

DTI, the fitting of this bi-exponential model is highly unstable [10]. Pierpaoli et al.,

proposed to stabilize the fit by measuring multiple b-shells that achieve high b-values,

requiring a large number of measurements [11]. However, this approach required lengthy

scans, and moreover, at high b-values the tissue compartment is no longer adequately

described by a single exponent [10]. Pasternak et al., introduced a regularization framework

that allowed the estimation of the free-water model from a single-shell DTI acquisition [4].

However, this method requires smoothing, which may reduce the sensitivity to subtle details

or pathologies.

In our work we combine principles from these two approaches. Similar to [11], we acquire

multi-shell data. However, our approach only requires lower b-valued shells. We present a

novel way of estimating the free-water model parameters by separating the higher shells

from the lower shells. We then use these estimates to initialize a spatial tensor regularization

refinement step similar to [4], to result with the final estimates.

3 Multi-Shell Free-Water Estimation

Our approach has three steps. In the first step (Sec. 3.1) the diffusion tensor of the tissue

compartment is estimated from the higher b-valued shells. In the second step (Sec. 3.2) the

estimated tensors along with the lower b-valued shells are used to estimate the extracellular
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volume. In the final step (Sec. 3.3) we use these estimates as an initial guess to a regularized

minimization process that takes in account the entire scope of the data.

3.1 Estimation of Free-Water Eliminated Tensors

The diffusivities of white and gray matter are considerably lower than those of free-water or

CSF. Typically, in single shell DTI with a b-value around 1000 s/mm2, healthy brain tissue

has a quite homogeneous mean diffusivity of around 0.8mm2/sec, 3–4 times slower than

free-water. Therefore, the free-water signal is expected to decay faster than tissue, e.g., with

a b-value of 900mm2/sec the tissue decays to 49% of the signal while free-water decays to

7% of the signal. Figure (1) shows an example of a multi-shell acquisition for a range of b-

values. This range is achieved by modifying the diffusion gradient amplitude for fixed

diffusion times. As expected, the free-water signal (mainly seen in the ventricles and around

the parenchyma) attenuates faster than other brain tissue. The free-water signal diminishes

completely into the noise floor for the higher b-values.

Also dependent on the b-value is the apparent diffusion coefficient of a partially volumed

voxel, which can be expressed as [5]:

(2)

This means that D′ is not the average of the diffusivities of the two compartments, but is

closer to D as b increases. Therefore, we suggest that a tensor estimated only from the

higher b-valued shells (at least two shells are required), will minimize the contribution of the

free-water and will be a good estimation for the tissue compartment tensor D. However,

these shells cannot have a too-high b-value, for two reasons: (1) Sensitivity is reduced to

tissue with high diffusivities, such as along axons, where the signal has already diminished

in the higher b-values; (2) Since cellular tissue is heterogenous, the assumption of an

exponential decay no longer holds for higher b-values [10], potentially biasing the estimated

tensor.

We calculate DH, the apparent diffusion tensor for the high b-valued shells, as an estimator

for D by minimizing:

(3)

where GH are the indexes of all the applied gradients within the high b-valued shells, and

Ê(qi) is the signal (not normalized by the acquired b0) of these images. The acquired b0

reflects the contribution of all spins within the voxel, including from free-water. Therefore,

the estimation of DH requires the estimation of b̃0, which is the baseline image that would

have been acquired in the case that the tensor DH was the only component in the voxel. We

minimize equation (3) using a linear least square (LLS) approach with ln(b̃0) as one of the

free parameters [3].
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3.2 Estimation of Extracellular Volume

We estimate f, which reflects the extracellular relative volume in a voxel, using the low b-

valued shells, which are in the range that still has signal from free-water. Given DH as an

estimate for D, we can calculate fL as an estimate for f using LLS by defining:

(4)

where x = Ai/A0 − exp(−bid) and , and i ∈ GL being the

indexes of the applied gradients in the low b-valued shells. Ai are the attenuation images

defined in Eq. (1). Unlike our approach here, the single-shell free-water map estimation is

initialized by the b0 image alone, normalized by baseline values that assumed knowledge of

voxels that have no tissue, and voxels that have no free-water [4]. This implicitly assumes

that the T2 weighted images behave similarly across the entire brain, and that there are such

baseline voxels. These assumptions are no longer required if using fL and DH as

initialization.

3.3 Regularization of the Fitting

The initialization of the extracellular volume, fL, and the tensor of the tissue compartment,

DH, were designed to be close to the real values, D and f, but could be biased due to either

residuals of the free-water signal that remains in the higher b-valued shells, or due to high

diffusivity within the tissue, the signal of which could disappear when using the higher b-

valued shells. To avoid this potential bias we introduce a third step in which the entire

information from all shells is fitted to the model. The fitting is initialized with the estimates

provided in the previous two steps, and is stabilized by regularization. We use a

regularization method based on the one proposed in [4] by minimizing the following

functional:

(5)

Here, Ω includes all voxels of interest, G are the indexes of all applied gradients and Ai are

their signal normalized by the b0. The parameter α scales the contribution of the Polyakov

action regularization term (typically α = 1 [4]), with |γ(D)| as the determinant of the induced

metric. Using the Einstein summation convention this metric has the form γμν(x) =

∂μXi∂νXjhij(X). Differing from the implementation in [4] and following the findings in [12]

we do not use an affine-invariant metric to describe distances between tensors but rather use

a Euclidean metric and the canonical tensor representation. In a regularization scheme the

effect of metric selection is minimal [12], yet here the Euclidean metric simplifies the

calculations considerably. As a result the vector X has the elements

. The matrix H = {hij} is the spatial-

feature metric that for a Euclidean tensor space is simply a 9 × 9 diagonal matrix, with 1 for

the last three diagonal entries (the spatial domain) and a constant for the remaining 6

diagonal entries. This leads to the motion equations for the six unique tensor elements, Dj

with j ∈ {1, 2, …, 6}:
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(6)

and for the fractional volume parameter:

(7)

Importantly, due to the use of the Euclidean metric, and unlike the motion equations derived

in [4], equation (6) does not have any Christoffel numbers, and therefore its calculation is

simpler and faster. The second term in equation (6) is the Laplace-Beltrami operator, which

is a piece-wise smooth, edge preserving tensor regularization operator [4]. The final result is

thus the parameters f and D that best fit the data while maintaining continuous tissue

representation.

4 Experiments and Results

Multi-Shell Acquisition Schemes

We test the multi-shell estimation on two types of data sets that were obtained with multi-

shells. The first data uses an acquisition optimized for the free-water estimation, having a

single b=0, 3 × b=50, 6 × b=200, 10 × b=500, 30 × b=900 and 16 × b=1400, with gradient

orientations designed as nested platonic solids, which means that each shell is rotationally

invariant, and the shells complement each other to a rotationally invariant scheme. Data was

acquired on a 1.5T scanner with 2.5mm isotropic voxels and takes 9:20 minutes. We use the

b=1400 and b=900 shells to estimate DH, and the remaining shells to estimate fL. The second

data set demonstrates adding lower shells to an existing DTI gradient scheme with b=900

and the scanner default 64 gradient orientations. We added a shell at b=400 with 10

measurements and a shell at b=100 with 6 measurements, adding 2:40 minutes to the

acquisition time. We use the b=900 and b=400 shells to estimate DH. We use b=100 and

b=400 to estimate fL. This data was acquired on a 3T scanner with 2mm isotropic voxels.

Implementation

All data was motion and eddy-current corrected. We used 3D-Slicer’s tensor estimation to

calculate DH by first omitting all images in GL, including the b0. We used Matlab (Natick,

MA) to calculate fL. The optimization was done using a Matlab code that was provided in

[4]. The code was changed to accept multiple b-values, to regularize using a Euclidean

metric, and to use DH and fL as initialization. The complete analysis for a whole brain takes

less than 15 minutes on a 64-bit Linux machine with Xeon-E5530 processors, without taking

advantage of multiple cores.

Optimized Multi-Shell Acquisition

Both the multi-shell (Fig. 2[A]) and single-shell (using the b=900 shell; Fig. 2[B])

estimations provide similar free-water maps, showing high values in the ventricles, and low

values in the brain tissue, nicely depicting the extracellular volume. The color by orientation
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maps are similar as well. To better evaluate the differences between the maps, we plot free-

water maps using a color-scale that increases the visibility of the lower values. We can then

see that the multi-shell maps are not as smoothed as the single-shell maps, although both

estimations used the same Laplace-Beltrami regularization operator. As a result the multi-

shell map is more detailed, allowing to better distinguish cortical structures. For this

acquisition scheme, the initialization, fL is very similar to the final multi-shell free-water

map. Subtle changes between the maps can be seen in the histogram comparison (Fig. 2[C]).

This means that in this case fL is a good estimator for the extracellular volume. The

histogram also demonstrated that most brain voxels have extracellular volume around the

0.2 value.

Shells Added to a DTI Acquisition

This option suits cases where on-going DTI studies exist, but there is the opportunity to

improve the acquisition by adding images to the existing protocol. In this case adding only

lower shells is allowed, to prevent from changes in important imaging parameters such as

echo time, repetition time and diffusion time that are required to accommodate the higher b-

values. However, as can be seen in Fig. 3, the convergence point is no longer similar to the

initialization point. The maps following regularization are smoother, but unlike the single-

shell case, the details are better preserved during the regularization. The quality of the

regularized images suggests that when the separability between shells is not sufficient, using

the full proposed pipeline, including the regularization step is preferred.

5 Discussion and Conclusions

Fitting the free-water model instead of the DTI model adds the extracellular volume as a

new estimated biological parameter and provides tensor images that are more tissue specific

[3–6]. We demonstrate that with a multi-shell data we can relax assumptions and

dependency on regularization that is required when fitting the model from a single-shell

data. We were able to estimate the extracellular volume from multi-shell data, achieving

more detailed maps than single-shell maps. Although the difference is subtle, it could be

important for studies of pathologies that slightly affect the extracellular space, such as

neuroinflammation. For an optimized spread of a relatively small number of acquisitions in

b-value shells within the DTI b-value range we can estimate the model parameters directly

from the data, avoiding regularization. Future studies could further explore optimized

scheme designs, and investigate the integration with other HARDI methods that acquire

multiple-shells, in which case further parameters such as the diffusivity of the isotropic

compartment, can be added.
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Fig. 1. Multi-shell acquisition
Diffusion signal for increasing b-values of (left to right) 0, 200, 900 and 1400 mm2/sec in a

mid-sagittal plane. The signal from free-water, such as in the ventricles (red arrow), decays

into the noise floor faster than the signal of brain tissue.
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Fig. 2. Optimized multi-shell
Our multi-shell regularized fitting provides a more detailed extracellular volume and tissue

tensor maps [A], comparing with the regularized single-shell fitting [B]. Small details are

preserved and there are less artifacts (white arrows). The initialization fL is very close to the

final convergence as can be seen in the histogram of the images [C].
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Fig. 3. Modified DTI acquisition
When there are residuals of free-water in the higher shells, the initialized free-water map [A]

is different than the converged map following regularization [B]. The final map is less noisy

and structures are accented. The higher quality of the regularized maps suggests that using

the full proposed pipeline is preferred for this type of acquisition.

Pasternak et al. Page 10

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 May 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


