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Abstract Human longevity is a multifactorial pheno-
type influenced by both genetic and environmental fac-
tors. Despite its heritability of 25–32 %, the genetic
background of longevity is as yet largely unexplained.
Apart from APOE status, variation in the FOXO3A gene
is the only confirmed genetic contributor to survival into
old age. On the other hand, FOXO3A activity is known
to be downregulated in various cancers, and the gene
was recently identified as a novel deletion hotspot in
human lung adenocarcinoma. In view of the strong

association between smoking and lung cancer, we set
out to explore whether smoking modifies the known
association between FOXO3A variation and longevity.
To this end, we conducted a case–control study in two
different populations, drawing upon extensive collec-
tions of old-aged individuals and younger controls avail-
able to us (1,613 German centenarians/nonagenarians
and 1,104 controls; 1,088 Danish nonagenarians and
736 controls). In the German sample, 21 single nucleo-
tide polymorphisms (SNPs) from the FOXO3A gene
region were genotyped, whereas 15 FOXO3A SNPs
were analyzed in the Danish sample. Eight SNPs were
typed in both populations. Logistic regression analysis
revealed that adjustment for smoking does not system-
atically alter the association between FOXO3Avariation
and longevity in neither population. Our analysis there-
fore suggests that the said association is not largely due
to the confounding effects of lung cancer.

Keywords Longevity . Aging . Smoking . Lung
cancer . Confounder . Heritability

Introduction

Human longevity is a complex phenotype, and genetic
factors have been estimated to account for ∼30 % of the
overall variation in adult lifespan (Christensen et al.
2006; Finch and Tanzi 1997; Gogele et al. 2011;
Herskind et al. 1996; Hjelmborg et al. 2006; Ljungquist
et al. 1998; Skytthe et al. 2003). As yet, however, varia-
tion in only two genes has been confirmed to influence
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survival into old age, namely in those encoding apolipo-
protein E (APOE), with ε4 being a mortality factor in
the elderly (Blanché et al. 2001; Christensen et al. 2006;
Deelen et al. 2011; Nebel et al. 2011; Schachter et al.
1994), and transcription factor forkhead box O3A
(FOXO3A). A comparatively modest association be-
tween FOXO3A polymorphisms and longevity has been
observed in different populations (Anselmi et al. 2009;
Flachsbart et al. 2009; Li et al. 2009; Pawlikowska et al.
2009; Soerensen et al. 2010; Willcox et al. 2008).
However, the molecular mechanisms underlying this
relationship still remain to be elucidated. Most of the
longevity-associated FOXO3A single nucleotide poly-
morphisms (SNPs) analyzed so far are located in
intronic regions, and the “functionally relevant” variants
still have to be identified (Donlon et al. 2012; Flachsbart
et al. 2012).

The FOXO3A protein is an evolutionarily conserved
key regulator of the insulin-IGF1 signaling pathway
(Hwangbo et al. 2004; Kenyon 2005; Kenyon et al.
1993; Lin et al. 1997; Ziv and Hu 2011). It also plays
an important role in growth arrest, DNA repair, and
apoptosis in response to DNA damage and oxidative
stress (Furukawa-Hibi et al. 2002; Greer and Brunet
2005; Kops et al. 2002; Tran et al. 2002). Furthermore,
FOXO3A has been implicated as a tumor suppressor
(Fei et al. 2009; Hu et al. 2004; Mikse et al. 2010; Yang
et al. 2008), and FOXO3A activity was consistently
found to be downregulated in various cancers (Yang
and Hung 2009; Greer and Brunet 2005). More recently,
FOXO3Awas also reported to stimulate a proapoptotic
transcriptional program in response to a human lung
carcinogen (Blake et al. 2010), and the FOXO3A gene
region is a target of somatic deletion in lung adenocar-
cinoma (LAC) in both humans (Mikse et al. 2010) and
mice (Herzog et al. 2009).

Since development of lung cancer clearly reduces an
individual’s life expectancy, the above association im-
plies that the known influence of FOXO3A on longevity
may be due, at least partially, to confounding by lung
cancer. Such provisos are not uncommon in epidemiol-
ogy, so that the allowance for possible confounders in the
respective analyses has becomemandatory to avoid false
positive results. However, since lung cancer is not di-
rectly observable in a case–control study of longevity,
we had to resort to smoking as a proxy for the disease
(Doll et al. 2004; Dayan 1986; Liu et al. 1998; Warner
et al. 1989), knowing that many smokers never develop
lung cancer, and that smoking has many effects upon

longevity that are unrelated to lung cancer (Fig. 1). This
incongruence implies that the effects of smoking adjust-
ment on the FOXO3A–longevity relationship can only
partly reflect the relevance of lung cancer. This notwith-
standing, if the association between FOXO3A and
longevity was indeed confounded by lung cancer, then
the same association would be expected to be notably
stronger among smokers than among nonsmokers.

To address the above questions, we performed a case–
control study in two populations, namely aGerman sample
comprising 1,613 long-lived individuals (95–110 years)
and 1,104 younger controls, and a Danish sample of
1,088 cases aged 92–93 years and 736 younger controls
(Table 1). Individuals were classified as either smokers
(ever smokers) or nonsmokers (never smokers). One cave-
at has to be taken into account in the present study, how-
ever, namely that cases and controls belong to different
generations. Smoking behavior is known to have changed
during the twentieth century (Benowitz et al. 2005;
Franceschi and Bidoli 1999) so that “smoking” may have
meant different things in the two groups. Nevertheless, as
regards possible confounding by lung cancer, we think that
use of such a “noisy” proxy was still valid. In view of the
important role of APOE allele ε4 in human longevity
(Blanché et al. 2001; Christensen et al. 2006; Deelen
et al. 2011; Nebel et al. 2011; Schachter et al. 1994), we
also adjusted all analyses for the APOE ε4 status.

Material and methods

Study population

We analyzed two case–control samples from two differ-
ent populations (Table 1). The German sample included
1,613 unrelated old-aged individuals, with an age range
of 95 to 110 years (median age 99 years). Some 27 % of
these were male. Old-aged individuals were recruited
from different geographic regions of Germany and in-
cluded a subset of 748 centenarians (median age
101 years). The 1,104 controls were 60 to 75 years old
(median age 67 years), and were matched for ancestry,
sex, and geographic origin within the country. The re-
cruitment of the German sample has been described in
detail elsewhere (Nebel et al. 2005).

The Danish cohort comprised of 1,088 old-aged in-
dividuals (29 % male) born in 1905 (Nybo et al. 2001).
The 736 younger controls were randomly selected from
the study of middle-aged Danish twins (Skytthe et al.
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2002),but only one twin of each twin pair was includ-
ed in the present study. In the controls, the sex ratio
was approximately 1:1. At the time of interviewing,
the old individuals were 92 to 93 years old (median
age 93 years) and the younger controls were 46 to
54 years old (median age 50.5 years). The Danish
study population also has been described in more
detail elsewhere (Soerensen et al. 2010).

Genotyping

The German sample was genotyped on an automated
platform (Hampe et al. 2001) using Taqman SNP
genotyping assays (Life Technologies Corporation,
Foster City, CA). A subset of the German sample and
some SNPs have been analyzed before (Flachsbart
et al. 2009), with six additional SNPs and 955

FOXO3A longevity

confounder ?

proxy

lung cancer

smoking

Fig. 1 Study setting. Asso-
ciations between variables
are depicted by bold arrows.
A dashed arrow is used to
indicate that the association
between FOXO3A and lon-
gevity may be due partially
to confounding by lung can-
cer. Smoking serves as a
proxy for lung cancer. Note
that cases and controls differ
by both their life expectancy
and generation membership

Table 1 Study samples

Median age* (in years) Total number Smokers# (%) Number of FOXO3A
SNPs analyzed

German

Old-aged individuals 99 (95–110) 1,613
Male: 436 (27.0 %)
Female: 1,177 (73.0 %)

27.1 21

Controls 67 (60–75) 1104
Male: 283 (25.6 %)
Female: 821 (74.4 %)

50.7

Danish

Old-aged individuals 93 (92–93) 1,088
Male: 313 (28.7 %)
Female: 775 (71.2 %)

45.9 15

Controls 50.5 (46–54) 736
Male: 371 (50.4 %)
Female: 365 (49.6 %)

62.6

German and Danish

Old-aged individuals 96 (92–110) 2,701
Male: 749 (27.7 %)
Female:1,952 (72.3 %)

35.4 8

Controls 63 (46–75) 1,840
Male: 654 (35.5 %)
Female:1,186 (64.5 %)

55.5

* Age range is given in parenthesis; # ever smokers
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additional individuals investigated here. Genotyping of
the Danish sample was performed on the Illumina
GoldenGate platform (Illumina Inc) (Steemers and
Gunderson 2005; Soerensen et al. 2010). All samples
and SNPs have been investigated before (Soerensen
et al. 2010). In total, 21 FOXO3A SNPs were analyzed
in the German sample (Table 2) and 15 SNPs were
analyzed in the Danish sample (Table 3). Eight of the
FOXO3A SNPs and the two APOE SNPs rs7412 and
rs429358 were analyzed in both populations (Table 4).

Smoking information

For theGerman sample, information on smoking behavior
was obtained via questionnaires. Individuals were asked
whether they had ever smoked, whether they were recent
smokers, for how many years they had smoked, and how

many cigarettes they smoked per day. For the Danish
sample, individuals were interviewed and classified as
never, former, or current smokers. More detailed smoking
information is provided in Supplementary Table S1.

Statistical analysis

Statistical analyses were performed using software R
v.12.0 (Team RDC 2008). All tests were two-sided at
the 5 % significance level. The genotyped SNPs were
tested for Hardy–Weinberg equilibrium in the controls
using an exact test as implemented in R-package genetics
(Warnes et al. 2011). Associations between a SNP geno-
type and longevity were assessed for statistical signifi-
cance by means of logistic regression analysis with and
without interaction, followed by a Wald test (Wald
1943). SNP genotypes were coded by the dosage of the

Table 2 Association between longevity and FOXO3A SNP genotype. German sample (1,613 old-aged individuals, 1,104 controls)

No. dbSNP ID MAF controls
(n=1104)

MAF cases
(n=1613)

Risk
allele

Unadjusted Adjusted for smoking

P OR 95 % CI P OR 95 % CI

1 rs2274776 0.490 0.486 – 0.899 1.009 0.881–1.154 0.928 1.007 0.871–1.164

2 rs1571631 0.465 0.462 – 0.847 1.013 0.885–1.160 0.986 1.001 0.866–1.158

3 rs6911407 0.378 0.415 A 0.032 1.163 1.013–1.336 0.010 1.215 1.048–1.409

4 rs768023 0.382 0.415 G 0.049 1.149 1.001–1.319 0.016 1.201 1.035–1.392

5 rs2802288 0.385 0.407 – 0.139 1.091 0.972–1.226 0.096 1.112 0.981–1.260

6 rs2883881 0.093 0.087 – 0.659 1.047 0.855–1.281 0.463 1.086 0.872–1.353

7 rs12200646 0.123 0.138 – 0.192 1.119 0.945–1.326 0.259 1.110 0.926–1.331

8 rs2802290 0.387 0.417 G 0.083 1.130 0.984–1.298 0.025 1.185 1.022–1.375

9 rs2802292 0.382 0.413 G 0.062 1.141 0.993–1.310 0.043 1.165 1.005–1.351

10 rs13220810 0.259 0.251 – 0.561 1.039 0.913–1.184 0.607 1.037 0.902–1.193

11 rs2764264 0.304 0.338 C 0.039 1.164 1.007–1.346 0.019 1.203 1.030–1.405

12 rs7762395 0.153 0.175 A 0.092 1.174 0.974–1.416 0.023 1.266 1.034–1.551

13 rs13217795 0.297 0.328 C 0.048 1.160 1.001–1.345 0.020 1.206 1.030–1.412

14 rs9400239 0.295 0.331 T 0.028 1.180 1.018–1.369 0.007 1.245 1.062–1.460

15 rs3800231 0.287 0.327 A 0.010 1.215 1.047–1.410 0.002 1.290 1.100–1.513

16 rs4945816 0.289 0.316 C 0.062 1.126 0.994–1.276 0.031 1.160 1.014–1.326

17 rs4946936 0.291 0.321 G 0.045 1.133 1.003–1.279 0.024 1.162 1.020–1.324

18 rs1268170 0.347 0.377 G 0.060 1.147 0.994–1.323 0.017 1.204 1.033–1.403

19 rs473268 0.337 0.367 A 0.077 1.139 0.986–1.316 0.023 1.197 1.025–1.398

20 rs479744 0.199 0.229 T 0.020 1.225 1.032–1.454 0.005 1.304 1.085–1.567

21 rs519007 0.186 0.183 – 0.798 1.023 0.860–1.217 0.865 1.016 0.844–1.223

MAF minor allele frequency, Risk allele “risk” allele for, attaining old age, P p value obtained from a risk allele-based case–control
comparison using a Wald test, OR odds ratio for attaining old age, 95 % CI 95 % confidence interval. All analyses were adjusted for
APOE status. In the combined sample, nationality was included as an additional influential variable. Nominally significant associations
upon adjustment for smoking (p<0.05) are printed in bold
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respective “risk allele” for attaining old age, thereby
assuming multiplicativity of the odds ratios and ensuring
that reported odds ratios were always larger than unity.
All SNP association analyses were adjusted for APOE
genotype coded by the number of APOE ε4 alleles

(“dosage”). When German and Danish data were ana-
lyzed together, nationality was added as an additional
influential variable.

Model selection involving all FOXO3A SNPs
was impossible due to multicollinearity caused by

Table 4 Association between longevity and FOXO3A SNP genotype. Combined sample (2,701 old-aged individuals, 1,840 controls)

No. dbSNP ID MAF controls
(n=1840)

MAF cases
(n=2701)

Risk
allele

Unadjusted Adjusted for smoking

P OR 95 % CI P OR 95 % CI

1 rs2802292 0.368 0.396 G 0.023 1.123 1.016–1.241 0.009 1.150 1.036–1.276

2 rs13220810 0.270 0.254 – 0.143 1.076 0.975–1.188 0.099 1.091 0.984–1.209

3 rs2764264 0.295 0.316 C 0.084 1.096 0.988–1.217 0.031 1.127 1.011–1.256

4 rs7762395 0.148 0.166 A 0.046 1.145 1.002–1.308 0.012 1.197 1.041–1.377

5 rs13217795 0.286 0.308 C 0.060 1.107 0.996–1.231 0.021 1.139 1.020–1.272

6 rs9400239 0.286 0.311 T 0.033 1.122 1.010–1.248 0.007 1.164 1.042–1.300

7 rs3800231 0.281 0.310 A 0.013 1.144 1.029–1.272 0.002 1.190 1.065–1.329

8 rs479744 0.195 0.220 T 0.009 1.176 1.042–1.326 0.001 1.234 1.088–1.400

MAF minor allele frequency, Risk allele “risk” allele for attaining old age, P p value obtained from a risk allele-based case–control
comparison using a Wald test, OR odds ratio for attaining old age, 95 % CI 95 % confidence interval. All analyses were adjusted for
APOE status. In the combined sample, nationality was included as an additional influential variable. Nominally significant associations
upon adjustment for smoking (p<0.05) are printed in bold

Table 3 Association between longevity and FOXO3A SNP genotype. Danish sample (1,088 old-aged individuals, 736 controls)

No. dbSNP ID MAF controls
(n=736)

MAF cases
(n=1,088)

Risk
allele

Unadjusted Adjusted for smoking

P OR 95 % CI P OR 95 % CI

1 rs9486902 0.178 0.203 A 0.057 1.192 0.881–1.154 0.048 1.205 1.002–1.450

2 rs10499051 0.095 0.087 – 0.468 1.091 0.885–1.160 0.706 1.047 0.823–1.332

3 rs12206094 0.258 0.282 – 0.181 1.111 1.013–1.336 0.132 1.129 0.964–1.321

4 rs2802292 0.355 0.379 – 0.179 1.105 1.001–1.319 0.103 1.131 0.975–1.310

5 rs13220810 0.286 0.258 – 0.116 1.129 0.972–1.226 0.076 1.149 0.985–1.339

6 rs2764264 0.286 0.294 – 0.735 1.026 0.855–1.281 0.516 1.052 0.902–1.226

7 rs7762395 0.143 0.158 – 0.260 1.115 0.945–1.326 0.209 1.132 0.933–1.374

8 rs12207868 0.099 0.101 – 0.918 1.012 0.984–1.298 0.946 1.008 0.801–1.269

9 rs13217795 0.275 0.289 – 0.506 1.053 0.993–1.310 0.363 1.075 0.920–1.255

10 rs9400239 0.277 0.292 – 0.415 1.065 0.913–1.184 0.276 1.089 0.934–1.270

11 rs12212067 0.101 0.102 – 0.984 1.002 1.007–1.346 0.962 1.005 0.803–1.259

12 rs9398172 0.275 0.288 – 0.440 1.061 0.974–1.416 0.320 1.080 0.928–1.259

13 rs3800231 0.276 0.293 – 0.343 1.076 1.001–1.345 0.222 1.101 0.943–1.284

14 rs3800232 0.123 0.123 – 0.900 1.013 1.018–1.369 0.935 1.009 0.817–1.246

15 rs479744 0.191 0.211 – 0.149 1.133 1.047–1.410 0.068 1.175 0.989–1.397

MAF minor allele frequency, Risk allele “risk” allele for attaining old age, P p value obtained from a risk allele-based case–control
comparison using a Wald test, OR odds ratio for attaining old age, 95 % CI 95 % confidence interval. All analyses were adjusted for
APOE status. In the combined sample, nationality was included as an additional influential variable. Nominally significant associations
upon adjustment for smoking (p<0.05) are printed in bold
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linkage disequilibrium (LD). To avoid collinearity, we
excluded SNPs in such a way that all remaining markers
had pairwise r2 values <0.80 (see Supplementary
Figures S1–S3). LD plots were prepared with Haploview
v4.2 (Barrett et al. 2005). The following FOXO3A SNPs
were eventually taken into account in the following
model selection: rs2274776, rs1571631, rs2883881,
rs1220646, rs2802290, rs2802292, rs13220810,
rs2764264, rs7762395, rs13217795, rs473268, rs479744,
and rs519007 for the German sample; rs9486902,
rs10499051, rs12206094, rs2802292, rs13220810,
rs7762395, rs12207868, rs3800232, and rs479744 for
the Danish sample; and rs2802292, rs13220810,
rs2764264, rs7762395, rs13217795, and rs479744 for
the combined sample. Starting from the full model,
we performed backward selection that kept only influ-
ential variables with a p value <0.05 in the final model.

Results

Association of APOE and smoking with longevity

As was to be expected, smoking (ever versus never) and
APOE ε4 dosage both had a strong impact upon lon-
gevity (Table 5), with estimated odds ratios of 0.36 and
0.42, respectively, in the German sample and of 0.51
and 0.58 in the Danish sample. No statistically signifi-
cant interaction was observed between the two factors.

Association between FOXO3A and longevity,
with and without adjustment for smoking

We analyzed the association between longevity and ge-
neticvariation in theFOXO3Ageneregionfor21SNPs in
the German sample and 15 SNPs in the Danish sample.
Eight of theSNPs thathadbeengenotyped inbothgroups
were analyzed in both samples combined.All SNPswere
in Hardy–Weinberg equilibrium in the control samples,
andall analyseswereadjusted forAPOEε4dosage. In the
German sample, eight SNPs (rs6911407, rs768023,
rs2764264, rs13217795, rs9400239, rs3800231,
rs4946936, and rs479744) were significantly associated
with longevity (Table 2). In theDanish sample, no signif-
icant association between a SNP and longevity was de-
tected (Table 3). In the combined sample, five SNPs
(rs2802292, rs7762395, rs9400239, rs3800231, and
rs479744) were found to be significantly associatedwith
longevity (Table 4). After adjustment for smoking,
all significant genotype–phenotype relationships
remained significant (Fig. 2). In addition, some of
the SNPs acking an association in the unadjusted
analysis became nominally significant after adjust-
ment for smoking as follows: rs2802290, rs2802292,
rs7762395, rs4945816, rs1268170, and rs473268 in
the German sample, rs2764264 and rs13217795 in
the combined sample set, and rs9486902 in the
Danish sample (Tables 2, 3, and 4).

Model selection with and without adjustment
for smoking

In order to assess the joint effects upon longevity of
FOXO3A variation, APOE genotype, nationality, and
smoking,allowingforapossiblecorrelationbetweenthese
variables (e.g., due to linkage disequilibrium), we
performed two types of logistic regression analysis with
backwardmodelselection. InitialmodelM1includedonly
theFOXO3ASNPsandAPOEε4dosage(plusnationality,
when appropriate), whereas model M2 also included
smoking. In the German sample, the same FOXO3A
SNPs occurred in final models M1 and M2 (Table 6),
namely rs1200646 and rs479744. Moreover, APOE and
smoking (in the case of model M2) were also included
in the models. Final model M1 for the Danish sample
did not include any FOXO3A SNP, but only APOE ε4
dosage. Final model M2 included APOE, FOXO3A
SNP rs13220810, and smoking. For the combined sam-
ple, both final models included FOXO3A SNP rs479744

Table 5 Association between longevity and either APOE status
or smoking

Simple logistic
regression analysis

Multiple logistic
regression analysis

P OR P OR

German

APOE <2×10−16 0.427 <2×10−16 0.424

Smoking status <2×10−16 0.361 <2×10−16 0.379

Danish

APOE 3.2×10−8 0.580 2.9×10−8 0.495

Smoking status 2.9×10−12 0.505 2.0×10−8 0.572

P p values were obtained using a Wald test, OR odds ratio for
attaining old age; simple logistic regression analysis, both influ-
ential variables were analyzed separately; multiple logistic regres-
sion analysis, both influential variables were analyzed jointly. No
statistically significant interaction was observed in any of the
analyses; APOE number of APOE ε4 alleles; smoking status, ever
versus never smokers with never smokers as reference category

916 AGE (2014) 36:911–921



and APOE ε4 dosage. Apart from smoking, nationality
was also found to be a significantly influential variable
in model M2 (but not in M1). To test the robustness of
the model selection, we added smoking to final model
M1. All previously selected influential variables
remained statistically significant in all three samples
(German, Danish, and combined). No statistically sig-
nificant pairwise interaction between the different

influential variables, particularly not between smoking
and any FOXO3A genotype, was observed.

Robustness of results

The above results were based upon the use of two
smoking categories, namely “ever” and “never”. We also
adopted alternative classifications of smoking status,
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Fig. 2 FOXO3A odds ratios
for attaining old age, with
and without adjustment for
smoking. Odds ratios were
obtained by logistic regres-
sion analyses of longevity
and FOXO3A SNP geno-
type, with (vertical axis) and
without smoking adjustment
(horizontal axis). Circles
German sample; diamonds
Danish sample. Significant
associations are marked by
filled symbols. All analyses
were adjusted for APOE
genotype

Table 6 Logistic regression model selection

Sample Final model without smoking (M1) M1+Smoking Final model with smoking (M2)

Influential
variables

P OR Influential
variables

P OR Influential
variables

P OR

German rs1200646
rs479744
APOE

0.021
0.019
8.5×10−12

1.289
1.242
2.278

rs1200646
rs479744
APOE
Smoking

0.031
0.006
7.1×10−11

1.3×10−14

1.288
1.314
2.351
2.402

rs1200646
rs479744
APOE
Smoking

0.031
0.006
7.1×10−11

1.3×10−14

1.288
1.314
2.351
2.402

Danish APOE 1.2×10−8 1.801 APOE
Smoking

1.1×10−8

1.1×10−12
1.827
2.110

rs13220810
APOE
Smoking

0.036
1.3×10−8

2.7×10−13

1.041
1.821
2.136

Combined rs479744
APOE

0.014
<2×10−16

1.170
1.937

rs47944
APOE
Smoking

0.003
<2×10−16

<2×10−16

1.219
1.932
2.115

rs479744
APOE
Smoking
Nationality

0.002
<2×10−16

<2×10−16

1.8×10−4

1.225
1.982
2.220
1.331

P p values were obtained using a Wald test, OR odds ratio for attaining old age, nationality was encoded as 1 for German and 0 for
Danish, APOE number of APOE ε4 alleles, smoking status ever versus never smokers with never smokers as reference category
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particularly for the German sample, where more infor-
mation on smoking behavior was available. For exam-
ple, we considered “never and former” versus “current”
and “smoking for more than 5 years” versus “never”.
The results of these analyses turned out to be very similar
to those obtainedwith the original classification (data not
shown). We also performed a sex-stratified analysis,
with results both for males and females that were very
similar to the results of the non-stratified analysis (see
Supplementary Tables S2 and S3). In the Danish males,
however, one SNP (rs13220810) ceased to show a sig-
nificant association with longevity upon adjustment for
smoking.

Discussion

Variation in theFOXO3Agene isnot onlyassociatedwith
longevity (Anselmi et al. 2009; Flachsbart et al. 2009; Li
et al. 2009; Pawlikowska et al. 2009; Soerensen et al.
2010; Willcox et al. 2008) but also plays a role in the
etiology of various neoplasias, including lung cancer
(Donlon et al. 2012; Greer and Brunet 2005; Herzog
et al. 2009; Mikse et al. 2010; Willcox et al. 2008; Yang
andHung2009). In the present study,we therefore set out
to investigate whether the association observed between
FOXO3A and longevity may have been due, at least
partially, to the confounding effects of lung cancer.
Unfortunately, lung cancer mortality is difficult, if not
impossible, to address in retrospective case–control stud-
ies. However, since smoking is strongly associated with
lungcancer (Dayan1986;Doll et al. 2004;Liuet al. 1998;
Warner et al. 1989), we thought that a combined analysis
of longevity and FOXO3A variation using smoking as a
proxy for lung cancer still appeared well warranted. If
confounding by the disease played an important role,
such an analysis should have yielded a smaller or even
absent residual effect of FOXO3A variation on aging, or
a significant interaction between FOXO3A genotype
and smoking. Contrary to this expectation, our study
revealed an unaltered genotype–phenotype association
after adjustment for smoking in both single and multiple
SNP analyses. The latter ultimately invoked only
smoking and one or two FOXO3A SNPs as significantly
influential variables, and no interaction with smoking
became apparent.

Interestingly, both the number and the magnitude of
significant FOXO3A SNP associations differed consid-
erably between the German and the Danish samples

analyzed here, with the German sample showing the
stronger associations. This discrepancy is potentially
explicable by the fact that the association between
FOXO3A and longevity is much stronger in centenarians
than in nonagenarians (Flachsbart et al. 2009). In the
Danish sample, the age range was only 92 to 93 years,
compared to 95 to 110 years in the Germans, who even
included a subset of 748 centenarians. Moreover, in the
first report of an association between FOXO3A and
longevity in the Danish population, the association was
observed only for males and only using specific modes
of inheritance (Soerensen et al. 2010). Such differences
notwithstanding, smoking adjustment did not alter the
said genotype–phenotype relationship in neither popula-
tion samples.

Our study was not intended to investigate the effect
of smoking on longevity, but rather addressed the
possible confounding effects of lung cancer. Smoking
prevalence varied considerably in the past and there-
fore differed between our cases and controls as well
simply because the two groups belonged to different
generations (Deutsches Krebsforschungszentrum
2008; Peto et al. 2000). Notably, the quality of smoking
has also changed, for example, by a trend towards so-
called “light” cigarettes that stimulate smokers to in-
hale more deeply (Benowitz et al. 2005; Franceschi
and Bidoli 1999). This means that our proxy for lung
cancer may have been somewhat imprecise. However,
several aspects seem to support the general validity of
our conclusion that the FOXO3A-longevity association
is not strongly confounded by lung cancer. First, we
obtained similar results in two different populations,
and with several SNPs. Second, although smoking
prevalence and smoking habits are known to differ
considerably between males and females, we obtained
similar results in a sex-stratified as in the non-stratified
analyses. Finally, a lack of an effect of smoking adjust-
ment was consistently seen with all smoking classifi-
cations employed here.

In our study, the number of smokers was consider-
ably higher in the Danish sample than in the German
sample (Table 1). This was true for the controls, but
even more so for the old-aged individuals. Not surpris-
ingly, a stronger association between smoking and
longevity was, therefore, seen in the German sample.
There are several possible explanations for this popu-
lation difference in smoking prevalence. Danish indi-
viduals were recruited in a cohort study and were
observed over a long period of time. Therefore, their
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smoking behavior could be recorded more precisely
than in the German sample, which followed a case–
control design with the usual drawback of recall bias,
especially at exceptionally old age. However, the dif-
ference in smoking prevalence did not qualitatively
change the effect of smoking adjustment on the asso-
ciation between FOXO3A variation and longevity.

Our study followed a case–control design, which is
known to be inferior to a cohort design in many re-
spects. Most importantly, case–control studies are lia-
ble to recall bias so that environmental exposure data
may lack the accuracy of analogous information from
direct follow-up. Moreover, as was mentioned in the
introduction, the relationship between an exposure
and a phenotype may become confounded by age if
the typology of the exposure, in this case smoking, has
changed over time. However, since the association be-
tween FOXO3A variation and longevity only becomes
apparent for extremely old age (≥95 years of age),
prospective studies are difficult because of the ex-
tremely low prevalence of the phenotype (0.01–
0.02 %, Perls 2006) and the long follow-up period
required. Therefore, case–control studies almost inevita-
bly have become the most popular design for the inves-
tigation of longevity (Deelen et al. 2013). Moreover, as
has been pointed out above, our study was not intended
to investigate the effect of smoking on longevity per se,
which would be difficult to do in a case–control design
anyway. Instead, we were interested in the possible
confounding effect of lung cancer (with smoking used
as a proxy), which should be detectable in case–
control studies as well. Finally, it must be emphasized
that the association between FOXO3A variation and
longevity was originally detected (Willcox et al. 2008)
and subsequently confirmed in case–control studies
(Anselmi et al. 2009; Flachsbart et al. 2009; Li et al.
2009; Pawlikowska et al. 2009; Soerensen et al. 2010).
Only one study was prospective in nature (Soerensen
et al. 2010). Bearing in mind the methodological limita-
tions of case–control studies and their possible impact on
statistical power, the question whether an association
was confounded by a given candidate can, thus, only
sensibly be clarified using the same study design.

In the future, it would be interesting to explore the
potential relationship between genetic variation in
FOXO3A and various cancers from the viewpoint that
the former is a potential tumor suppressor (Fei et al.
2009; Hu et al. 2004; Mikse et al. 2010; Yang et al.
2008). So far, little is known about the link between germ

line FOXO3A variation and a predisposition to cancer
(Campa et al. 2011). For example, deletions in the
FOXO3A gene region in LAC were explored in somatic
cancer cells only (Mikse et al. 2010). Moreover, an
investigation of the role of FOXO3Avariation in cancers
other than LAC might provide further independent in-
sight into the importance of FOXO3A for human aging
and longevity (Donlon et al. 2012).
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