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Abstract

The Toll-like receptor/MyD88 signaling pathway has been shown to mediate protective functions

during intestinal exposure to various noxious events. The goal of this study was to define the role

of bacteria and MyD88 signaling in intestinal response to damage using an ischemia–reperfusion

(I/R)-induced injury model. We showed that conventionalized mice displayed a better outcome to

I/R-induced injury than germ-free mice (3.8 ± 1.98 vs. 11.8 ± 1.83, P < 0.05). However, mice with

intestinal epithelial cell (IEC)-specific deletion of Myd88 (Myd88IEC−/−) were protected from I/R-

induced injury compared with Myd88f/f control mice. Myd88IEC−/− mice also displayed a

significantly reduced bacterial translocation (~85%) into lymph nodes compared with Myd88f/f

mice. Expression of ccl2 and cxcl1 mRNA was significantly reduced (85% and 62%, respectively)

in intestinal tissue of Myd88IEC−/− mice compared with Myd88f/f mice, which associated with a

reduced number of myeloperoxidase-positive cells in intestinal tissues of I/R-exposed

Myd88IEC−/− mice. Immunohistochemistry analysis showed a reduced IgA deposition and

complement staining in ischemic tissue of Myd88IEC−/− mice compared with Myd88f/f mice. These

findings suggest that I/R-induced intestinal injury involves IEC-derived MyD88 signaling leading

to increased IgA deposition/degradation, and complement activation in conjunction with an influx

of neutrophils mediated by chemokine production.
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The intestinal epithelium constitutes a crucial physical barrier separating the host from the

luminal compartment containing various noxious agents such as bacteria, bacterial products,

and food-derived particles.1–3 In addition to its barrier function, the intestinal epithelium

responds to numerous bacterial stimuli through the action of various conserved innate

sensors such as Toll-like receptors (TLRs).4 In the case of commensal bacteria, this dialogue

between the microbiota and intestinal epithelial cells (IECs) is important for the

maintenance of intestinal homeostasis through the induction of antimicrobial peptides,

toning of the innate and adaptive immune responses, and the fortification of the barrier.5 A

compromised intestinal barrier could have deleterious consequences for the host as luminal

contents may gain access to the mucosal immune system and enter systemic circulation,

triggering a damaging immune cell response. The epithelium is constantly facing injury

caused by various luminal irritants, but these episodes rarely lead to life-threatening

situations because the host has developed an efficient adaptive wound-healing response to

maintain homeostasis.6 However, extreme challenges such as hypoxic, ischemic, or

radiation events often overpower the wound-healing response, thereby exposing the host to

damaging luminal products. For example, intestinal ischemia can lead to sepsis through

bacterial translocation.7 Intestinal ischemia–reperfusion (I/R) injury can occur under several

clinical conditions like sepsis, hemorrhage, mesenteric ischemia due to blood clots, neonatal

necrotizing enterocolitis, and even small bowel transplantation.8 Reperfusion after ischemic

events causes epithelial cell death and disruption of barrier function leading to invasion of

bacteria.9 Antibiotic use is the mainstay of treatment to prevent sepsis from bacterial

translocation after intestinal ischemic events and has even been shown to be protective

before the inciting event.10

Interestingly, the microbiota seems to play a protective role in various experimental injury

models including dextran sodium sulfate and radiation.11–13 In contrast, global deletion of

myeloid differentiation primary response gene (Myd88), an adaptor protein in innate

immune signaling, protects mice from I/R-induced injury.14 Moreover, in a model of

necrotizing enterocolitis in newborn mice, TLR/MyD88-mediated intestinal injury seems to

be controlled by nucleotide-binding oligomerization domain-2 signaling.15 However, the

role of microbes in injury response to I/R is still unclear because most studies linking

bacteria to I/R response have used reduction strategies (antibiotic treatment) and/or innate

sensor-deficient mice. Numerous cells, including IEC and mucosal immune cells, express

MyD88, and the cell type specific function of this molecule in I/R-mediated injury response

is unknown.

In this study, we investigated the impact of the microbiota using germ-free and

conventionalized mice and defined the role of IEC-specific MyD88 signaling in I/R-induced

intestinal injury. We report that IEC-derived MyD88 signaling promotes I/R-induced injury.

This deleterious effect is likely mediated by 2 main events: (1) IEC-dependent MyD88

signaling leading to increased amount of luminal IgA and subsequent complement activation

during the ischemic phase and (2) IEC-MyD88–dependent expression of neutrophil

chemoattractants in IECs, further damaging intestinal tissue.
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MATERIALS AND METHODS

Generation of Myd88IEC−/− Mice

All mice were on a C57BL/6 background. Villin-Cre transgenic mice were crossed to

Myd88f/f mice (a generous gift from Dr Anthony DeFranco, UCSF, CA), which contain loxP

sites flanking exon 3 to generate mice lacking exon 3 of Myd88 gene in IECs

(Myd88IEC−/−).16 Tail snips were collected from all pups generated from crosses, and

genomic DNA was isolated using a Qiagen Blood and Tissue Kit (Qiagen; Valencia, CA).

Primers used for genotyping were as followed: Villin-Cre promoter (5’-

GCGGTCTGGCAGTAAAAACTATC-3’, and 5’-

GTGAAACAGCATTGCTGTCACTT-3’) and MyD88f/f (5’-

GTTGTGTGTGTCCGACCGT-3’ and 5’-GTCAGAAACAACCACCACCATGC-3’).

For phenotypic analysis, RNA was isolated from IEC and splenocytes as previously

described,17 and expression of MyD88 was determined by PCR. Isolation of IECs was

performed as previously described.18 Amplicons were resolved on a 2% agarose gel and

visualized using a Kodak Gel Logic Imager 200 series (Kodak; Rochester, NY). Myd88

primers used were as followed: 5’-TTGGATGCCTGGCAGGGG-3’ and 5’-

TCCTTCTTCATCGCCTTG-3’. The amplicon length including exon 3 was 565 bp and the

amplicon length without exon 3 was 384 bp. Deletion of exon 3 in epithelial cells was also

confirmed by sequencing of the PCR products. Purity of IEC and splenocytes isolation was

confirmed by amplifying the IEC-specific gene product Villin and the immune cell–specific

marker (neutrophils, monocytes, and B-cell subtypes) CD11b using the respective set of

primers 5’-CCCCCATCTTCCAACAAT-3’, 5’-GGACCTGAAATAGCCTCGTAG-3’

(amplicon length: 546 bp); and 5’-GGCGCTGTCTACATTTTTTAT-3’ and 5’-

GCTCCCCAACCAGTGTATAAT-3’ (amplicon length 574 bp) (Fig, Supplemental Digital

Content 1, http://links.lww.com/IBD/A334). Low levels of CD11b contamination that

occurred during IEC isolation account for the wild-type MyD88 bands that appear in IEC-

specific Myd88 knockout samples of small intestine and colon tissue.

I/R-induced Injury

Myd88f/f, Myd88IEC−/−, and Myd88−/− mice (C57BL/6 background) were maintained in

standard housing cages in specific pathogen free–conditions. To study the impact of the

microbiota on I/R injury, 1 cohort of germ-free (GF) wild-type mice (C57BL/6 background)

was transferred to specific pathogen–free conditions for 4 weeks, and another cohort was

kept in GF conditions. For all experiments, mice (n = 3–5) were anesthetized under 1%

isofluorane, supplemented by 10 mg/kg ketamine, and 0.1 mg/kg buprenorphine, both

injected subcutaneously. A mid-line laparotomy was made, and peripheral branches of the

superior mesenteric artery were occluded with aneurysm clips with a force of 50 g (Kent

Scientific, Torrington, CN), to create a 3- to 5-cm region of ischemic ileum adjacent to the

cecum. Collateral blood flow through the intestine was blocked using aneurysm clips across

the intestine and collateral vessels, demarking the region of ischemic intestine. Hematoxylin

was administered to the edges of ischemic tissue to mark them, and then the incision was

closed with surgical staples. Ischemia was maintained for 60 minutes, and then the incision

was reopened, the clamps were removed, and the incision was reclosed. We have optimized
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this protocol to maximize injury and maintain a low mortality rate (4%), as previously

published.19 The mice were maintained in a heated room for a variable amount of time (0,

1.5, or 4 hours) without anesthesia for the reperfusion phase of injury. To account for any

systemic reaction to injury, healthy tissue adjacent to injured tissue was harvested as an

internal healthy control, as previously described.19 This approach was used in lieu of

“sham” animals, which do not appropriately control for the systemic effects that originate

from I/R-induced injury. All animal experiments were approved by the Institutional Animal

Care and Use Committee of the University of North Carolina at Chapel Hill.

Murine Sample Collection and Histological Evaluation

Mice were anesthetized using isoflurane, and then killed by cervical dislocation. The colon

was dissected and flushed with ice-cold phosphate-buffered saline, longitudinally splayed,

Swiss rolled, fixed in 10% formalin for 24 hours, and then embedded in paraffin. Damage

severity was evaluated using Hematoxylin and eosin–stained sections by an investigator

blinded to the experimental conditions. The scoring system is based on an IEC apoptosis/

necrosis system, where a score of 1 signified a loss of only the villus tips; a score of 2

corresponded to loss of 50% of the villus; a score of 3 indicated a loss of the entire villus,

but with maintenance of the crypt; and a score of 4 signified complete loss of the epithelial

layer.20 The ischemic tissue was divided into 4 quarters, a score was given to each quarter

separately and then added to generate a final damage score.

Immunohistochemistry and Immunofluorescence

Immunohistochemistry (IHC) staining was performed according to the manufacturer's

specifications, as previously described.17 Primary antibodies and dilutions were as followed:

myeloperoxidase, 1:400 (Neomarkers, Fremont, CA), PIgR, 1:50 (R&D Systems;

Minneapolis, MN), IgA, 1:1000 (R&D Systems; Minneapolis, MN), and complement 3d,

1:50 (R&D Systems; Minneapolis, MN). IHC for activated caspase 3, 1:400 (R&D Systems;

Minneapolis, MN) was performed as described.21 All sections were counterstained with

hematoxylin and eosin.

RNA Isolation and Real-time PCR

RNA isolation from ileal tissues and subsequent cDNA amplification and analysis were

performed as previously described.17 Specificity and linearity of amplification for each

primer set were determined by melting curve analysis and calculation of the slope from

serial diluted samples. Relative fold changes were determined using the ΔΔCT calculation

method. Values were normalized to the internal control GAPDH or β-actin. Primers:

GAPDH (5’-GGTGAAGGTCGGAGTCAACGGA-3’ and 5’-

GAGGGATCTCGCTCCTGGAAGA-3’), β-actin (5’-

TGGAATCCTGTGGCATCCATGAAAC-3’ and 5’-

TAAAACGCAGCTCAGTAACAGTCCG-3’), cxcl1 (5’-

GCTGGGATTCACCTCAAGAA-3’ and 5’- TCTCCGTTACTTGGGGACAC-3’), ccl2 (5’-

GCTGCTACTCATTCACTGGCAA-3’ and 5’- TGCTGCTGGTGATTCTCTTGTA-3’),

and tnf (5’-ATGAGCACAGAAAGCATGATC-3’ and 5’-

TACAGGCTTGTCACTCGAATT-3’).
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Bacterial Translocation and Culture

For all bacterial translocation assays, mice were subjected to 60 minutes of ischemia

followed by 4 hours of reperfusion. Mice were killed, and 2 mesenteric lymph nodes

adjacent to the damaged tissue were harvested and weighed. The homogenates were lysed in

1 mL phosphate-buffered saline using a Mini BeadBeater-8 (BioSpec, Bartlesville, OK) and

plated on sheep brain heart infusion plates (Remel, Lenexa, KA) and incubated in aerobic

and anaerobic conditions for 24 hours, at which time colonies were counted.

Statistical Analyses

Unless specifically noted, statistical analyses were performed using GraphPad Prism version

5.0a (GraphPad, La Jolla, CA). Comparisons of mouse studies were made with

nonparametric analysis of variance, and then a Mann–Whitney U test. All graphs depict

mean ± SEM. Experiments were considered statistically significant if P < 0.05.

RESULTS

Commensal Microbes Alleviate I/R-induced Ileal Damage

Although wide-spectrum antibiotic treatment attenuates I/R-induced intestinal injury in

mice, this experimental approach may have confounding effects on the host.10 To stringently

evaluate the impact of bacteria on intestinal injury response, we used GF and

conventionalized wild-type mice. Conventionalized mice and GF mice (3–5 mice per group)

were exposed to either 60-minute ischemia (I) or 60-minute ischemia followed by 180-

minute reperfus ion (I/R), and tissue injury was assessed by histological analysis. Although

no difference was observed between the histological damage scores of the conventionalized

and GF group (12.7 ± 1.80 vs. 11.6 ± 0.70, respectively) in the ischemic phase (Fig. 1A, B),

a significant improvement was noted in conventionalized mice versus GF mice (3.8 ± 1.98

vs. 11.8 ± 1.83, P < 0.05) during the reperfusion phase (Fig. 1A, B). This finding suggests

that bacteria may promote beneficial responses during the reperfusion phase of I/R-induced

tissue injury.

IEC-specific Myd88 Deletion Alleviates I/R-induced Injury

To assess early stages of epithelial cell damage and recovery during I/R, the reperfusion

time was reduced from 180 minutes to 90 minutes for the subsequent experiments. We have

previously optimized I/R-induced injury to maximize epithelial damage.19 To define the role

of bacteria in I/R-mediated injury, we selectively deleted Myd88 in IEC by crossing

Myd88f/f mice to Villin-Cre mice to generate Myd88IEC−/− mice. The extent of ischemia-

induced intestinal injury was similar in Myd88f/f and Myd88IEC−/− mice (8.8 ± 0.86 vs. 10.8

± 1.16; not significant) during the ischemic phase (Fig. 2A). However, after 90 minutes of

reperfusion, Myd88IEC−/− mice showed greater epithelial restitution compared with Myd88f/f

mice (4.6 ± 1.29 vs. 10 ± 1.67, respectively; P < 0.05) (Fig. 2B). The protective recovery

observed in Myd88IEC−/− mice was similar to that of Myd88−/− mice (4.6 ± 1.29 vs. 4 ± 1.27,

respectively) suggesting that MyD88 signaling from the IEC compartment was mainly

responsible for the phenotype.
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Since defective IEC-derived MyD88 alleviated epithelial cell damage, we predicted that

Myd88IEC−/− mice should have a diminished translocation of bacteria. As expected, a

significant decrease of colony-forming units in lymph nodes was observed in I/R-exposed

Myd88IEC−/− mice compared with Myd88f/f mice (67 ± 27 vs. 452 ± 185, respectively; P <

0.05; Myd88−/−: 181 ± 121) (Fig. 3).

Deletion of MyD88 Signaling Reduces I/R-induced Apoptosis in Epithelial Cells

Intestinal tissues undergo hypoxia that contributes to IEC apoptosis and epithelial injury

during I/R.22 Consequently, I/R-induced IEC apoptosis was compared between Myd88IEC−/−

and Myd88f/f mice by evaluating active caspase-3 using IHC staining. A significant decrease

in the number of caspase-3–positive cells was observed in Myd88IEC−/− mice compared with

Myd88f/f mice (6.4 ± 2.4 vs. 26.3 ± 0.53, respectively; P < 0.05) (Fig. 4A, B), a level similar

to Myd88−/− mice (6.2 ± 2.1). Healthy tissue rarely showed the presence of activated

caspase-3 (Fig. 4A). No difference in epithelial cell proliferation was observed between the

3 genotypes as measured by Ki-67 staining (data not shown).

IEC-derived MyD88 Signaling Promotes Chemokine Gene Expression and Neutrophil
Recruitment in I/R-injured Tissue

Neutrophils have been linked to enhanced tissue damage in various injury models, including

I/R in the myocardium, liver, and intestine,23–26 therefore, we next examined expression of

various chemoattractant genes involved in neutrophil recruitment. A significant induction of

Tnf, Cxcl1, and Ccl2 mRNA expression was observed in I/R-exposed tissues of Myd88f/f

mice compared with control healthy tissues (5.146 ± 1.802, 37.32 ± 7.119, and 31.09 ±

9.391 fold, respectively). Interestingly, expression of Cxcl1 and Ccl2 was not induced in the

injured tissue of Myd88IEC−/− and Myd88−/− mice compared with Myd88f/f mice (cxcl1:

14.11 ± 3.632, 4.524 ± 0.846 vs. 37.32 ± 7.119, respectively; P < 0.05) (ccl2: 4.524 ± 0.846,

5.561 ± 1.275 vs. 31.09 ± 9.391, respectively; P < 0.05) (Fig. 5). The expression of Tnf in

injured tissue is the same across all genotypes. IHC analysis for myeloperoxidase, a marker

for neutrophils, showed a ~50% reduction of infiltrating myeloperoxidase-positive cells in

injured tissue of Myd88IEC−/− mice compared with Myd88f/f mice (17.03 ± 3.08 vs. 40.13 ±

2.52, respectively; P < 0.05) (Fig. 6). Taken together, these findings suggest that IEC-

derived MyD88 signaling promotes I/R-induced injury, and associates with elevated

chemokine expression and neutrophil infiltration.

PIgR Expression and IgA Deposition/denaturation is Reduced in I/R-injured Myd88IEC−/−

Mice

Complement activation plays an important role in I/R-injury and inhibition of complement

alleviates this pathological response.27 Hypoxia-induced denaturation of IgA has recently

been shown to activate complement through the mannose-binding lectin pathway.28

Interestingly, we observed reduced expression of IgA transporter polymeric

immunoglobulin receptor in healthy tissue of Myd88IEC−/− mice compared with Myd88f/f

mice (Fig. 7). We sought to determine the level of IgA staining in Myd88IEC−/− mice after

60 minutes of ischemia, a timepoint where most “neo-antigens” are uncovered.29 As

expected, IHC analysis showed decreased IgA staining in ischemia-exposed Myd88IEC−/−
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mice compared with Myd88f/f mice (Fig. 8). The IgA staining pattern was predominantly

observed at the tip of the villus of Myd88f/f mice, a region typically affected by hypoxic

conditions, such as ischemia.

Moreover, the staining pattern for activated complement in damaged tissue paralleled the

one observed with IgA (Fig. 9), suggesting that complement activation is partly dependent

on the presence of denaturated IgA. Taken together, these findings indicate that MyD88

signaling contributes to I/R injury at least partly through a higher abundance of luminal IgA

that has the potential to bind to neoantigens in damaged tissue, leading to complement

activation during reperfusion.

DISCUSSION

TLR/Myd88 signaling plays a critical role in various intestinal injury responses, including

chemical, radiation, and I/R-induced injury.11,13,30 This signaling pathway mediates host

responses to bacterial colonization/infection, and depletion of intestinal commensal bacteria

through antibiotic treatment attenuates I/R-induced intestinal injury.10 Thus, we

hypothesized that bacteria use MyD88 signaling to mediate injury responses in intestinal

epithelial cells. However, intestinal injury was exacerbated in GF mice compared with

conventionalized mice suggesting that bacteria protect against injury. The central role of

MyD88 in TLR2, TLR4, TLR5, and TLR9 signaling31 suggests that bacteria-mediated

protective effects would likely be dependent on this signaling protein. Surprisingly, deletion

of Myd88 from the intestinal epithelial compartment did not worsen I/R-induced injury but

rather protected the epithelium. This finding suggests that exacerbated I/R-induced injury in

GF mice is because of a Myd88-independent pathway. It is still unclear how the microbiota

protect against I/R-induced intestinal damage. Numerous innate sensors have been linked to

intestinal injury responses including the Nod-like receptor Nod2.15 Nod2 seems to prevent

I/R-induced injury through downregulation of TLR4 expression in epithelial cells, making

these cells less susceptible to damage-induced apoptosis.15 Alternatively, the microbiota

may protect the epithelium independently of innate sensor signaling. Generation of

bacterial-derived products such as short-chain fatty acids has been shown to help maintain

intestinal homeostasis and responses to injury.32,33 Further studies would be required to

identify the mechanism by which bacteria mediate protective effects after I/R exposure.

Our observation that MyD88 signaling promotes the injury response independently of

bacteria is in line with previous reports studying the function of TLR430 and MyD8814 in

I/R-induced injury and by other groups using a related model of intestinal injury.15,34.

Furthermore, we identified the epithelial compartment as the source of MyD88-induced

tissue damage. Mice defective in epithelial-derived MyD88 signaling showed diminished

neutro-phil infiltration, reduced binding of sIgA to neoantigens and a subsequently reduced

complement activation that correlated with the histological damage.

Interestingly, other reports suggested that TLR2/MyD88 signaling protects against I/R-

induced injury.35 The contrasting role of MyD88 in intestinal injury response could be

because of variations in microbial communities in mice housed in different facilities.

Different microbial compositions can modulate wound-healing responses.36
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Neutrophil depletion has been shown to alleviate damage in intestinal I/R-induced

injury.24,25 Interestingly, ccl2 and cxcl1 mRNA expression were reduced in Myd88IEC−/−

mice compared with control Myd88f/f mice. This reduction correlated with a decreased

infiltration of neutrophils into damaged tissue of Myd88IEC−/− mice compared with control

Myd88f/f mice. Multiple studies have shown a positive association between mRNA

expression of Ccl2 and Cxcl1 and infiltration of neutrophils into ischemic tissue.25,37

MyD88 signaling is essential for neutrophil recruitment and tissue damage in myocardial

I/R-induced injury.23 Victoni et al14 also reported alleviated tissue damage in Myd88−/−

mice compared with wild-type mice and demonstrated reduced neutrophil recruitment to the

intestine on I/R injury. Therefore, epithelial-derived MyD88 signaling could be implicated

in neutrophil recruitment and tissue damage through the induction of chemokines such as

Ccl2 and Cxcl1.

In addition to reduced chemokine expression as seen in this study, Frantz et al38 recently

reported a reduced pIgR mRNA expression in Myd88IEC−/− mice compared with Myd88f/f

mice, leading to a decrease in levels of luminal sIgA. Mucosal antibodies have the potential

to recognize “neoantigens” revealed on ischemic cells and to activate the complement

pathway, leading to exacerbate damage during I/R-induced injury.10,30,39,40 Increased

intestinal IgA and IgM deposition after I/R injury in mice was previously reported.10

Because Myd88IEC−/− mice have lower basal levels of luminal IgA, we hypothesized that

these mice would display diminished deposition of IgA in injured tissue. We focused on IgA

because a previous study reported similar levels of IgG and IgM but lower IgA levels in

Myd88−/− mice compared with wild-type mice.41 In this study, IHC analysis confirmed

decreased IgA deposition in ischemic tissue from Myd88IEC−/− mice compared with

Myd88f/f mice. Recently denatured IgA was shown to activate complement through the

mannose-binding lectin pathway and denaturation of IgA can be induced by the combination

of acidosis and beta-galactosidases present in ischemic intestinal tissue.28,42 Importantly,

inhibiting complement, specifically through the mannose-binding lectin pathway, prevents

I/R-induced injury.27,43 Interestingly, both IgA and complement displayed similar

deposition on injured tissue of Myd88f/f mice, a pattern reduced in Myd88IEC−/− mice. In

contrast, GF mice have reduced IgA production44 and severe tissue damage, suggesting that

a mechanism other than IgA/complement activation mediates intestinal injury in this system.

For example, impaired production of cytoprotective molecules such as short-chain fatty

acids in GF mice may explain their increased susceptibility to I/R injury.32

In summary, this study identified IEC-derived Myd88 signaling as promoting I/R-induced

injury. We showed that IEC-derived MyD88 signaling leads to increased basal levels of

luminal IgA and activated complement in ischemic tissue. In addition, IEC-derived MyD88

controls the induction of neutrophil chemoattractants. This dual MyD88-dependent function

is likely important for I/R-induced intestinal damage. These findings indicate that IEC-

derived MyD88 signaling should be considered a central player in I/R-induced injury and

that therapeutic intervention could focus on this signaling protein.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.
Colonization with commensal bacteria alleviates I/R-induced injury. Cohorts of 3–5 germ-

free (GF) wild-type mice and 5 conventionalized (Conv) wild-type mice were subjected to

either 60-minute ischemia only (I) or 60-minute ischemia followed by 180-minute

reperfusion (I/R). Scale bars = 200 μm. A, Representative images of hematoxylin and eosin–

stained ileal sections are shown. B, Histological intestinal damage scores are depicted as

mean ± SEM; *P < 0.05. NS, not significant.
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FIGURE 2.
IEC-specific Myd88 deletion protects from I/R injury. Myd88f/f, Myd88IEC−/−, and Myd88−/−

mice (n = 5) were subjected to 60-minute ischemia (I) only (A) or 60-minute ischemia

followed by 90-minute reperfusion (I/R) (B). Histological damage scores were evaluated on

damaged ileal tissues using a modified scoring system. All graphs depict mean ± SEM; *P <

0.05. Results are representative of 2 independent experiments. NS, not significant.
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FIGURE 3.
I/R-exposed Myd88IEC−/− mice display diminished bacterial translocation compared to

Myd88f/f mice. Myd88f/f, Myd88IEC−/−, and Myd88−/− mice (n = 4) were subjected to 60-

minute ischemia and 240-minute reperfusion. Two mesenteric lymph nodes adjacent to the

affected ileal tissue were collected, weighed, homogenized, plated on brain heart infusion

plates, and cultured under aerobic and anaerobic conditions for 24 hours. Colony-forming

units were counted, and combined colony-forming units for aerobic and anaerobic

conditions are shown. All graphs depict mean ± SEM. *P < 0.05. Results are representative

of 2 independent experiments.
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FIGURE 4.
I/R-exposed Myd88IEC−/− mice showed reduced apoptosis compared with Myd88f/f mice.

Myd88f/f, Myd88IEC−/−, and Myd88−/− mice (n = 4) were subjected to 60-minute ischemia

and 90-minute reperfusion. A, IHC showing active caspase-3 in ileal tissues. Representative

images are shown of 3 independent experiments. Scale bars = 200 μm. B, Average

caspase-3–positive cells from ileal tissues of I/R-exposed Myd88f/f, Myd88IEC−/−, and

Myd88−/− mice. Data represent mean ± SEM; P < 0.01. Results are representative of 2

independent experiments.
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FIGURE 5.
I/R-exposed Myd88IEC−/− mice display lower chemokine mRNA expression. Myd88f/f,

Myd88IEC−/−, and Myd88−/− mice (n = 5) were subjected to 60-minute ischemia and 90-

minute reperfusion and RT-PCR was performed on ileal tissue for ccl2, cxcl1, and tnf.

Expression was normalized using gapdh. Fold expression is shown from I/R injured tissues

compared with healthy control tissues. Data represent mean ± SEM; *P < 0.05; **P < 0.01.

Results are representative of 2 independent experiments. NS, not significant.
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FIGURE 6.
I/R-exposed Myd88IEC−/− and Myd88−/− mice display impaired neutrophil influx compared

with MyD88f/f mice. Myd88f/f, Myd88IEC−/−, and Myd88−/− mice (n = 4) were subjected to

60-minute ischemia and 90-minute reperfusion, and myeloperoxidase expression was

evaluated using IHC, and positive cells were counted. Data represent mean ± SEM; *P <

0.05. Results are representative of 2 independent experiments.
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FIGURE 7.
Expression of the IgA transporter polymeric immunoglobulin receptor is decreased in

Myd88IEC−/− compared with Myd88f/f mice. Myd88f/f and Myd88IEC−/− mice (n = 5) were

euthanized, and polymeric immunoglobulin receptor expression was evaluated using IHC on

healthy small intestinal tissue. Representative images are shown of 2 independent

experiments. Scale bars = 200 μm.
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FIGURE 8.
IgA bound to ischemic tissue was reduced in I/R-exposed Myd88IEC−/− compared with

Myd88f/f mice. Myd88f/f and Myd88IEC−/− mice (n = 5) were subjected to 60-minute

ischemia only, and IgA expression was evaluated using IHC. IgA staining is also shown for

healthy small intestinal tissue of Myd88f/f mice (healthy SI). Black arrows: accumulation of

IgA staining at the tip of the villi (region i.e., being affected first during I/R injury). White

arrows: IgA staining within B cells. White stars: staining of IgA within luminal debris. Scale

bars = 200 μm. Representative images are shown of 2 independent experiments.
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FIGURE 9.
Complement activation is impaired in I/R-exposed Myd88IEC−/− compared with Myd88f/f

mice. Myd88f/f and Myd88IEC−/− mice (n = 5) were subjected to 60-minute ischemia only,

and complement c3d expression was determined using IHC. Complement 3d staining is also

shown for healthy small intestinal tissue of Myd88f/f mice (healthy SI). Black arrows:

accumulation of complement 3d staining at the tip of the villi (region i.e., being affected first

during I/R injury and region with accumulation of IgA). White arrows: complement staining

in submucosal blood vessels. White stars: complement staining only seen in crypts of

Myd88IEC−/− mice when histological damage exceeds stage 2 (absence of villi but visible

crypts). Scale bars = 200 μm. Representative images are shown of 2 independent

experiments.
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