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Abstract

The human connectome has recently become a popular research topic in neuroscience, and many

new algorithms have been applied to analyze brain networks. In particular, network topology

measures from graph theory have been adapted to analyze network efficiency and ‘small-world’

properties. While there has been a surge in the number of papers examining connectivity through

graph theory, questions remain about its test-retest reliability (TRT). In particular, the

reproducibility of structural connectivity measures has not been assessed. We examined the TRT

of global connectivity measures generated from graph theory analyses of 17 young adults who

underwent two high-angular resolution diffusion (HARDI) scans approximately 3 months apart.

Of the measures assessed, modularity had the highest TRT, and it was stable across a range of

sparsities (a thresholding parameter used to define which network edges are retained). These

reliability measures underline the need to develop network descriptors that are robust to

acquisition parameters.

1 Introduction

Graph theory is increasingly used to analyze brain connectivity networks. Graph theory, a

branch of mathematics concerned with the description and analysis of graphs, describes the

brain as a set of nodes (brain regions) and edges (connections). Information on either

structural or functional connectivity may be expressed in connectivity matrices, from which

various network properties may be derived, such as clustering, efficiency, or small-world

organization. Several of these measures have been shown to change during childhood

development [1], and to be heritable [2], associated with specific genetic variants [3, 4] and

be altered in various neuropsychiatric disorders [5]. To date, only one study has examined

the test-retest reliability (TRT) of these measures for structural networks, finding high

reliability [6], but they did not examine different network sparsities. Results in the TRT of

these measures in functional networks have been inconsistent. Low reliability [7],

remarkably high reliability [8], and moderate reliability [9, 10] have all been found. To

define which connections are present in a network, often a sparsity threshold is applied, to
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retain only those connections whose edge strengths exceed a given threshold, or to eliminate

“weaker” connections. Telesford et al. [8], found that the reliability did not depend on the

network sparsity, while Wang et al. [7], and Braun et al. [10], found it depended heavily on

network sparsity and other user-selected network parameters. Zalesky et al. [11] suggested

small-worldness or scale-freeness measures can change drastically depending on the scale of

the parcellation, but few studies have assessed their reproducibility. As so many papers have

been published using network measures, their reproducibility deserves further analysis.

We set out to examine the test-retest reliability of graph theory analyses of brain structural

connectivity by scanning 17 young adults twice, over a 3-month interval, using high-angular

resolution diffusion imaging (HARDI) at 4-Tesla. Other ongoing studies have assessed how

connectivity matrices dependent on the scanner field strength, spatial, angular, and q-space

resolution [12]. Here we assessed the reliability of commonly used network measures over a

wide range of network sparsities, as well as inherently more robust measures integrated over

different sparsity ranges.

2 Methods

2.1 Subjects

Our analysis included young adults aged 20–30 scanned twice with both MRI and DTI at

4T. Our analysis included a subset of a much larger cohort who was asked to return for a

second scan, to assess reproducibility. Of these, some subjects were filtered out due to

artifacts in their raw data or errors in tractography, leaving us with 26 subjects. Of these, 2

were statistical outliers on at least one graph theory metric (>3 SD from group mean), 5 had

a large difference in the number of fibers tracked in scan 1 and scan 2 (difference of more

than 33% in number of fibers in each scan), and 2 had a much larger interval between scan 1

and scan 2. After these subjects were filtered out, we were left with 17 subjects. Subjects

were 12 female, 5 male, 100% Caucasian, mean age: 23.6 years, SD 1.47.

2.2 Scan Acquisition

Whole-brain anatomical and high angular resolution diffusion images (HARDI) were

collected with a 4T Bruker Medspec MRI scanner. T1-weighted anatomical images were

acquired with an inversion recovery rapid gradient echo sequence. Acquisition parameters

were: TI/TR/TE = 700/1500/3.35ms; flip angle = 8 degrees; slice thickness = 0.9mm, with a

256x256 acquisition matrix. Diffusion-weighted images (DWI) were also acquired using

single-shot echo planar imaging with a twice-refocused spin echo sequence to reduce eddy-

current induced distortions. Acquisition parameters were optimized to provide the best

signal-to-noise ratio for estimating diffusion tensors [13]. Imaging parameters were: 23cm

FOV, TR/TE 6090/91.7ms, with a 128x128 acquisition matrix. Each 3D volume consisted

of 55 2-mm thick axial slices with no gap and 1.79x.l.79 mm2 in-plane resolution. 105

images were acquired per subject: 11 with no diffusion sensitization (i.e., T2-weighted b0

images) and 94 diffusion-weighted (DW) images (b = 1159 s/mm2) with gradient directions

evenly distributed on the hemisphere. Scan time for the HARDI scan was 14.2 min. The

average scan interval was 101 days, SD 18 days.
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2.3 Cortical Extraction and HARDI Tractography

Non-brain regions were automatically removed from each T1-weighted MRI scan, and from

a T2-weighted image from the DWI set, using the FSL tool “BET” (FMRIB Software

Library, http://fsl.fmrib.ox.ac.uk/fsl/). A trained neuroanatomical expert manually edited the

T1-weighted scans to refine the brain extraction. All T1-weighted images were linearly

aligned using FSL (with 9 DOF) to a common space [14] with 1mm isotropic voxels and a

220x220x220 voxel matrix. Raw diffusion-weighted images were corrected for eddy current

distortions using the FSL tool “eddy_correct” (http://fsl.fmrib.ox.ac.uk/fsl/). For each

subject, the 11 eddy-corrected images with no diffusion sensitization were averaged, linearly

aligned and resampled to a downsampled version of their corresponding T1 image

(110x110x110, 2x2x2mm). Averaged b0 maps were elastically registered to the structural

scan to compensate for EPI-induced susceptibility artifacts. 35 cortical labels per

hemisphere, as listed in the Desikan-Killiany atlas [15], were automatically extracted from

all aligned T1-weighted structural MRI scans using Free Surfer (http://

surfer.nmr.mgh.harvard.edu/). As a linear registration is performed by the software, the

resulting T1-weighted images and cortical models were aligned to the original T1 input

image space and down-sampled using nearest neighbor interpolation (to avoid intermixing

of labels) to the space of the DWIs. To ensure tracts would intersect labeled cortical

boundaries, labels were dilated with an isotropic box kernel of width 5 voxels.

The transformation matrix from the linear alignment of the mean b0 image to the T1-

weighted volume was applied to each of the 94 gradient directions to properly re-orient the

orientation distribution functions (ODFs). At each HARDI voxel, ODFs were computed

using the normalized and dimensionless ODF estimator, derived for q-ball imaging (QBI) in

[16]. We performed a recently proposed method for HARDI tractography [17] on the

linearly aligned sets of DWI volumes using these ODFs. Tractography was performed using

the Hough transform method as in [18]. Elastic deformations obtained from the EPI

distortion correction, mapping the average bo image to the T1-weighted image, were then

applied to the tracts’ 3D coordinates for accurate alignment of the anatomy. Each subject’s

dataset contained 5000–10,000 useable fibers (3D curves). For each subject, a full 70x70

connectivity matrix was created. Each element described the proportion of the total number

of fibers in the brain that connected a pair of labels; diagonal elements of the matrix describe

the total number of fibers passing through a certain cortical region of interest. As these

values were calculated as a proportion - they were normalized to the total number of fibers

traced for each individual participant, so that results would not be skewed by raw fiber

count.

2.4 Graph Theory Analyses

On the 70x70 matrices generated above, we used the Brain Connectivity Toolbox ([18];

https://sites.google.com/a/brain-connectivity-toolbox.net/bct/Home) to compute five

standard measures of global brain connectivity - characteristic path length (CPL), mean

clustering coefficient (MCC), global efficiency (EGLOB), small-worldness (SW), and

modularity (MOD) [18]. CPL is a measure of the average path length in a network; path

length is the minimum number of edges that must be traversed to get from one node to

another; it does not depend on the physical lengths of the fibers, only their network
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topology. MCC is a measure of how many neighbors of a given node are also connected to

each other, as a proportion of the total number of connections in the network. EGLOB is

inversely related to CPL: networks with a small average CPL are generally more efficient

than those with large average CPL. SW represents the balance between network

differentiation and network integration, calculated as a ratio of local clustering and

characteristic path length of a node relative to the same ratio in a randomized network. We

created 10 simulated random networks. MOD is the degree to which a system can be

subdivided into smaller networks [19]. Figure 1 visualizes these measures in an example

network.

One step in binarized graph theory analyses is selecting a sparsity, which may be considered

a thresholding operation on the edge strengths (here, fiber counts). The sparsity can

alternatively be defined as the fraction of connections retained from the full network, so

setting a sparsity level of 0.2 means that only the top 20% of connections (in this case,

greatest numbers of fibers) are retained for calculations. The networks reconstructed at a

given density will not be identical for any two people, but should be comparable as healthy

people have highly similar white matter pathways, especially for the larger tracts. Selecting

a single sparsity level may arbitrarily affect the network measures, so we typically compute

measures at multiple sparsities, and integrate them across a range to generate more stable

scores. We have previously used the range 0.2–0.3 to calculate and integrate these measures,

as that range is biologically plausible [20] and more stable [4]. To determine whether the

test-retest reliability varied across different sparsities we calculated these measures across

the entire range (0–1 in 0.01 increments) as well as integrated across several smaller ranges

(0.1–0.2, 0.2–0.3, 0.3–0.4, and 0.4–0.5, in 0.01 increments). We calculated these measures

for the whole brain over these different sparsity ranges, and computed the area under the

curve of those 11 data points to derive an integrated score for each measure.

2.5 Test-Retest Reliability Analyses

Test-retest reliability was measured by assessing the ICC (intraclass correlation coefficient)

between graph theory measures generated from scan 1 matrices and scan 2 matrices. ICC is

calculated according to the following formula:

Here MS stands for mean squared deviation from the mean - within an individual or between

individuals, and k stands for the number of scans for each subject (here k=2).

3 Results

3.1 Global Results

Test-retest reliability results for the full range of sparsities are shown for the 5 global

measures in Figure 2. The very sparse measures (0–0.10) have low reliability, perhaps

because different sets of nodes are retained between the first and second scans. Modularity

(MOD) was most reliable network measure, with an r-value (reproducibility) between 0.35–
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0.65 for most of the range. Mean clustering coefficient (MCC) has an r-value mostly

between 0.2–0.6, besides a sharp dip between sparsities 0.30–0.33. Small-worldness (SW)

has an r-value that greatly fluctuates between 0.1–0.7, with many dips and peaks.

Characteristic path length (CPL) and global efficiency (EGLOB) both are rather unreliable

until around a sparsity of 0.25, at which point they both have r-values mostly between 0.3–

0.6; the data depend heavily on the sparsity: note the sharp dip in reliability between

sparsities 0.3–0.31.

Next we assessed how reliable the global measures were when scores were integrated across

a range of sparsities, to improve stability. The integral of the measures over the range 0.2–

0.3 has been shown to be stable [4] and biologically plausible [20], yet we checked the test-

retest reliability of scores integrated over 4 different ranges: 0.1–0.2, 0.2–0.3, 0.3–0.4, and

0.4–0.5. Values above 0.5 were not used because it is not considered biologically plausible

[20]. Graph theory scores were integrated across these ranges, not the ICC r-values. Results

for these test-retest reliability analyses are shown in Figure 3. For the 70x70 matrices, 57%

of connections had a reliability of at least 0.30. The majority of the most reliable

connections (≥0.70) were connections of the frontal cortex.

4 Discussion

In this paper we examined the test-retest reliability of graph theory measures of network

connectivity applied to structural networks derived from HARDI scans. Reliability varied

both across measures and across sparsities. Modularity was most reliable, and most stable

with respect to sparsity threshold. This makes sense given that modularity has to do with

how well the network can be broken into sub-networks – a measure of broad network

topology, it may depend less on individual connections.

Characteristic path length and global efficiency are almost inverse measures of each other,

except that global efficiency takes into account zeros in the connectivity matrix while

characteristic path length does not. This could be responsible for the difference in reliability

between characteristic path length and global efficiency. At low sparsities with more ‘0’

entries, networks get fractured. Most measures are vulnerable to this loss of nodes, but

especially characteristic path length and global efficiency, as the mean shortest path length

changes drastically if a significant portion of nodes is deleted. If networks get fractured

differently between scan 1 and scan 2, this could lead to the very low reliability of

characteristic path length and global efficiency at low sparsities. Characteristic path length

and global efficiency are determined by calculating the path length between each node in a

network and every other node in the network, for the shortest paths that exist, and averaging

over all of those path lengths. Mean clustering coefficient, however, is determined by

calculating for all the nodes connected to a given node, how many of its neighbors are also

connected to each other, averaged over the whole network. Characteristic path length traces

shortest paths, so if one path changes, many paths may take a different course, which could

drastically alter mean shortest path length. For mean clustering coefficient, however, one

path loss may reduce a node’s clustering coefficient from 5/6 to 2/3 (for example); when

averaged over the whole network this may not be a large net change.
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Another factor that could be responsible for the difference in reliability between

characteristic path length/global efficiency and mean clustering coefficient may be which

paths are trimmed at low sparsities. Long-range paths heavily influence characteristic path

length/global efficiency, but the mean clustering coefficient depends more on short paths. If

long-range paths are generally trimmed before short-range paths, then the reliability of

characteristic path length and global efficiency will drop sooner than that of mean clustering

coefficient, as sparsity decreases, and their reliability will be impaired. In support of this, the

reliability for characteristic path length, global efficiency, and mean clustering coefficient,

are all much closer to each other at the highest sparsity, when all connections are retained.

There was a substantial dip in the reliability of a number of measures when integrated over

the range 0.3–0.4. This was due to an increase in both the within- and between-subject

variability in these measures. The average percent connectedness of these matrices was

26.5%, with all subjects fully connected at a sparsity of 0.30. The range of sparsities where

all subjects are beginning to become fully connected may be associated with some instability

in the measures, especially if many more unreliable (weak) connections are added.

5 Conclusion

Here we examined the test-retest reliability for a number of graph theory measures

commonly used to assess brain structural connectivity. This depends to some extent on the

tractography method, as well as the angular and spatial data resolution (we consider these

topics elsewhere). Even so, we minimized several sources of error, using a 4-Tesla high

angular resolution (94-direction) protocol, and a Hough method that uses ODFs to compute

tracts. We found that modularity had moderately high reliability (mean r=0.58 for integrated

analyses), as expected for a measure of general network topology. Mean clustering

coefficient had higher reliability than characteristic path length or global efficiency for the

lower sparsities, perhaps because networks fracture at lower sparsities. Integrating over a

range of sparsities improved the reliability of MCC and SW, while decreasing that of CPL

and EGLOB at some sparsities. Selecting an appropriate sparsity range to integrate over, and

defining network measures robust to sparsity, deserves further analysis.
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Fig. 1.
Measures of global connectivity. Examples show network motifs that serve the basis of

each measure. Adapted from the diagram in [18].
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Fig. 2.
Chart of ICC r-values for 5 commonly used network topology measures across the full
range of sparsities. Clearly, the measures, and their reliability, depend on the sparsity

threshold: this determines the proportion of connections retained, when sorted by edge

strength. Retaining almost all connections (sparsity near 1) may include some that are

unreliable, but using a very high threshold (sparsity near zero) may greatly affect which

nodes are included in the network at all, promoting instability.
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Fig. 3.
ICC r-values show the reproducibility of 5 commonly used network measures, when they

are integrated, to improve robustness, across 4 different sparsity ranges. MOD is still the

most reliable measure. Also MOD is more stable than the other measures with respect to the

sparsity, at least over the range examined here.
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