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Abstract

The processes which shaped modern European mitochondrial DNA (mtDNA) variation remain

unclear. The initial peopling by Palaeolithic hunter-gatherers ~42kyrs ago and the immigration of

Neolithic farmers into Europe ~8kyrs ago appear to have played important roles, but do not

explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from

prehistoric cultures in Central Europe to perform a chronological study, spanning the Early

Neolithic to the Early Bronze Age (5,500–1,550 cal BC). We use this transect through time to

identify four marked shifts in genetic composition during the Neolithic period, revealing a key role

for Late Neolithic cultures in shaping modern Central European genetic diversity.
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Main Text: The Central European Neolithic and the subsequent Early Bronze Age (EBA),

reflect periods of momentous cultural changes (1–4). However, the extent to which such

prehistoric cultural changes were accompanied by differences in the underlying genetics of

local populations (1–5) and how such population shifts contributed to the present-day

genetic diversity of Central Europe (6–9) are yet to be understood. Ancient DNA studies

have revealed genetic discontinuities between indigenous hunter-gatherers and early

farmers, and between the latter and present-day Europeans (10–11). While this confirms the

importance of genetic shifts after the arrival of farming, the number and sequence of events

and their potential origins and contributions to the genetic composition of modern-day

Central Europe remain unclear (5–6, 12).

We collected samples from 25 sites of the Mittelelbe-Saale region in Saxony-Anhalt,

Germany, attributed to nine archaeological cultures of the Early, Middle, and Late Neolithic

period and the EBA, spanning ~4,000 years (Figs. 1A, S1-S2, Table S1) (13). Mittelelbe-

Saale played a key role in human prehistory in Central Europe (4, 13), and the continuous

settlement activity from the Palaeolithic until today provides a detailed record of Neolithic

cultures, including those with expansive European importance such as the Linear Pottery

LBK), Funnel Beaker FBC), Corded Ware CWC), and Bell-Beaker cultures BBC) (Fig. S2)

(1–4, 13). We genotyped the hyper-variable segment I and II of the control region and 22

single-nucleotide coding region polymorphisms from 364 individuals (Tables S2-S3) (13),

allowing unambiguous haplogroup assignment, in order to characterise changes in the

mtDNA variability of the Mittelelbe-Saale cultures. To examine genetic affinities of the

investigated cultures to prehistoric and modern-day populations, we used 198 mtDNA data

from published Mesolithic, Neolithic and Bronze Age specimens across western Eurasia

(Fig. 1B, Table S4) (13) and a database of 67,996 sequences from present-day Eurasian

populations (13). We animated our results to illustrate the observed changes in space and

time (Movie S1).

In order to detect patterns of continuity or discontinuity among and between the

archaeological cultures we conducted cluster analysis (Fig. 2A, Table S5) based on

haplogroup frequencies and used sequence data to perform genetic distance analysis (Fst)

(Fig. 2B-C, Table S6), and analyses of molecular variance (AMOVA) (Table S7) (13). We

performed a Mantel-test to examine whether the genetic distances correlate with the

temporal distance between the ancient cultures, as expected from genetic drift affecting

small populations. However, the Mantel-test shows no strong correlation with time

(Pearson’s coefficient r=0.3923, p=0.0591), suggesting more sudden and marked

fluctuations in genetic composition. We also developed a test for population continuity

(TPC) (Figs. 2D, Table S8) to further evaluate whether changes in haplogroup frequencies

and composition could be explained by genetic drift, or are likely due to other factors such

as introgression via migration (introducing new haplogroups) or replacement (13). Our

detailed transect through time reveals a complex pattern of both genetic continuity and

discontinuity (Figs 2A-D, Tables S5-S8), based on the assumption that haplogroups are

monophyletic and neutral, i.e. not evolving into new haplogroups via mutations from an

existing haplogroup or due to selection. Indigenous Central European hunter-gatherers

(HGC) (10, 14) are clearly set apart from the Neolithic Mittelelbe-Saale cultures on the basis
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of both cluster analysis (Fig. 2A), and significantly different Fst-values (Fst=0.0845–

0.21358, p=0.00000–0.03292) (Fig. 2B), due to mutually exclusive haplogroup

compositions (Fig. S3, Movie S1). The results of the TPC show that the transition from

hunter-gatherers to the LBK farmers cannot be explained by genetic drift alone

(p=0.000001) (Fig. 2D), consistent with previous findings (10–11).

The Mittelelbe-Saale cultures themselves can be further differentiated into distinct Early/

Middle Neolithic and Late Neolithic/EBA clusters (Fig. 2A), as shown by significantly

higher Fst-values (Fst=0.02776–0.05605, p=0.00000–0.016616) (Fig. 2B-C). The two

groupings are also strongly supported in AMOVA tests, where 289 different combinations

of the ancient cultures were examined. We found the highest among group variance, and low

variation within the groups, when the Mittelelbe-Saale cultures were separated into two

groups of Early/Middle Neolithic and Late Neolithic/EBA cultures (among groups:

Fst=0.03061, p=0.00683; within groups: Fst=0.00468, p=0.18891) (Table S7). Similarly,

TPC also indicates that changes in the mtDNA profiles between most of the Early/Middle

Neolithic cultures and the Late Neolithic/EBA (p=0.000007–0.049428) as well as between

the BBC and EBA (p=0.000803) (Fig. 2D) cannot be explained by drift alone. These results

suggest multiple population genetic shifts: the first during the introduction of farming,

followed by further changes during the later Neolithic.

To further explore these patterns we used principal component analysis (PCA) and cluster

analysis (Fig. 1C-D, Table S9) to describe the characteristic haplogroups of each culture and

to identify genetic affinities to other prehistoric populations (13). We then examined

affinities to present-day Eurasian populations to inform on potential geographic origins of

the different cultures. We performed multidimensional scaling (MDS) (Fig. S4A-I, Table

S10) based on continuous sequence data, which is sensitive to shared haplotypes between

populations (13). In parallel, we also used PCA (S5A-I, Table S11), Procrustes and cluster

analyses (Figs. S6A-I, Table 12), and genetic distance mapping (Figs. 7A-I, Table 13) based

on discrete haplogroup frequencies (13).

Detailed investigation of the mtDNA composition of each culture reveals a series of

haplogroup frequency changes due to different genetic profiles for hunter-gatherers, the

Early/Middle Neolithic group, and individual cultures of the later Neolithic/EBA including

the Bernburg culture (BEC) and the temporally overlapping BBC, CWC, and EBA (Figs. 3,

S3, Movie S1). The latter suggests that this period was heterogeneous, with genetically

differentiated cultures resulting in a separation in the PCA (Fig. 1C). These shifts are also

visible in the genetic distance maps and Procrustes-projected PCAs, where the Near Eastern

affinity of the LBK and its subsequent regional derivatives switches to a clear European

affinity in later Neolithic/EBA cultures, with distinct geographic orientations (see below,

Movie S1, Figs. S6A-I-7A-I).

We synthesised the different lines of evidence from our comparative genetic analyses to

reconstruct a series of four prominent population dynamic events (termed A-D, Fig 3, Movie

S1), which we reconcile with known European cultural expansions (1–5). Overall, these

analyses reveal a pattern of relative genetic continuity for the first 2,500 years after the
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introduction of farming in Central Europe, followed by a series of discontinuities in the later

Neolithic.

Event A marks the transition from foraging to farming introduced by the LBK, which

reached Central Europe ~5,500 cal BC (Movie S1) (1–3). MtDNA data from Central

European hunter-gatherers comprises exclusively U lineages (U, U4, U5, and U8) (10, 14),

whereas the LBK is characterised by a distinct haplogroup profile including N1a, T2, K, J,

HV, V, W, and X (Figs. 1C) (11). These haplogroups can be denoted as a mitochondrial

‘Neolithic package’, and comprise around 79.4% of the diversity in the LBK, while hunter-

gatherer lineages are rare (2.9%) (Fig. 3). This marked shift suggests a rapid transition

process, with the comparative analyses indicating a genetic influx from the Near East,

Anatolia and the Caucasus (Movie S1, Figs. S4A-S7A) (1–3, 11). The subsequent Early/

Middle Neolithic cultures closely resemble the mtDNA haplogroup composition of the LBK

(Figs. 1C-D, 2A-D, Table S7) with similar affinities to present-day Near East populations

(Figs. S4B-E-S7B-E), suggesting a period of genetic continuity over 2,500 years.

Event B describes a bidirectional interaction along a north-south axis during the Early and

Middle Neolithic, which saw the introduction of the ‘Neolithic package’ to southern

Scandinavia by Central European cultures (B1 ~4,100 cal BC), followed by a reflux of

hunter-gatherer lineages to Central Europe (B2 ~3,100 cal BC) (Movie S1). The Neolithic

transition of southern Scandinavia was closely linked to the FBC, which replaced local

foragers that had retained the Mesolithic lifestyle for ~1,500 years after farming arrived in

Central Europe (1–3). FBC individuals from Scandinavia (10, 15–16) have yielded high

frequencies of hunter-gatherer haplogroups (30%) alongside a large amount of ‘Neolithic

package’ haplogroups (60%) (Table S9), leading to an intermediate position between hunter-

gatherers and the Early/Middle Neolithic Mittelelbe-Saale cultures in the PCA (Fig. 1C).

This suggests that pioneer groups from Central Europe had interacted with local hunter-

gatherers who adopted farming (Movie S1) (1–4), a view also supported by ancient genomic

data (16). Subsequently, around a millennium later in Mittelelbe-Saale, a genetic shift

associated with the BEC (Fig. 1A-D, Table S7), a late representative of the FBC in Central

Europe (4), saw an increase in hunter-gatherer lineages (29.4%) and decrease in farmer

lineages (47.1%) (Fig. 3) resulting in a haplogroup composition similar to the Scandinavian

FBC (Fig. 1C) (10, 15). While previous populations show affinities to the Near East, the

BEC marks a clear shift towards those in present-day North Europe (Movie S1, Figs. S4F-

S7F).

In the Late Neolithic, we identify two independent events (C and D), each associated with

major contemporary Pan-European phenomena. Event C (~2,800 cal BC) is marked by the

emergence of the CWC (Movie S1), whose subgroups were widespread across Central and

Eastern Europe (Fig. S2) (2–4). The CWC is characterised by haplogroups I and U2 (4.6%),

which are new maternal elements in Mittelelbe-Saale (Fig. 1C, S3), and appear alongside

other Late Neolithic/EBA lineages such as T1 (6.8%) and hunter-gatherer haplogroups U4

and U5 (20.5%), while Early/Middle Neolithic haplogroups further decrease (45.5%) (Fig.

3). The binomial probability that we missed I and U2 in 211 individuals of preceding

cultures is very low (p=0.00). Haplogroup U2 has been reported exclusively from

Paleolithic, Mesolithic, and Bronze Age samples from Russia (17–19) and PCA and Cluster
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analyses reveal similarities of the CWC to two ancient Kurgan groups of South Siberia (19)

and Kazakhstan (20) (Figs. 1C-D), in which haplogroups I, U2, and T1 are frequent (18.2–

37.5%) (Table S9). Intriguingly, the Y chromosomal haplogroup R1a1a, frequent in ancient

Siberian populations (19), has previously been detected in our CWC dataset (21), suggesting

additional paternal genetic links to Kurgan cultures. Together with the affinities of the CWC

to present-day populations of Eastern Europe, the Baltics, and the Caucasus (Figs. S4G-

S7G), this suggests a genetic influx into Central Europe from the East, likely influenced by

Kurgan cultures (Movie S1) (2–3).

Event D (~2,500 cal BC) is defined by the BBC (Movie S1), the western counterpart of the

CWC (Fig. S2) (2–4). BBC groups appeared ~300 years later in Mittelelbe-Saale and

coexisted alongside the CWC for more than 300 years (4). The BBC is distinguished from

the CWC by the absence of haplogroup I and U2, and an overwhelmingly dominant genetic

signature of haplogroup H (48.3%) (Fig. S3), leading to a separation of the BBC from all

other Mittelelbe-Saale cultures in PCA and cluster analyses (Figs. 1C-D). H remains the

most frequent haplogroup in West European populations today (~40%) (8–9) and was absent

in Central European hunter-gatherers (10, 14), but prevalent in ancient populations of the

Iberian Peninsula since Mesolithic times (20.7–70.7%) (Table S9) (22–24). As a result, the

BBC clusters with these Iberian populations (Figs. 1C-D), whereas the results from

Procrustes and MDS were less informative. However, genetic links between the BBC and

modern Iberian populations were supported by genetic distance maps accounting for H sub-

haplogroups (Fig. S7H) and ancient mitochondrial H genomes (12). These suggest the BBC

was associated with a genetic influx from Southwest Europe (Movie S1), which is consistent

with the oldest archaeological signs of this culture being found in Portugal ~2,800 cal BC

(2–3).

The onset of the EBA in Mittelelbe-Saale (~2,200 cal BC) was characterised by socially and

economically stratified societies associated with the emerging metallurgies (2–4). All the

analyses show close genetic links between the EBA and the CWC (Figs 1C-D, 2A), on the

basis of elevated frequencies of Late Neolithic/EBA haplogroups such as I, U2, and T1

(22.3%) (Figs. 1C, 3, S3), and both appear to have similar affinities to modern-day East

European populations (Movie S1, Figs. S5I-S8I). TPC (Fig. 2D) indicate a minimal

contribution of the BBC to the EBA in Central Europe. Thus, the Late Neolithic/EBA in

Mittelelbe-Saale appears to have witnessed rapid and dynamic changes in mtDNA

composition at the crossroads of distinct Eastern and Western European influences (Movie

S1).

To investigate the potential impact of the geographically widespread archaeological cultures

and events examined here (Fig. S2) on the demography and genetic variation of present-day

Central Europeans we compared the ancient data with a Central European metapopulation

(CEM) consisting of 500 randomly selected individuals (13). AMOVA supports a model of

continuity from the Late Neolithic/EBA to the CEM with the best inter/intra group variance

observed when all Late Neolithic/EBA samples are pooled with the CEM into one group and

the Early/Middle Neolithic specimens into another (among groups=2.57%, Fst=0.02572,

p=0.00891; within group=0.50%, Fst=0.00511, p=0.08089) (Table S14). TPC analyses also

support continuity since the Late Neolithic/EBA (p=0.134672–0.418949) (Fig. 2D).
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Similarly, Bayesian coalescent-based simulations (13) support a demographic model

involving exponential population growth since the Neolithic with a contribution of at least

50% migrants to Mittelelbe-Saale during the Early Neolithic. This is followed by a constant

ratio of gene flow/admixture between Early/Middle and incoming Late Neolithic/EBA

components, and after this fusion, a genetic continuity until the present-day (AIC 99.9%)

(Fig. S8, Table S15). The fact that continuity since the Late Neolithic/EBA could not be

rejected confirms that the succeeding events B-D, despite their differing geographic

affinities, had formed today’s mtDNA diversity. Notably, the CEM clusters with the Late

Neolithic cultures and individuals of the BBC in particular (Fig 2A), suggesting that the

Western European mtDNA variability had a stronger influence than the contemporaneous

eastern CWC/EBA complex, implying yet another shift after the EBA.

We evaluated the amount of lineages in the CEM that can be attributed to particular time

periods by characteristic haplogroups (13) and found that a total of 53% can currently be

assigned to the Palaeolithic/Mesolithic (16%), Early/Middle Neolithic (31.2%) and Late

Neolithic periods (5.8%) (Fig. 3). The remaining proportion of lineages (47% - mainly

haplogroup H) requires further resolution (12). The presence of all major mtDNA

haplogroups by the end of the Neolithic makes it increasingly difficult to discern recent

demographic changes, and would require larger population events to have an observable

effect and/or full mitochondrial genome sequencing to detect more subtle changes.

The detailed genetic analyses of this transect through Neolithic Central Europe demonstrate

the key role of Late Neolithic cultures at the dawn of metallurgy and stratified societies in

the formation of modern Central European mtDNA diversity. The four successive genetic

shifts highlight the biological cohesiveness of archaeological cultures such as the LBK,

FBC, CWC, and BBC cultures, and the importance and dynamics of genetic input from

different geographic regions.
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Fig. 1. Location of Mittelelbe-Saale and prehistoric comparative data, as well as PCA and Ward
clustering
Map A show the location of study sites in the Mittelelbe-Saale region in Saxony-Anhalt,

Germany of the Early Neolithic (LBK=Linear Pottery culture, RSC=Rössen culture,

SCG=Schöningen group), Middle Neolithic (BAC=Baalberge culture, SMC=Salzmünde

culture, BEC=Bernburg culture), Late Neolithic (CWC=Corded Ware culture, BBC=Bell

Beaker culture), and Early Bronze Age (UC=Unetice culture) cultures. Map B display the

location of published data from eleven Mesolithic (HGC=hunter-gatherer Central Europe,

HGS=hunter-gatherer South Europe, HGE=hunter-gatherer East Europe, PWC=Pitted Ware

culture), Neolithic (CAR=(Epi)Cardial, NPO=Neolithic Portugal, NBQ=Neolithic Basque

Country & Navarre, FBC=Funnel Beaker culture, TRE=Treilles culture), and Bronze Age

(BAS=Bronze Age Siberia, BAK=Bronze Age Kazakhstan (not shown)) populations.

Symbols indicate populations from Central Europe (squares and diamonds), southern

Scandinavia (circles), the Iberian Peninsula (triangles), and East Europe/Asia (stars). Colour

shading of data points denote to hunter-gatherer (grey), Early Neolithic (brown), Middle

Neolithic (orange), and Late Neolithic/EBA (yellow) samples (for further information see

13, Figs. S1-S2, and Table S1-S4). The haplogroup frequencies of these populations (Table

S9) were used to perform PCA (C) and Ward clustering (D). The first two principal

components of the PCA display 32.8 % of the total genetic variation. We superimposed each
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haplogroup as component loading vectors (grey), proportionally to their contribution. P-

values of the clusters are given in percent of reproduced clusters based on 10.000 bootstrap

replicates.
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Fig. 2. Ward clustering, genetic distances and test of population continuity
Haplogroup frequencies of Central European hunter-gatherers (HGC), the nine Mittelelbe-

Saale cultures (see Fig. 1 for abbreviations), and a modern Central European metapopulation

(CEM, n=500) (Table S5) were used for hierarchical Ward clustering (A). Cluster

significance is given as percent of reproduced clusters on 10,000 bootstrap replicates. We

computed genetic distances (Fst) (Table S6) based on HVS-I sequences (np 16059–16400)

between all cultures (B) and pools of Early/Middle and Late Neolithic/EBA cultures (C).

The shading indicates the degree of genetic distance between the cultures ranging from
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white (small distances/high similarities) to green (large distance/dissimilarities). Significant

differences are indicated by + (after 10,000 permutations and post-hoc Benjamini-Hochberg

correction) (Table S6). The upper diagonal (D) summarises the results of the test of

population continuity to evaluate possible effects of genetic drift. The p-values (Table S8)

describe the probability that changes in haplogroup frequencies between two populations

cannot be explained by genetic drift alone (white areas=non significant, green

areas=significant (13).
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Fig. 3. Development of mtDNA components from the Late Mesolithic to present-day
Population data from Central European hunter-gatherers (HGC), the nine Mittelelbe-Saale

cultures (see Fig. 1. for abbreviations), and a modern Central European metapopulation

(CEM, n=500) were placed in chronological order (x-axis) and the amount of lineages

ascribed to particular time periods were evaluated in each population. The characterising

haplogroups of the hunter-gather (U, U4, U5, U8, grey), Early/Middle Neolithic (N1a, T2,

K, J, HV, V, W, X, brown), and Late Neolithic/Early Bronze Age (LN/EBA, I, U2, T1, R,

yellow) period were summarised into three respective components (y-axis) (Table S5)

accordingly to the differentiation in the PCA (Fig. 1C). Haplogroups that could not be

ascertained unambiguously to one of the three components were reported as ‘other’ (H, U3,

other African and Asian lineages of the CEM) (13). Error bars of component frequencies

indicate the 95% confidence interval of 10,000 bootstrap replicates (Table S5). Horizontal

shading denotes the population dynamic events (A, B1, B2, C and D) inferred from the

synthesis of all population genetic analyses (see main text).
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