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Numerous transcription factors (TFs) encode information about upstream signals in the dynamics of
their activation, but how downstream genes decode these dynamics remains poorly understood.
Using microfluidics to control the nucleocytoplasmic translocation dynamics of the budding yeast
TF Msn2, we elucidate the principles that govern how different promoters convert dynamical Msn2
input into gene expression output in single cells. Combining modeling and experiments, we classify
promoters according to their signal-processing behavior and reveal that multiple, distinct gene
expression programs can be encoded in the dynamics of Msn2. We show that both oscillatory TF
dynamics and slow promoter kinetics lead to higher noise in gene expression. Furthermore, we
show that the promoter activation timescale is related to nucleosome remodeling. Our findings
imply a fundamental trade-off: although the cell can exploit different promoter classes to
differentially control gene expression using TF dynamics, gene expression noise fundamentally
limits how much information can be encoded in the dynamics of a single TF and reliably decoded by
promoters.
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Introduction

To survive in a changing environment, cells must be able to
sense the environment and transmit this information through
signal transduction cascades to transcription factors (TFs),
which then initiate a suitable gene expression response.
Whereas downstream responses to signaling have typically
been understood as consequences of the strength or amplitude
of the signal, emerging evidence suggests that additional
information can be encoded in the temporal dynamics of these
signals (Behar and Hoffmann, 2010; Purvis and Lahav, 2013).

Several mammalian TFs exhibit complex and signal-
dependent dynamics. For example, NF-kB, involved in
controlling inflammation, undergoes nucleocytoplasmic oscil-
lations in response to tumor necrosis factor-a (TNFa), but
sustained nuclear localization in response to bacterial lipo-
polysaccharides (LPSs) (Nelson et al, 2004; Covert et al, 2005;
Werner et al, 2005). Thus, NF-kB translocation dynamics
encode the signal identity (TNFa or LPS). Similarly, the tumor
suppressor TF p53 undergoes a dose-dependent number of
nuclear pulses in response to DNA breaks, but a single
sustained pulse with dose-dependent amplitude and duration
in response to UV irradiation (Lahav et al, 2004; Batchelor

et al, 2011). Thus, p53 dynamics encode both the dose
(severity) and the identity of the stress. Similarly, two TF
isoforms of NFATalso exhibit distinct dynamics in response to
different stimuli (Yissachar et al, 2013).

The activities of budding yeast TFs also appear to be
dynamically regulated. In response to calcium, the TF Crz1
exhibits short bursts of nuclear localization, where the
duration is fixed but the frequency is dose-dependent (Cai
et al, 2008). Msn2, a zinc-finger TF and regulator of the yeast
multi-stress response, also exhibits oscillatory translocation
dynamics (Jacquet et al, 2003; Petrenko et al, 2013). The
identity and dose (severity) of three distinct stresses are
encoded in the translocation dynamics of Msn2: in response to
glucose starvation, Msn2 exhibits short bursts of nuclear
localization with dose-dependent frequency; in response to
osmotic stress, Msn2 translocates to the nucleus with a single
initial peak with dose-dependent duration; and in response to
oxidative stress, Msn2 shows sustained nuclear localization
with dose-dependent amplitude (Hao and O’Shea, 2012).

Although it is clear that diverse signals are encoded in the
dynamics of NF-kB, p53, NFAT, Crz1, Msn2, and many other
TFs (Purvis and Lahav, 2013), we understand little about how
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these signals are decoded by gene promoters and converted
into gene expression programs. For example, do genes differ in
their sensitivity to TF dynamics? And if so, what are the
quantitative principles that govern this input–output relation-
ship? Studies suggest that TF dynamics can influence the gene
expression response. For example, p53 dynamics may affect
cell fate through differential gene regulation: p53 pulses
induce only DNA repair genes, whereas a single, sustained
p53 pulse leads to higher expression of senescence genes
(Purvis et al, 2012). Similarly, whereas some NF-kB target
genes filter out low TNFa concentrations, others activate fully
even in response to low TNFa concentrations (Ashall et al,
2009; Giorgetti et al, 2010; Tay et al, 2010). In the case of Crz1,
as the frequency of nuclear localization bursts increases, the
ratio of the majority of the induced genes is held constant as
the gene expression increases (Cai et al, 2008).

In most previous studies, distinct stimuli (e.g., TNFaor LPS)
were required to induce distinct TF dynamics (e.g., oscillations
or a sustained pulse); since these stimuli can activate a large
number of other factors or responses, it is difficult to establish
that differential gene regulation is caused by TF dynamics
instead of just being correlated with TF dynamics. To
overcome this limitation, we previously developed a chemical
genetic system that permits direct control of Msn2 transloca-
tion dynamics. Using this experimental set-up and modeling
studies, we investigated how Msn2 dynamics affects expres-
sion of a single synthetic reporter gene and predicted that
promoter activation kinetics influence the response to
dynamic TF inputs (Hao and O’Shea, 2012). However, the
extent to which different promoters can differentially decode
Msn2 dynamics is not clear.

Moreover, previous studies used population-averaged tech-
niques (e.g., qPCR or microarrays) that cannot provide
information about the effect of TF dynamics on gene
regulation in individual cells. This is an important limitation
because gene expression is a stochastic process, such that
surprisingly large differences can exist between otherwise
genetically identical cells (Elowitz et al, 2002; Raser and
O’Shea, 2004; Newman et al, 2006; Raj et al, 2006; Raj and van
Oudenaarden, 2008; Lionnet and Singer, 2012). Although cells
can exploit noise in gene expression through bet-hedging such
as in bacterial persistence (Balaban et al, 2004), noise is by and
large detrimental to the cell: given a particular signal, a specific
gene expression response is generally optimal. Thus, even if
information about signal dose and identity can reliably be
encoded in TF dynamics, the information transfer will be
fundamentally limited by the fidelity with which TF dynamics
is subsequently decoded by promoters (Brennan et al, 2012).
Hence, to understand how much of the information encoded in
TF dynamics is lost due to gene expression noise, a detailed
single-cell study is required.

To explore and understand the relationship between TF
dynamics, gene expression and noise in gene expression
output, we develop a method integrating high-throughput
microfluidics and quantitative time-lapse microscopy to
artificially control the translocation dynamics of Msn2 and
measure gene expression of several Msn2 target genes at the
single-cell level. Combining modeling and experiments, we
predict and verify that by controlling Msn2 dynamics it is
possible to differentially express genes. We show that, in

theory, four different promoter classes are possible such that
four gene expression programs can be encoded in the
dynamics of a single TF. We find that, in general, oscillatory
TF input leads to higher noise than single pulse input and also
that some promoter classes exhibit dramatically higher levels
of noise in gene expression than others as a result of a slow
promoter transition step, which we show is related to slow
promoter nucleosome remodeling. Thus, there is a trade-off
between achieving low noise and differential gene expression.
Taken together, we provide a systematic dissection of the
extent to which TF dynamics controls gene expression and
noise.

Results

Identification of specific target genes of Msn2

We employed a chemical genetic strategy to control the nuclear
localization and activity of Msn2 (Bishop et al, 2000; Hao and
O’Shea, 2012). Msn2 localization is regulated by protein kinase
A (PKA)—when PKA is active, Msn2 is phosphorylated and
cytoplasmic; when PKA is inhibited, Msn2 is unphosphory-
lated and localized to the nucleus (Gorner et al, 1998). We
introduced analog-sensitive mutations (PKAas) into all three
catalytic isoforms of PKA (Tpk1, Tpk2, and Tpk3), which
enabled us to selectively and reversibly inhibit PKA activity,
and therefore control Msn2 localization, with the small
molecule 1-NM-PP1 (Zaman et al, 2009; Hao and O’Shea,
2012). To quantify Msn2 localization, we introduced into the
PKAas strain an Msn2-mCherry fusion protein and a nuclear
marker (Nhp6a-iRFP; Supplementary Figure S1A). To identify
Msn2-specific target genes, we used microarrays to compare
the gene expression response to 1-NM-PP1 in strains with and
without Msn2-mCherry and identified 23 genes that showed at
least five-fold upregulation in the presence of Msn2-mCherry,
but no expression change in an msn2D strain (Supplementary
Figure S1C). To measure both gene expression and intrinsic
and extrinsic noise components, we chose seven of the most
strongly induced of these genes and implemented the dual-
reporter strategy (Elowitz et al, 2002), replacing the native
ORF with fast-maturing CFP and YFP reporters on homologous
chromosomes in diploid yeast cells. Finally, although PKAas

inhibition might have indirect global effects on gene expres-
sion, Msn2 directly controls the transcriptional response of
these seven genes: they are not induced in the absence of Msn2
and previous genome-wide ChIP experiments have shown that
Msn2 directly binds their promoters (Huebert et al, 2012).

Systematic dissection of how different promoters
decode TF dynamics

To systematically investigate how induction of these seven
Msn2 target genes depends on Msn2 nuclear translocation
dynamics, we developed a high-throughput microfluidic
device (Figure 1A). We used this device to rapidly switch
between medium with and without 1-NM-PP1 and artificially
modulate Msn2 nuclear localization, enabling us to control
and measure Msn2 input dynamics and simultaneously
measure gene expression output dynamics for 4100 000
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single cells with high temporal resolution (example experi-
ment: Figure 1B and Supplementary Movie 1).

For each of the 7 promoters, we performed 30 experiments in
which we systematically modulated the amplitude, duration,
pulse number, and pulse interval of Msn2 nuclear localization
(Supplementary Figure S1D) to mimic the naturally observed
Msn2 translocation dynamics in response to stress (Hao and
O’Shea, 2012). We observed significant differences between
the promoters (Figure 1C): SIP18, TKL2, and ALD3 filtered out
low amplitude input (25 and 50% amplitude), short duration
input and oscillatory input, and only induced in response to
sustained high-amplitude input; in contrast, HXK1, DCS2, and
DDR2 responded strongly to short oscillatory input and short

duration input, while showing saturation at high amplitude. In
between these extremes, RTN2 filtered out low amplitude
input like SIP18, yet showed significant induction in response
to short duration and oscillatory input like DDR2 (Figure 1C).
Thus, natural promoters decode the same TF input differently.

Using a mathematical model to cluster promoters
into classes

To provide a quantitative framework for understanding the
input–output relationship between Msn2 dynamics and gene
expression, we constructed a mathematical model for
TF-activated gene expression using ordinary differential
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Figure 1 Experimental set-up and systematic dissection of how different promoters decode TF dynamics. (A) Microfluidic set-up. Medium with or without the PKAas

inhibitor 1-NM-PP1 is delivered to five computer-controlled 3-way electrovalves. These control when and for how long each microfluidic channel receives 1-NM-PP1.
Simultaneously, a 63x microscope objective moves between each microfluidic channel and records Msn2-mCherry translocation dynamics and gene expression in single
cells. (B) An example of an experiment (DDR2). Cells were treated with eight 5 min pulses of 1-NM-PP1 with 5 min intervals (red line: input Msn2-mCherry) and Msn2-
mCherry translocation dynamics were monitored in single diploid cells (black dots: raw data). Gene expression was monitored with fast maturing dual CFP (SCFP3A)
and YFP (mCitrineV163A) reporters. (C) Systematic dissection of how different promoters decode TF dynamics. Each row corresponds to a specific Msn2-mCherry input
(left, in red) and the corresponding gene expression response for each of the seven promoters is shown on the corresponding rows on the right. The gene expression
responses for each promoter are internally normalized to their maximal expression level. Each row is the per-cell average of B200–600 cells from at least three
biological replicates. The promoter classification is derived from their clustering (Figure 2B). The full data sets are given in Supplementary Figure S1D. Source data for
this figure are available on the online Supplementary information page.
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equations (Figure 2A). Rather than pursuing an all-encom-
passing mechanistic model that would differ between pro-
moters, we selected from several candidates the simplest
model that could accurately describe all of the promoters
despite their very different behavior (see Supplementary
information). Models with only two promoter states could
not adequately account for the long activation delay that we
observe for SIP18, ALD3, and TKL2. Thus, our final model
contains three promoter states. Although these are

phenomenological variables rather than biochemically well-
defined promoter states, we interpret these as unbound,
bound, and active: initially, the promoter is unbound and the
rate with which Msn2 binds the promoter is assumed to be
proportional to the nuclear concentration of Msn2. Once
bound, recruitment of factors to the promoter (Pbound-Pactive)
is assumed to be proportional to the equilibrium fraction of
Msn2 bound to the promoter and modeled as a Hill function.
To account for the observation that transcription ceases when

A

Punbound

k1[Msn2(t)]

d1

k2 [Msn2(t)]n

K n
d
+ [Msn2(t)]n

d2

Pbound

k3 [Msn2(t)]n

K n
d + [Msn2(t)]n

Pactive mRNA
k4

YFP
k5

mYFP

Ø

d3

Ø

d4

Msn2 binding to
the promoter 

     Recruitment of 
factors to the promoter Transcription Translation YFP maturation

Promoter-specific fitted parameters: k1, d1, k2, d2, Kd, n, k3

Fixed and measured global parameters: d3, k4, d4, k5
Ø

d4

B

Increasing
duration

   Fixed amplitude

Duration Increasing
amplitude

  Fixed duration A
m

pl
itu

de

Msn2
 AUC

Increasing
Msn2 AUC

   Fixed duration

Increasing
pulse number

Duration modulation Amplitude modulation Msn2 AUC modulation Pulse number modulationC D E F

D
C

S
2 

(L
F

 p
ro

m
ot

er
)

10 20 30 40 50 60

1000

2000

3000

4000

Duration (min)

M
ax

 Y
F

P
 e

xp
re

ss
io

n

0 500 1000 1500 2000
Msn2 nuclear localization

0 2 4 6 8 10
x 104

Msn2 AUC
0 2 4 6 8

Number of 5 min pulses

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

S
IP

18
 (

H
S

 p
ro

m
ot

er
)

1000

2000

3000

4000

5000

6000

M
ax

 Y
F

P
 e

xp
re

ss
io

n

1000

2000

3000

4000

5000

6000

1000

2000

3000

4000

5000

6000

1000

2000

3000

4000

5000

6000

0 0 0 0
10 20 30 40 50 60

Duration (min)
0 500 1000 1500 2000

Msn2 nuclear localization
0 2 4 6 8 10 x 104

Msn2 AUC
0 2 4 6 8

Number of 5 min pulses

0 0 0 0
0

100 nM
275 nM
690 nM
3 μM

10 min
20 min
30 min
40 min
50 min

Raw YFP data
Simulated YFP

10 min
20 min
30 min
40 min
50 min

0 0 0 0
0

100 nM
275 nM
690 nM
3 μM

Raw YFP data
Simulated YFP

10 min
20 min
30 min
40 min
50 min

10 min
20 min
30 min
40 min
50 min

0 5 10 15 20 25

400

500

600

700

800

900

1000 SIP18

ALD3
TKL2

RTN2

DDR2

DCS2

HXK1

 Promoter clustering

A
m

pl
itu

de
 th

re
sh

ol
d

Promoter activation timescale (min)

HS 
Promoters

LF
Promoters
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Msn2 exits the nucleus, we also model transcription as a Hill
function (a full discussion of the model is given in
Supplementary information).

To extract quantitative information, we identified the
parameter set (green parameters in Figure 2A) that gave the
best overall fit to the full 30-experiment data set
(Supplementary Figures S2–S5) for each promoter. Global
parameters (purple parameters in Figure 2A) were experi-
mentally determined and found not to differ between
promoters (see Supplementary information). Using the model
and the fitted parameters, we calculated the promoter
activation timescale (time required to reach the half-maximal
Pactive level) and amplitude threshold (amplitude required to
reach the half-maximal Pactive level at steady state) for each
promoter. We clustered the promoters along these two axes
and observed classes of behavior (Figure 2B). HXK1, DCS2,
and DDR2 belong to one promoter class, which we call Low
amplitude threshold, Fast promoters (LF promoters, blue)—
these promoters activate within a few minutes, which explains
why they respond strongly to short duration oscillatory input
(Figure 1C). Due to their low amplitude threshold, LF
promoters show strong gene expression responses even to
low amplitude input and show saturation at high amplitude
input. At the other extreme, SIP18, ALD3, and TKL2 belong to a
class we call High amplitude threshold, Slow promoters (HS
promoters, red)—due to their long activation delay (B25
min), they filter out short duration input, including short
duration oscillatory input (Figure 1C). Similarly, due to their
high amplitude threshold, low amplitude input is filtered out
regardless of the duration.

Finally, RTN2 shows intermediate behavior: RTN2 filters out
low amplitude input like the HS promoters (Figure 1C) and has
a promoter activation timescale (B10 min) in between that of
the LFand HS promoters, but more similar to the LF promoters.
The response of RTN2 to short oscillatory input is similar to
DDR2 (Figure 1C). Hence, RTN2 exhibits much faster activa-
tion than TKL2 and ALD3, but a higher amplitude threshold:
this shows that amplitude threshold and promoter activation
timescale can be at least partially decoupled. We therefore
predict that natural promoters will show a continuum in
response behavior and span the entire space of Figure 2B,
including all four corners.

Quantitative analysis of signal processing by LF
and HS promoters

To illustrate how the HS and LF promoter classes process TF
signals, we quantitatively analyzed SIP18 (HS) and DCS2 (LF).
In response to duration modulation (Figure 2C, dots: raw data;
lines: model simulations), SIP18 expression increases in a non-
linear, convex manner due to its slow promoter activation and
shows a duration threshold below which no gene expression is
seen. DCS2 expression, on the other hand, increases linearly
with duration due to its fast activation and shows no threshold.
The highly convex scaling of SIP18 in response to amplitude
modulation (Figure 2D) shows how sensitive its expression is
to the amplitude: an B25% increase in amplitude can more
than double gene expression output. In contrast, DCS2 shows
concave scaling and begins to show saturation even at the half-

maximal amplitude. When expression is plotted as a function
of the Msn2 AUC (Msn2 area under the curve,

R1
0 ½Msn2ðtÞ�dt),

we see a clear threshold (ca. 2�104 Msn2 AUC, Figure 2E)
below which SIP18 filters out all input, whereas DCS2 shows
no such threshold. Instead, DCS2 expression is simply
proportional to the Msn2 AUC until saturation—after satura-
tion DCS2 expression is no longer sensitive to increasing
amplitude. Thus, even for single pulse input, natural Msn2
target promoters can act as sophisticated signal processing
modules with distinct decoding abilities.

Finally, in response to pulse number modulation, DCS2
expression is simply proportional to the number of pulses
(Figure 2F)—this is because promoter activation and deactiva-
tion are so fast that no memory effects are observed between
the pulses (Hao and O’Shea, 2012). SIP18, on the other hand,
displays such slow promoter activation kinetics that oscilla-
tory input is largely filtered out regardless of the pulse number.

Control of TF dynamics enables differential gene
expression

Having established that different promoter classes decode TF
dynamics differently, we next investigated whether this would
allow differential gene expression. Using the model
(Figure 2A), we systematically simulated gene expression for
different input dynamics (duration, amplitude, pulse number,
and pulse interval) for SIP18 and DCS2. The model predicts
that strong induction of DCS2 without significant induction of
SIP18 can be achieved by using short, low frequency
oscillatory input (Figure 3A, Condition A). Likewise, the
model predicts that differential expression of SIP18 over DCS2
can be achieved by using a single sustained, high amplitude
pulse (Figure 3B, Condition B).

We tested these model predictions by measuring gene
expression in response to these two conditions and find that
the model could accurately predict gene expression responses
to conditions upon which it had not been trained (Figure 3).
This demonstrates that significant differential gene expression
between LF and HS promoters at an absolute level is possible
just by controlling TF dynamics. Thus, the cell can exploit this
mechanism to encode multiple, distinct gene expression
programs in the translocation dynamics of a single TF.

Noise in gene expression differs markedly for
different promoter classes and depends on Msn2
dynamics

Having analyzed how gene expression responses depend on
Msn2 input at the population level, we next investigated
single-cell behavior. Since the dual CFP and YFP reporters
share the same cellular environment, the degree to which they
correlate allows us to discern two sources of cell-to-cell
variability (Elowitz et al, 2002): variability caused by the
shared environment, such as differences in the number of
Msn2 molecules or ribosomes between cells, which affect both
CFP and YFP equally (extrinsic noise); and the remaining
intrinsic variability that is not accounted for by the shared
environment, which may stem from factors such as stochastic
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binding events at individual promoters (intrinsic noise)
(Hilfinger and Paulsson, 2011).

We first investigated how total (Figure 4A) and intrinsic
(Figure 4B) noise (s2/m2) scale with TF input (Msn2 AUC) for
all experiments for all seven promoters (each dot in Figure 4A
and B corresponds to the gene expression noise for a given
Msn2 input for a single promoter (colored by class)). Although
noise generally decreases with increasing Msn2 AUC, we
observed substantial differences in total and intrinsic noise
between the promoter classes: for a given Msn2 AUC, noise in
gene expression was significantly higher for the slow (HS)
promoters than the fast (LF) promoters. Since the Msn2 input,
mRNA transcript (coding region and 30 UTR) and protein are
the same for all promoters, differences in intrinsic noise
between promoters should primarily originate from promoter
transitions and transcription. Therefore, different promoter
classes exhibit inherently different levels of noise in gene
expression. For example, even when SIP18 (HS) expression
robustly exceeds DCS2 (LF) expression at the population level
(Figure 3B), SIP18 still exhibits more than two-fold higher
noise than DCS2 (Supplementary Figure S6B).

To determine whether noise in gene expression depends on
TF dynamics, we compared the total noise for a single 40-min
pulse with eight 5 min oscillatory pulses (Figure 4C) such that
the Msn2 AUC, total duration, and amplitude were constant.
We find that noise in gene expression is higher in response to
oscillatory input than in response to a single pulse. Further-
more, the extent to which oscillatory input results in higher
noise seems to depend on the promoter class: HS promoters
are much noisier in general, but also show greater differences
between oscillatory input and single pulse input. This
contrasts with a recent theoretical study (Tostevin et al,
2012), which found that at steady state, oscillatory input could
lead to lower noise than constant input. However, this

discrepancy is likely due to differences in comparisons: that
study used a much higher amplitude for oscillatory input than
for constant input such that the promoter activation timescale
was shorter for oscillatory input (see also Supplementary
information).

Notably, the only promoter that shows a negligible noise
difference between oscillatory and single pulse input is HXK1,
which also has the fastest activation timescale (B1.3 min). In
fact, the noise (Figure 4C, orange bars) is significantly
correlated with the promoter activation timescale (r¼ 0.919;
Po0.005; Pearson’s correlation), such that the slower the
promoter activation, the higher the noise.

Single-cell time traces (Figure 4D and E) and a CFP/YFP
scatterplot (Figure 4F) for DCS2 and SIP18 illustrate how
substantial the noise differences are between the HS and LF
promoters. We find that both intrinsic and extrinsic noise
contribute significantly to the total noise. For DCS2, gene
expression is remarkably reliable with low variation between
cells. For SIP18, however, we observe bimodal gene expres-
sion: some cells induce very strongly, whereas a large
proportion of cells show no expression at all. In general, we
observe many cases of bimodal gene expression for the HS
promoters when the signal is close to the threshold
(Supplementary Figure S7H and J), which further underscores
how noisy these promoters are.

Taken together, our results reveal that oscillatory TF input
leads to higher noise in gene expression and that noise is
significantly correlated with the promoter activation time-
scale. That HS promoters suffer from significantly higher total
and intrinsic noise than LF promoters furthermore implies an
inherent trade-off: employing HS and LF promoters enables
differential gene expression by controlling TF dynamics; but
for the HS promoter, high noise means that the information
encoded in TF dynamics is decoded with low fidelity.
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Encoding four gene expression programs in the
dynamics of a single TF

Previously, we showed that natural promoters differ in their
amplitude threshold and promoter activation timescale and,
importantly, that these two properties can be decoupled
(Figure 2B). On the basis of these observations, four promoter
classes exist in theory: promoters can have either a low or a
high amplitude threshold (H or L) and exhibit either fast or
slow activation (F or S). To theoretically investigate whether
differential expression of all four classes is possible by
controlling TF dynamics, we consider the simplest formulation
of the deterministic model (Figure 5A) that can capture
differences in both the amplitude threshold and promoter
activation timescales of the full model (Figure 2A). We
quantify gene expression as the mRNA AUC (Figure 5B),
which will be proportional to the protein level after it has
reached a plateau since the mRNA lifetime is much shorter
than the protein lifetime.

Next, we generate representative promoters for each of the
four classes in silico that differ only in their amplitude
threshold and promoter activation timescale (Figure 5C). We
analytically solve the model for the mRNA AUC (see

Supplementary information) and then systematically investi-
gate how gene expression depends on duration, amplitude,
pulse interval, and pulse duration (Supplementary
Figure S8A–C). By searching this space, we identify four
conditions where differential expression of the four promoters
at an absolute level is possible. The HS promoter dominates in
response to a single sustained, high-amplitude pulse
(Figure 5D, left), the LS promoter dominates in response to a
single sustained, low-amplitude pulse (Figure 5E), the LF
promoter dominates in response to low amplitude, low
frequency oscillations (Figure 5F), and finally, the HF
promoter dominates in response to high amplitude, low
frequency oscillations (Figure 5G). Thus, it is possible to
encode four distinct gene expression programs in the
translocation dynamics of a single TF.

The promoter activation timescale controls the
noise level

Experimentally, we observed a strong positive correlation
between noise and the promoter activation timescale. Con-
sistent with this result, in the case of the four in silico
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promoters (Figure 5D–G, right and Supplementary
Figure S8D–F), the LF promoter always exhibits lower noise
than the LS promoter and the HF promoter always exhibits
lower noise than the HS promoter. Furthermore, the noise
levels we observe for the slow promoters (Figure 4) are
substantially higher than those typically seen in steady-state
studies (Bar-Even et al, 2006; Newman et al, 2006). To
understand why, consider a fast (HF or LF) and a slow (LS or
HS) promoter exposed to a single, transient pulse: for all but
the briefest pulses, all fast promoters in a population will
activate and approach a new steady state, whereas for a slow
promoter a substantial fraction will not even activate in
response to a sustained pulse (50 min, Figure 6A). During a
50-min pulse, the fast promoter will frequently switch
between the ON and the OFF states, such that although there
is variability in the amount of time it is active during the
pulse, the variability between cells is relatively modest
(Figure 6B): all promoters are active for at least 10 min, but
none for 440 min. For the slow promoter, however, 43% of
cells fail to activate at all (Figure 6B); and among the fraction
that do activate, because of the slow switching frequency, the

variability in the amount of time the promoter is active is
huge (Figure 6B). This explains why slow promoter kinetics
leads to such high noise.

This is also consistent with many previous steady-state
studies that have shown that genes with high transcriptional
burst frequency but small burst sizes exhibit lower noise than
genes with low burst frequency but large burst sizes (Raj and
van Oudenaarden, 2008; Hornung et al, 2012; Lionnet and
Singer, 2012; Dadiani et al, 2013). Comparing promoters with
the same mean expression, but different kinetics, we find that
noise scales strongly with the activation timescale (Figure 6C).
But as the pulse duration approaches that of two cell divisions
(B200 min, steady-state behavior), the effect of the promoter
activation timescale on noise is greatly reduced. Therefore,
whereas at steady state the effects of promoter kinetics (burst
frequency) are modest because of averaging due to the long
lifetimes of proteins, the consequences are dramatic when the
pulse is transient (Figure 6C). Thus, the promoter activation
timescale controls noise in gene expression and this under-
scores the importance of promoter kinetics when considering
transient TF dynamics.
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Slower promoter activation leads to greater noise
in gene expression

A key prediction of our theory is that slowing down promoter
activation will lead to higher noise. Since TFs generally cannot
bind to binding sites in the promoter that are occupied by
nucleosomes (Lam et al, 2008; Zhou and O’Shea, 2011) and
nucleosome removal often accompanies gene induction
(Shivaswamy et al, 2008; Bai et al, 2010), we hypothesized
that interfering with chromatin remodeling would slow down
promoter activation. To test this, we generated strains lacking
either the SWI/SNF (snf6D) or the SAGA (gcn5D) chromatin
remodeling complexes (Raser and O’Shea, 2004) and contain-
ing the SIP18 and HXK1 expression reporters.

For the SIP18 reporter, both complexes are required for
induction (Supplementary Figure S9C). For the SWI/SNF and
SAGA mutants of the HXK1 reporter strain, the expression level
is not substantially affected so we repeated all 30 experiments
(Supplementary Figure S9A) and fit the model (Figure 2A) to
the data to obtain parameters from which we inferred the
amplitude threshold and promoter activation timescale
(Figure 7A). Both mutants showed slower promoter activation
(Figure 7A) and higher noise (Figure 7B–D) consistent with
our previous observations (Figure 4) and theoretical predic-
tions (Figures 5 and 6). Furthermore, as observed for the
natural promoters (Figure 4C), the slower HXK1 mutants now
show higher noise in response to oscillatory than single pulse
input, whereas the faster WT strain does not (Figure 7D).
Overall, we conclude that the promoter activation timescale is
a key determinant of noise in gene expression.

Nucleosome remodeling dynamics correlate with
promoter activation dynamics

The observation that chromatin remodeling complex mutants
slow down promoter activation led us to hypothesize that
nucleosome remodeling might be rate limiting for promoter
activation. To test this, we used micrococcal nuclease digestion
coupled with high-throughput sequencing (MNase-Seq) to

follow nucleosome remodeling dynamics in response to Msn2
activation (Figure 7E). We find that whereas all promoters
have clearly positioned nucleosomes initially, nucleosome
positioning collapses within 5 min for the fast HXK1 and DCS2
promoters (a hallmark of transcriptional activation; Zhou and
O’Shea, 2011). In contrast, slow promoters such as SIP18 have
higher nucleosome occupancy initially and the nucleosomes
remain clearly positioned until the 20–30 min time points
which is very similar to the activation timescale we inferred
using modeling (B25 min, Figure 2B). The observed correla-
tion between nucleosome remodeling and promoter activation
is consistent with a model where the promoter activation
timescale is controlled by the position and stability of
promoter nucleosomes.

Discussion

Promoter amplitude threshold and activation
timescale control how TF dynamics are decoded

The expanding list of TFs that exhibit complicated dose- and
signal-dependent dynamics prompted us to systematically
investigate the quantitative principles that govern how gene
promoters decode such dynamics. We demonstrate that the
amplitude threshold and promoter activation timescale govern
how TF dynamics are decoded. But at the mechanistic level,
what determines these two properties? From previous steady-
state studies, it appears that the amplitude threshold depends
at least in part on the binding affinity of the promoter for the
TF; that is, the affinity and number of TF binding sites and
chromatin structure (Lam et al, 2008; Sharon et al, 2012). This
is also consistent with our observations: LF promoters tend to
have multiple clustered Msn2 binding sites, whereas RTN2 and
HS promoters tend to have only one or two isolated sites
(Supplementary Figure S9D). Much less is known about what
determines the promoter activation timescale. We show here
that the model-inferred promoter activation timescales largely
match the observed nucleosome remodeling timescales.
Furthermore, we show that the SWI/SNF and SAGA chromatin
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remodeling complexes are required for the induction of SIP18
and that deleting them significantly slows down activation of
the HXK1 promoter (Figure 7). Taken together, a coarse
grained model emerges where the amplitude threshold is
related to TF binding sites and the promoter activation
timescale to nucleosome organization. Detailed mechanistic
studies are now required to elucidate the details of what
determines the amplitude threshold and promoter activation
timescale at individual promoters. Such studies, however,
should be greatly facilitated by the high-throughput technol-
ogies developed here.

Modulation of TF dynamics enables control of
gene expression

Using mathematical modeling, we predict and experimentally
verify conditions where differential expression of two pro-
moters is possible at an absolute level (Figure 3), providing

evidence that TF dynamics is an important mechanism for
control of gene expression. We extend this result to four
promoter classes by showing theoretically (Figure 5D–G) how
absolute differential expression of the HS, LS, LF, and HF
promoter classes can be achieved by controlling only TF
dynamics. Mammalian TFs appear to be constrained in the
number of distinct binding sites that can be evolved (Berger
et al, 2008). Thus, in addition to combinatorial regulation, an
economical way of overcoming this limitation might be for the
cell to encode multiple gene expression programs in the
dynamics of a single TF rather than evolving multiple TFs with
distinct binding site specificities.

Relationship between promoter class and
stress-specific gene function

Msn2 dynamics qualitatively differ in response to glucose
starvation, osmotic and oxidative stress (Hao and O’Shea,
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2012). Although the genes in this study were chosen because
their transcriptional response is strong and Msn2 specific, is
there a relationship between gene function and promoter
class? For two of the genes we studied, based on the gene
function, we can rationalize why a given gene might belong to
a given class. For example, the HS promoter SIP18 will filter out
the brief pulses of nuclear Msn2 during glucose starvation, and
will induce only during prolonged nuclear accumulation of
Msn2 that occurs in oxidative stress, where the protein appears
to protect against reactive oxygen species (Rodriguez-Porrata
et al, 2012). Conversely, the fast LF promoter HXK1 responds
strongly to brief pulses and will induce strongly during glucose
starvation, where the protein catalyzes phosphorylation of
glucose and facilitates growth on non-fermentable carbon
sources (Herrero et al, 1995). For several of the other genes, the
function or stress requirement is unclear. Thus, while the
correlation between gene function and promoter class is
intuitive for SIP18 and HXK1, a larger sample size will be
necessary to determine whether this correlation is general
rather than anecdotal.

Using our synthetic PKAas system, we studied the causal
input–output relationship between artificially controlled Msn2
dynamics and the promoter-controlled gene expression
response. However, in response to natural stresses, factors
other than Msn2 will be activated and the regulation may be
partly post-transcriptional. Thus, while we show that exploit-
ing the four promoter classes is sufficient to encode four gene
expression programs in the dynamics of a single TF,
complementary approaches will be required to determine
how much of the physiological regulation for natural stresses
is promoter class controlled and how much is post-transcrip-
tional or Msn2 independent.

A trade-off between noise and control of gene
expression

Previous studies on TF dynamics did not consider gene
expression noise (Cai et al, 2008; Hao and O’Shea, 2012). Here,
we provide a link between TF dynamics and control of noise in
gene expression: for constant amplitude, total duration, and TF
AUC, oscillatory input gives rise to higher noise in gene
expression than a single pulse. This shows that noise depends
on TF dynamics and that the function of TF oscillations is
unlikely to be the reduction of noise in gene expression (Tostevin
et al, 2012). Instead, given that low frequency oscillations enables
the cell to induce LF and HF promoters without inducing
LS and HS promoters, it is likely that this advantage of low
frequency oscillations overrides the cost of higher noise in gene
expression.

Furthermore, noise also depends on the promoter class—the
slower the promoter activation timescale, the greater the noise
in gene expression. These promoter class-specific noise and
decoding properties highlight a key trade-off for the cell
(Figure 8). Any signal transduction pathway has to distinguish
real signals from noise and transmit the intensity of the signal.
This invariably carries the risk of false signals being
transmitted. HS promoters have filtering abilities when
decoding signals and reliably filter out such noise up to a
threshold. In contrast, LF promoters are activated immediately
and transmit such signaling noise (Figure 8A). Conversely, HS

promoters respond strongly to a real signal, but with high gene
expression noise. LF promoters, on the other hand, are
inherently less noisy and respond reliably with low noise
(Figure 8B). Thus, there is a clear trade-off between promoters
having filtering abilities and low noise in gene expression.

This further reveals that the cell faces an important trade-off
between encoding multiple gene expression programs in TF
dynamics and having them decoded with high fidelity (low
noise): with four promoter classes, cells can encode up to four
distinct gene expression programs in the dynamics of a single
TF. Yet, the two slow promoter classes (LS and HS) inherently
suffer from high noise in gene expression, which severely
limits their decoding fidelity.

Previous work on p53 and NF-kB have divided their target
genes into ‘early’ versus ‘late’ categories depending on their
qPCR-measured induction dynamics (Tay et al, 2010; Purvis
et al, 2012). In the case of p53, the late genes are associated
with terminal cell fates such as senescence and apoptosis
(Purvis et al, 2012). The results presented here would place
these ‘late’ genes in the HS or LS classes and predict that they
would filter out the sporadic pulses that have been shown to
occur in cycling cells (Loewer et al, 2010) and thereby avoid
the aberrant induction of apoptosis, but also that they would
suffer from high noise in gene expression when actually
induced. Since the failure to induce these terminal cell fate
genes could result in the development of cancer and the death
of the organism, this further underscores how serious this
trade-off between noise and control of gene expression can be
(Figure 8).

One of the central challenges that the cell faces is how to
transmit information in such a way that the desired responses
are elicited. Systems engineering faces much the same
challenge. We show here that individual promoters can serve
as discrete signal-processing modules that the cell can exploit
to decode TF dynamics: by tuning their amplitude threshold
promoters can filter out low amplitude input (SIP18), simply
integrate the signal (DCS2 before saturation) or filter out high
amplitude input (DCS2 after saturation); by tuning their
promoter activation timescale promoters can serve as high-
pass filters (low frequency TF input is filtered out), signal
integrators (fast promoters), or duration filters (slow pro-
moters). Furthermore, we connect each signal-processing
module (promoter class) with signal decoding fidelity: the
ability to filter out short duration and low frequency TF input
comes at the cost of high noise in gene expression. Hence,
although the cell can choose between several distinct signal-
processing modules when decoding TF dynamics, there is a
trade-off between noise and control of gene expression.

Materials and methods

Strains

The yeast strains used in this study are in the W303 background and a
full list can be found in Supplementary Table S1. Full details on strain
construction are given in Supplementary information.

Microarray analysis and reporter gene selection

To determine the transcriptional target genes of Msn2, genome-wide
gene expression levels in response to 3mM of 1-NM-PP1 were analyzed
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in a diploid Msn2-mCherry strain and compared with a diploid msn2D
strain. Cells were grown overnight to an OD600 nm of 0.15 and 1-NM-
PP1 was added to a final concentration of 3mM. Cells were harvested at
time points 0, 10, 20, and 40 min and RNA extraction, cDNA synthesis,
microarray hybridization (Agilent 8�15 K S. cerevisiae two-color
arrays), and data normalization performed as previously described
(Zhou and O’Shea, 2011). Genes that showed at least five-fold
upregulation in response to 1-NM-PP1 in the Msn2-mCherry diploid,
but no expression change in the msn2D diploid (Supplementary Figure
S1C) and no serious deletion phenotype were selected and their
endogenous ORF replaced by SCFP3A or mCitrineV163A followed by
the ADH1 terminator and dual-reporter diploids formed by mating. Of
these diploid strains, seven showed strong enough expression for
reliable detection by microscopy. All seven promoters are known to
directly bind Msn2 (Huebert et al, 2012). Full details are given in
Supplementary information.

Microfluidic device

The high-throughput device developed here was loosely inspired by a
previously reported low-throughput device (Hersen et al, 2008).
Briefly, the SU8 master wafer was fabricated using standard photo-
lithography technology and custom transparency masks and the
PDMS-based microfluidic device produced by replica molding using
standard soft lithography techniques. Each microfluidic channel has a
width of 400mm and a height of ca. 111 mm. The design for the
transparency mask is available upon request. Full details are given in
Supplementary information.

Time-lapse microscopy

Yeast cells were grown overnight at 301C to an OD600 nm of 0.1, quickly
collected by filtration and loaded into a microfluidic device pre-treated
with concanavalin A. Five 3-way electrovalves (LFYA1228032H Y-valve
in perfluoroelastomer, the Lee Company) control whether normal
medium or medium with 1-NM-PP1 is delivered to each of the five
microfluidic channels and the flow (ca. 1ml/s per channel) driven by
gravity. The valves can be computationally switched within milliseconds
and the medium inside the microfluidic channel changed within
seconds. The device was loaded on a Zeiss AxioObserver Z1 inverted
microscope with an EM-CCD camera and the entire system was kept at
301C. Images were acquired with an oil-immersion objective (63x, NA
1.4, oil Ph3, Plan-Apochromat) with 2.5 min resolution for 64 frames.
The automated microscope stage moves between the positions,
maintains focus, and acquires phase contrast, YFP, CFP, iRFP, and RFP
images. To monitor Msn2-mCherry nuclear localization, a z-stack series
(focal plane ±1.75mm) was acquired. The electrovalves were pro-
grammed with custom-written software (MATLAB) that is available
upon request. Full details are given in Supplementary information.

Image analysis

Image analysis was performed using custom-written software
(MATLAB) that automatically segments, tracks, and quantifies single
cells. Briefly, the cell segmentation algorithm fits the best ellipse from a
library to the cell boundary. The background subtraction algorithm
uses the mode in each channel. The tracking algorithm proceeds by
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matching closest cells between frames subject to a series of
constraints. The nucleus is segmented by thresholding the NHP6a-
iRFP nuclear marker. Quantification of nuclear Msn2-mCherry is done
by considering the brightest pixels in a maximum-intensity projection
of an Msn2-mCherry z-stack series. CFP (SCFP3A) and YFP
(mCitrineV163A) reporter expression was adjusted for photobleaching
and quantified as the mean pixel intensity of the entire cell. The image
analysis code is available upon request. Full details are given in
Supplementary information.

Deterministic model

The model (Figure 2A) consists of the three promoter states, mRNA,
pre-mature YFP and mature YFP, and is described by the following six
ordinary differential equations:

dPunbound

dt
¼ d1Pbound�k1 Msn2 tð Þ½ �Punbound ð1Þ

dPbound

dt
¼k1 Msn2 tð Þ½ �Punbound þd2Pactive

� d1 þ
k2 Msn2 tð Þ½ �n

Kn
d þ Msn2 tð Þ½ �n

� �
Pbound

ð2Þ

dPactive

dt
¼ k2 Msn2 tð Þ½ �n

Kn
d þ Msn2 tð Þ½ �n Pbound�d2Pactive ð3Þ

d mRNA½ �
dt

¼ k3 Msn2 tð Þ½ �n

Kn
d þ Msn2 tð Þ½ �n Pactive�d3 mRNA½ � ð4Þ

d YFP½ �
dt

¼ k4 mRNA½ � � d4 þk5ð Þ YFP½ � ð5Þ

d mYFP½ �
dt

¼ k5 YFP½ � � d4 mYFP½ � ð6Þ

The input function is [Msn2(t)], which is a continuous function that
describes how Msn2 nuclear localization changes with time and the
output is mYFP. A full discussion of the model and how the fitting was
performed is given in Supplementary information. The parameters for
each promoter are listed in Supplementary Table S2.

Gene expression noise definitions

Following the dual-reporter convention for two reporters x and y
(Elowitz et al, 2002), the total, extrinsic, and intrinsic noise are defined
as:

Z2
total ¼

x2þ y2
� �

� 2 xh i yh i
2 xh i yh i

Z2
ext ¼

xyh i� xh i yh i
xh i yh i

Z2
int ¼

x� yð Þ2
D E

2 xh i yh i

where the angled brackets denote averaging over the entire cell
population. In all cases where noise is reported in this study, the noise
is the mean of multiple time points after the gene expression trace has
reached its plateau. For the dual-reporter system to work, the CFP and
YFP reporters must be statistically identically distributed. Due to
inherent differences in brightness and exposure times, it is necessary
to rescale the CFP values by multiplication of a constant factor. This
resulted in the CFP and YFP reporters having the same mean and
distributions.

In vivo nucleosome mapping (MNase-Seq)

Cells were grown overnight to an OD600 nm of 0.15 and 1-NM-PP1 was
added to a final concentration of 3mM. Cells were harvested at time
points 0, 5, 10, 20, 30, and 40 min. Crosslinking, lysis, MNase
digestion, mononucleosome purification, and sequencing library
preparation were performed as previously described (Zhou and
O’Shea, 2011). Paired-end libraries were sequenced on an Illumina
Hiseq 2000 and bioinformatic analysis performed using Perl, Python,
and MATLAB. Full details are given in Supplementary information.

Synthesis of 1-NM-PP1

1-NM-PP1 was synthesized from 1-naphthaleneacetic acid in five
chemical steps at a gram-scale (499% pure by NMR) using standard
methods from organic synthesis. Full synthetic details are given in
Supplementary information.

Accession codes

Illumina sequencing data are available in the ArrayExpress database
(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-
1950. Microarray data are available in the ArrayExpress database
under accession number E-MTAB-1945.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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