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Abstract

Objective—We constructed random forest classifiers employing either the traditional method of

scoring semantic fluency word lists or new methods. These classifiers were then compared in

terms of their ability to diagnose Alzheimer disease (AD) or to prognosticate among individuals

along the continuum from cognitively normal (CN) through mild cognitive impairment (MCI) to

AD.

Method—Semantic fluency lists from 44 cognitively normal elderly individuals, 80 MCI

patients, and 41 AD patients were transcribed into electronic text files and scored by four

methods: traditional raw scores, clustering and switching scores, “generalized” versions of

clustering and switching, and a method based on independent components analysis (ICA).

Random forest classifiers based on raw scores were compared to “augmented” classifiers that

incorporated newer scoring methods. Outcome variables included AD diagnosis at baseline, MCI

conversion, increase in Clinical Dementia Rating-Sum of Boxes (CDR-SOB) score, or decrease in

Financial Capacity Instrument (FCI) score. ROC curves were constructed for each classifier and

the area under the curve (AUC) was calculated. We compared AUC between raw and augmented

classifiers using Delong’s test and assessed validity and reliability of the augmented classifier.

Results—Augmented classifiers outperformed classifiers based on raw scores for the outcome

measures AD diagnosis (AUC 0.97 vs. 0.95), MCI conversion (AUC 0.91 vs. 0.77), CDR-SOB

increase (AUC 0.90 vs. 0.79), and FCI decrease (AUC 0.89 vs. 0.72). Measures of validity and

stability over time support the use of the method.

Conclusion—Latent information in semantic fluency word lists is useful for predicting cognitive

and functional decline among elderly individuals at increased risk for developing AD. Modern

machine learning methods may incorporate latent information to enhance the diagnostic value of

semantic fluency raw scores. These methods could yield information valuable for patient care and

clinical trial design with a relatively small investment of time and money.

Keywords

Alzheimer’s disease; cognitive neuropsychology; dementia; MCI (mild cognitive impairment);
machine learning; random forests

1. Introduction

The recognition of “mild cognitive impairment” (MCI) as a prodromal condition for

Alzheimer disease (AD) has resulted in a strategic shift among researchers seeking effective
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AD treatments (Petersen, et al., 2001; Petersen, Smith, Waring, Ivnik, Tangalos, & Kokmen,

1999). The hope is to discover a treatment that will not only alleviate symptoms of cognitive

decline, but will also slow the progression of the disease, such that non-demented

individuals who are destined to develop AD may persist longer in a state of functional

independence. However, the difficulty of identifying persons with cognitive impairment

who are destined to “convert” to AD impedes the discovery of new treatments. (The term

“conversion” is commonly used to refer to the transition from a state of preserved functional

independence to a state of dementia.) Clinical trials investigating putative treatments for

delaying the onset of dementia must either enroll many participants to guarantee the

observation of a number of conversions sufficient for statistical analysis or enrich the sample

with subjects likely to convert (Thal, et al., 2005; Salloway, Correia, & Richardson, 2007;

Doody, et al., 2009). Improvements in methods for stratifying these participants in terms of

their conversion risk could therefore improve the efficiency of clinical trials, accelerating

progress toward effective AD treatments (Holland, McEvoy, Desikan, Dale, 2012). This

view has inspired a body of work focused on the prediction of conversion. However,

methods that are expensive, invasive, or time-consuming are less likely to provide practical

benefit. We focus here on a potentially useful, yet inexpensive, fast, and non-invasive

technique that is influenced by methods from artificial intelligence.

Alzheimer disease is a primary cognitive disorder and the clinical diagnosis relies on

cognitive testing. However, because cognitive effects are secondary to biological changes in

the brain, an appropriate biological test might more accurately reflect the disease process.

Much recent work seeks to make AD diagnoses or predictions based on biological markers

(Convit, de Asis, de Leon, Tarshish, De Santi, & Rusinek, 2000; Visser, Verhey, Hofman,

Scheltens, & Jolles, 2002; Devanand, et al., 2008; Walhovd, et al., 2010; Clark & ADNI,

2011; Cui, et al., 2011; Furney, et al., 2011; Palmqvist, et al., 2012; Ye, et al., 2012; Zhang,

Shen, & ADNI, 2012). Among the studies cited here that incorporate biological tests, those

that include some form of cross-validation or a separate test set report accuracies ranging

from 62% to 85%. Reported areas under the ROC curve (AUC) range from 0.647 to 0.859.

Importantly, both the study that reports the highest accuracy (Devanand, et al., 2008) and the

study that reports the highest AUC (Ye, et al., 2012) include both cognitive and biological

measures in their classifiers.

For biological markers of AD to be useful in clinical practice or clinical trials, predictions

from biological measurements must either be extremely inexpensive and quick or must

exceed the accuracy of predictions based on cognitive tests alone to justify the additional

expenditure of time or money. It is therefore important to know the limits of cognitive

testing for diagnosing AD or making predictions of functional decline. Several studies

evaluate cognitive predictors in the absence of biological markers for predicting conversion

(Powell, et al., 2006; Tabert, et al., 2006; Chapman, et al., 2011; Pozueta, et al., 2011).

These studies report good results using cognitive tests alone, but none of them report results

from any form of cross-validation or on a held-out sample of subjects. Therefore, it is likely

that the neuropsychological tests used as predictors in these studies would yield lower

accuracy with a new sample of data. Nevertheless, it is likely that methods from artificial

intelligence could be applied to the development of new scoring methods for certain

cognitive tests that would improve their predictive value. Expensive or invasive tests that
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assess biological markers could then be evaluated in the context of the best possible

prediction from cognitive tests.

The goal of the current study is to apply current machine learning techniques to predict

functional change using measurements of performance on semantic fluency tasks.

Specifically, the objectives were (1) to investigate the utility of raw semantic fluency scores

for predicting functional outcomes, (2) to compare raw scores to more sophisticated

semantic fluency scoring methods in terms of accuracy of functional outcome predictions,

and (3) to evaluate the classifiers in terms of convergent validity, reliability over time, and

generalizability to a separate subject sample.

Verbal fluency tasks are usually administered by asking the patient or research subject to

generate a list of words in a certain category within one minute. These tests are commonly

used in neuropsychology and cognitive neurology due to their speed, ease of administration,

and clinical utility. Verbal fluency for semantic categories (e.g., animals) is impaired among

patients with AD (Monsch, et al., 1994; Vogel, Gade, Stokholm, & Waldemar, 2005) and

the animal fluency raw score is sensitive and specific for detecting dementia (Duff-Canning,

Leach, Stuss, Ngo, & Black, 2004). Words produced during these tasks are the result of

more than one underlying cognitive process, such as “clustering” (automatic activation of

one concept by a related, activated concept, making it more probable that a subject will say,

“Dog, cat”) and “switching” (a deliberate, goal-oriented change from one sub-category to

another, e.g. “dog… seahorse”) (Abwender, Swan, Bowerman, & Connolly, 2001; Hirshorn

& Thompson-Schill, 2006; Troyer & Moscovitch, 2006; Troyer, Moscovitch, Winocur,

Alexander, & Stuss, 1998; Fagundo, Lopez, Romero, Guarch, Marcos, & Salamero, 2008;

Pakhomov & Hemmy, 2013). These component processes are affected in MCI and may

predict conversion to dementia (Fagundo, Lopez, Romero, Guarch, Marcos, & Salamero,

2008; Murphy, Rich, & Troyer, 2006; Clark, Gatz, Zheng, Chen, McCleary, & Mack, 2009;

Price, et al., 2012). Thus, it is possible that MCI patients at high risk for progression to

dementia may be differentiated from patients at low risk by differences in clustering,

switching, or other types of information that are not reflected in raw semantic fluency

scores.

To explore this possibility, we employed random forests (Breiman, 2001) (see Methods,

section 2.5.4) to predict functional decline using scores derived from semantic fluency tasks.

Each random forest classifier in this study was trained to predict one of four measures of

functional status or decline—diagnosis of AD, conversion to AD at any time during follow

up, increase in Clinical Dementia Rating-Sum of Boxes score (CDR-SOB) (Morris, 1993)

within one year, or a decrease of at least 10 points on the Financial Capacity Instrument

(FCI) (Marson, et al., 2000) within one year. Separate random forest classifiers were trained

using data from each of five different fluency tasks. A final classifier was produced for each

outcome variable by combining the predictions from these five random forests.
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2. Methods

2.1. Participants—training sample

This study used data collected on research participants evaluated between June 2004 and

December 2010 and diagnostically characterized through the Alzheimer’s Disease Research

Center (ADRC) at the University of Alabama at Birmingham (UAB) as part of the COINS

study, an ongoing longitudinal study of functional change in MCI. Methods of recruitment

and data acquisition for this study have been described elsewhere (Triebel, et al., 2009).

Participants were annually diagnosed by a consensus team consisting of neurologists,

neuropsychologists, a geriatric psychiatrist, and nursing staff. The team was blinded to the

results of the financial capacity measures when diagnosing participants.

During the course of the COINS study, a total of 46 individuals were noted to “convert,” or

transition from a diagnosis of MCI to a diagnosis of AD (MCI-C) on the basis of

neurological evaluation, neuropsychological tests (Table 2), and informant report. We

wished to demographically match three groups of individuals to this MCI-C group. These

three other groups were selected by the following methods. The COINS study recruited 333

participants, of whom 103 were flagged in the database with a baseline consensus diagnosis

of CN, 164 were diagnosed with MCI, and 50 were diagnosed with probable AD. The

remaining 16 participants were not flagged in the database as having any of these diagnoses

and some were assigned other specific diagnoses (e.g., vascular dementia, frontotemporal

dementia, or parkinsonism with apraxia). From among the CN participants, only those who

were diagnosed as CN at every evaluation were considered for this project (n = 54). Among

the MCI patients who did not convert to AD (118 participants), we excluded those who

underwent only one evaluation (23 participants) or who were determined at any consensus

conference to be cognitively normal or to have non-memory cognitive impairment (38

participants), leaving 57 participants. These participants are referred to as MCI non-

converters (MCI-N). None of the 50 participants diagnosed with AD at baseline underwent a

shift in consensus diagnosis.

Data for two of the MCI-C participants were not available for this analysis, leaving 44 MCI-

C participants. From among the unambiguously diagnosed participants in the other three

groups, i.e., 54 CN, 57 MCI-N, and 50 AD participants, subgroups were manually selected

using an Excel spreadsheet to statistically match the MCI-C participants as closely as

possible with regard to age, sex, and educational level. Within these constraints, we made an

effort to include MCI-N participants with more annual follow-up visits, as we had greater

confidence that these participants were clinically distinct from the MCI-C group. This

matching process yielded the final study sample of 44 cognitively normal controls (CN), 80

MCI patients (of whom 44 converted to AD), and 41 AD patients (Table 1). The total

number of selected participants was 165 (49.5% of the total COINS sample).

2.2. Participants—validation sample

Classifiers (described below) were tested on a group of 65 participants from a separate study

of functional change in MCI. These participants were recruited between 2009 and 2013 from

the Memory Disorders Clinics at the Birmingham Veterans Affairs Medical Center
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(BVAMC) and the University of Alabama at Birmingham. A consensus panel assigned

diagnoses on the basis of each participant’s subjective memory complaints,

neuropsychological test results, and an informant-based interview regarding instrumental

activities of daily living. The consensus diagnoses rendered by the panel for these 65

subjects included 35 CN subjects, 21 MCI, and 9 mild AD. Three subjects (from an original

sample of 68) were excluded from this analysis, one due to suspected intoxication, one due

to diagnosis of non-Alzheimer’s dementia, and one who had been a member of the training

sample. The neuropsychological battery included two semantic fluency tasks (animals and

fruits and vegetables) that overlapped with those of the previous study, permitting

estimation of risk for functional decline using two random forest classifiers trained with data

from these two tasks.

2.3. Standard protocol approvals, registrations, and patient consents

Written informed consent was obtained from each study participant. The UAB institutional

review board (IRB) approved the use of human subjects for the study that provided the data

used for training the classifiers. The study that provided the validation sample was approved

by both the UAB IRB and the IRB of the BVAMC.

2.4. Study measures

2.4.1. AD diagnosis and MCI conversion—The diagnosis of AD at baseline or

following a previous diagnosis of MCI (i.e., conversion) was determined in consensus

conference, as described above, using the National Institute for Neurological and

Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders

Association criteria (McKhann, Drachman, Folstein, Katzman, Price, & Stadlan, 1984).

2.4.2. Clinical Dementia Rating—The Clinical Dementia Rating (CDR) is a composite

measure of cognition and daily functioning (Morris, 1993). For this study, the outcome

measure used was the “sum of boxes” (CDR-SOB) score, derived by adding together scores

derived from direct and informant-based assessments of memory, orientation, judgment and

problem solving, community affairs, home and hobbies, and personal care.

2.4.3. Financial Capacity Instrument—Financial capacity was directly assessed

annually using the Financial Capacity Instrument (FCI) (Marson, et al., 2000). The FCI is a

standardized psychometric instrument assessing nine domains of financial knowledge and

skills, with each domain consisting of tasks of varying complexity, such as counting coins or

preparing bills for mailing (Griffith, et al., 2003). The FCI has demonstrated high levels of

reliability and validity in previous studies of healthy controls and persons with AD and MCI

(Marson, et al., 2000; Griffith, et al., 2003; Okonkwo, Wadley, Griffith, Ball, & Marson,

2006). Trained technicians administered and scored the FCI using criteria described

elsewhere (Marson, et al., 2000). In the present study, the primary FCI variable of interest

was a global score using the sum of domains 1–7 and 9, which are (1) basic monetary skills,

(2) financial concepts, (3) cash transactions, (4) checkbook management, (5) bank statement

management, (6) financial judgment, (7) bill payment, and (9) investment decision making.
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2.4.4. Neuropsychological tests—Apart from the outcome measures described above,

the main cohort of participants (used for classifier training) undertook an extensive battery

of neuropsychological tests, including tests of global cognitive ability (mini-mental state

exam (Folstein, Folstein, & McHugh, 1975) and Mattis Dementia Rating Scale), attention

(Trail Making Test A (Reitan, 1958), digit span forward), episodic memory (Wechsler

Memory Scale-III (WMS-III) Logical Memory (The Psychological Corporation, 1997),

WMS-III Visual Reproduction, California Verbal Learning Test-II (Delis, Kramer, Kaplan,

& Ober, 2000), and 10/36 Spatial Recall), executive function (Trail Making Tests B and C,

WMS-III Digit Span Backwards, CLOX-1 and 2 clock-drawing tests), and language (Boston

Naming Test (Kaplan, Goodglass, & Weintraub, 1983) and verbal fluency tests).

All participants from the training sample were administered up to five semantic fluency

tasks during the course of neuropsychological assessment. The five categories assessed were

animals, articles of clothing, fruits and vegetables, things one finds in a supermarket, and

vegetables. For each task, the participant was given 60 seconds to list as many items as

possible within a certain semantic category. The words generated by the participant were

transcribed verbatim, including repetitions and out-of-category items. The handwritten lists

were subsequently transcribed to electronic text files with repetitions and intrusions (out-of-

category items) labeled accordingly. Uncertainty over poorly legible words was resolved by

consensus among those performing the transcriptions (including authors DGC and PK), with

the final decision made by the first author. The impact of poor legibility was greatly reduced

by the fact that the tasks were semantically constrained. More than 99% of words were

readily legible.

The sample of validation participants undertook a battery of neuropsychological tests,

including a test of global cognitive function (the extended mini-mental state exam),

sustained attention (Trail Making Test A), executive function (Trail Making Test B, verbal

fluency for the letters F, A, and S), episodic memory (California Verbal Learning Test and

10/36 Spatial Recall), and semantic memory and language (Boston Naming Test, Pyramids

and Palm Trees (Howard & Patterson, 1992), and verbal fluency for five categories not used

in the classifiers).

Participants in the study that provided the validation sample were administered 10 fluency

tasks, including two that overlapped with those undertaken by the other group (animals and

fruits and vegetables). The other tasks included fluency for words starting with the letters F,

A, and S, and semantic fluency tasks for the categories of tools, vehicles, boats, water

creatures, and verbs. Methods of fluency list transcription and scoring were the same as

those described above, but transcription and adjudication of poorly legible words were

performed by authors TPD and DGC. The overall legibility of the words was comparable to

the other data set (more than 99% unambiguously legible).

2.5. Data analyses

2.5.1. Baseline comparisons—Baseline demographic, clinical, and cognitive variables

were compared across groups (CN, MCI-N, MCI-C, and AD) using one-way analysis of

variance and post hoc t-tests (for continuous variables) and χ2 or Fisher exact tests (for

categorical variables). See Tables 1 and 2.
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2.5.2. Independent components analysis—One goal of this work was to explore the

diagnostic and prognostic utility of scores derived automatically from the verbal fluency

word lists using independent components analysis (ICA). ICA is a technique of “blind

source separation” that takes as input a set of signals, each of which is assumed to be a

mixture of signals from several independent sources. A classic illustrative example of ICA

involves two microphones and two individuals, all situated some distance from one another

in a room. The individuals speak simultaneously and each microphone records a mixture of

the two voices. The ICA algorithm takes advantage of the fact that mixtures of signals tend

to be more normally distributed than signals from a single source. Such differences enable

ICA to “unmix” the two voice recordings into the two original source signals, i.e., the voices

of the two individuals.

We assume that performance on fluency tasks is influenced by semantic associations (and

probably other types of associations) that arise due to activity in a vast cerebral network.

Many unconscious mental associations may occur in parallel. The shared nature of language

and semantic knowledge imposes a general structure on such networks in the minds of

individuals, but this structure may be influenced by education or impacted by disease.

We proposed to extract components from verbal fluency word lists, where each component

represents a source signal comprising a large set of lexical or semantic associations (Figure

1). For this purpose, each verbal fluency word list was transformed into a matrix of word

proximities, with proximity calculated as , where p2 was the position of the

second word in the list, p1 was the position of first word, and L was the length of the list.

Each matrix was square, with rows and columns equal to the total number of exemplars

produced for each category (e.g., animal names). For example, if the third row and column

represented the word “cat” and the fourth row and column represented the word “dog,” then

the entry at row 3, column 4 was the proximity of the words “cat” and “dog” within each

individual’s list. If the two words were produced as the first and second items in a list with

20 animal names, then the proximity would be 1.0 − (2 − 1)/20 = 0.95. Because the matrix

was symmetric, only the entries above the diagonal were needed for ICA. These entries were

simply transferred into a column vector in a consistent manner. Thus every verbal fluency

list for a given task was transformed into a vector representing all of the word proximities

within the list. The size of these vectors was the same within each fluency task, but varied

across tasks. For example, a total of 380 different animal names were generated for the

animals task. Thus, proximities from each list were loaded into a 380 × 380 matrix. Thus,

the column vectors for this task all had (380 × 379)/2 = 72,010 entries. For simplicity,

coordinates were assigned to words according to position in the alphabetized list, e.g., the

proximities of words occurring in the same list as the word “aardvark” occupied the first row

and column of each matrix. For each task, we transformed all available lists into vectors and

placed all the vectors into a new matrix. For the animals task, this matrix had dimensions

72,010 × 557. ICA was performed on this matrix using the R library fastICA (Marchini,

Heaton, & Ripley, 2012). Twenty components were extracted. We then derived twenty

scores for each word list by calculating the dot product of the proximity vector with each of

the extracted components.
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2.5.3 Clustering and switching—As described above, the term “clustering” refers to the

tendency for individuals to produce related words consecutively within lists, while the term

“switching” refers to the deliberate transition between subcategories during a fluency task.

We followed Troyer for the quantification of clustering and switching, beginning with

published lists of subcategories and exemplars within each subcategory (Troyer, 2000).

These previously published lists were developed for scoring the animals and supermarket

tasks. For example, the animals list included subcategories by geographic region (e.g.,

African animals), natural habitat (e.g., water animals), and taxonomy (e.g., primates). The

supermarket list included subcategories by store area (e.g., dairy), biochemical constituents

(e.g., grain products), and specific meals (e.g., breakfast foods). We generated comparable

lists for the remaining three tasks (fruits and vegetables, articles of clothing, and vegetables)

and expanded the lists by means of a custom Python program that searched fluency word

lists for uncategorized words and required user input to assign each new word to one or

more categories. (Note that for this research it was not necessary to generate subcategory

lists for the additional verbal fluency tasks that were performed only by the participants in

the validation sample, such as vehicles.)

Clustering and switching scores were calculated automatically with a Python program,

according to the rules set out in published work (Troyer, 2000; Troyer & Moscovitch, 2006).

We operationalized these rules as follows. All clusters of consecutive words in a list that

belonged to any common subcategory were identified. For example, in the sequence tiger,

lion, cat, dog, wolf, the program identified the following clusters: tiger-lion-cat, cat-dog,

and dog-wolf. In accordance with published methods, these were scored as the number of

items in each cluster minus one, i.e., clusters of sizes 2, 1, and 1, for an average cluster size

of 1.33. In the event that a cluster was a subset of another cluster, only the larger cluster was

quantified. The number of switches was defined as the number of clusters minus one. The

same programs were used to process the corresponding fluency lists from the participants in

the validation sample (animals and fruits and vegetables). Use of computer programs for

these tasks ensured consistency of scoring despite the necessarily large subcategory lists (see

supplemental data for the actual subcategory lists).

We developed two new measures that were related to these clustering and switching

measures. The measurement of clustering and switching relies heavily on adjacency of

words. We wished to explore “generalized” measures of clustering and switching taking into

account the proximities, rather than adjacencies, of semantically related or unrelated words.

For each verbal fluency word list, we created a list of all pairs of words within the list and

calculated the proximity for each pair using the formula described in section 2.5.2. This list

of pairs was partitioned into those deemed to be semantically related and those deemed

semantically unrelated, according to the subcategory listings described above. We calculated

the generalized clustering score by averaging the proximities for the semantically related

pairs and the generalized switching score by averaging the proximities for the semantically

unrelated pairs.

2.5.4. Random forest classifiers—A random forest is an ensemble of decision trees

(Breiman, 2001). Decision trees are classifiers, that is, numerical models that sort individual

data points into two or more groups. In this work, the groups usually consisted of patients
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who did or did not worsen. Decision trees are constructed by an algorithm that (1) selects

from among a set of candidate predictor variables the best variable for sorting the data

points, (2) partitions the data points according to an optimal threshold, and (3) recursively

applies the algorithm to the data points on both sides of the partition until all data points

receive a classification. The main problem with decision trees is that they usually overfit the

data, that is, they essentially “memorize” the data set in minute detail and many of these

details are not actually relevant. Overfitting leads to poor performance when the classifier is

tested on data points that were not in the training set.

The random forests algorithm is an effective method for overcoming the problem of

overfitting. On each iteration of the algorithm, approximately two-thirds of the data points

are randomly selected and a bootstrap sample (with replacement) is generated from the

selected data points. This “bootstrap aggregate” sample is referred to as the in bag data and

the unselected data points are referred to as out of bag (OOB) data. A decision tree is then

grown using the in bag data. Random forests employ a slightly modified version of the

decision tree algorithm described above: on each recursion of the algorithm, the set of

candidate predictor variables is restricted to a randomly selected subset. If there are N

predictor variables, this subset is usually restricted to have √N members. When the decision

tree is complete, it is tested on the OOB data and the percentage of incorrect classifications

is reported as the OOB error for that tree. One may grow any number of decision trees, but

most random forests consist of 50–1000 trees. These trees act as an ensemble to classify new

data points, and the performance of the ensemble on new data points is almost always better

than any individual decision tree. To classify a new data point, the data point is presented to

each tree in the random forest and the tree “votes” on which category the data point should

be assigned to. Typically, the outcome of this voting process is determined by majority rule,

but the proportion of trees voting for a classification may be used as an estimate of the

probability that the data point belongs in that category.

Random forests have the additional advantage that one may rapidly calculate a measure of

“importance” for the predictor variables. This calculation is performed for a given variable

by randomly permuting the values of the variable and repeating the classification for the

entire random forest. Shuffling the values of important variables leads to large increases in

the OOB error. The size of this increase constitutes the importance measure. These

importance measures provide methods both for interpreting the model and for selecting

variables for use in other classifiers (which may be constructed using random forests or

other classifier architectures). For the current research, random forest classifiers were

generated in two steps (described below), using the randomForest library (version 4.6–6)

(Liaw & Wiener, 2002) in the statistical programming language R (version 2.15.1) (R Core

Team, 2012). We calculated correlation among trees in each random forest and OOB error.

2.5.4.1. Outcome: AD Diagnosis: An overview of the classifiers generated for this research

is provided in Figure 2. For each of the five semantic fluency tasks, two random forest

classifiers were trained to discern between CN and AD diagnoses using the baseline

measurements from those groups. The first (“raw”) model made use of only demographic

data and counts from the fluency lists (raw scores, perseverations, and intrusions). The

second (“augmented”) model added clustering and switching scores as well as two new
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types of scores that we developed: ICA component scores and generalized versions of

clustering and switching scores. The random forests algorithm was run once to measure the

relative importance of the variables. A threshold was selected (absolute value of lowest

negative importance value) and variables that met this threshold were left in the model for

the second run of the algorithm. We then generated a sixth classifier by aggregating votes

from all five random forests. Thus, a final estimate was produced for each participant by

averaging together results from whichever fluency tasks were available for that individual.

This method allowed us to include all participants in the final analysis, rather than only the

subset that completed all of the fluency tasks. ROC curves were plotted and analyzed using

the ROCR (Sing, Sander, Beerenwinkel, & Lengauer, 2009) and pROC (Robin, et al., 2011)

libraries for R. Statistical testing of the ROC curves was performed using Delong’s test from

the pROC library.

2.5.4.2. Other outcomes: measures of functional decline: Four classifiers for each fluency

task were trained to predict each of the remaining three outcome measures (MCI conversion,

CDR-SOB increase, and FCI decrease ≥ 10 points). MCI conversion classifiers used data

only from the MCI-C and MCI-N participants: a raw model with all of the baseline

measurements, a raw model with measurements at baseline and year 1 (baseline+Y1), and

two augmented models using these same two data subsets. The same procedures described

above for AD diagnosis were then followed, including aggregation of votes from all five

fluency tasks. For CDR-SOB and FCI, data from all four participant groups were used, with

baseline models predicting the relevant change at year 1 and baseline+Y1 models predicting

the change at year 2.

2.5.5. Convergent validity with other neuropsychological measures—In order to

assess the cognitive basis of the random forest classifications, the relationship between

“risk” (as estimated by the random forest models) and neuropsychological raw scores was

evaluated with Pearson correlation. Risk of each undesirable outcome (i.e., conversion,

CDR-SOB increase, or FCI decrease) was estimated as the proportion of votes favoring that

outcome for each baseline verbal fluency task. An overall risk score was then assigned to

each participant by averaging risk scores from the verbal fluency lists provided by that

participant at baseline. (We are using the term “risk” loosely here as shorthand for

“proportion of votes in favor of an undesirable outcome.”)

2.5.6. Longitudinal stability of risk scores—In order to assess the ability of the

baseline classifiers to categorize participants at future time points, risk scores were

calculated as described above for every available verbal fluency list, including those

acquired during follow-up visits one or more years after the baseline visit. For each year of

follow up, participants seen during that year were assigned an overall risk score by

averaging the risk scores from the verbal fluency lists they provided that year. The same

cross-validation partitions described above were employed when these scores were

calculated. That is, participants were divided into the same 10 groups used during classifier

training and scores were assigned to each subject’s lists using a random forest that was

trained using only subjects from the other nine groups. For each of the three predictive

classifiers, Cronbach’s alpha was calculated for risk estimates over consecutive years,

Clark et al. Page 11

Cortex. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



starting with the baseline evaluation and including each follow-up year in which a risk

estimate was available for at least half of the participants. A bootstrap procedure was used to

calculate the 95% confidence interval for Cronbach’s alpha. Risk levels for the two

categories of participants were plotted at each year of follow up for each of the three

predictive classifiers (MCI conversion, CDR-SOB increase, and FCI decrease).

2.5.7. Validation with a separate participant sample—Raw scores, clustering and

switching scores, generalized clustering and switching scores, and ICA component scores

were calculated for the validation sample, i.e., participants taking part in a separate study.

Importantly, ICA component scores were generated using the ICA components from ICA

performed with the original training sample. Random forest classifiers trained with fluency

data from the animals and fruits and vegetables tasks were then used to generate vote counts

for the participants in the validation sample and these vote counts were transformed into

proportions (with larger proportions indicating relatively higher estimated risk for functional

decline).

Longitudinal data on the participants from this sample are not yet available, so the actual

accuracy of the classifiers cannot yet be determined. In lieu of this ideal analysis, we

performed Pearson correlation between estimated risk and raw scores from the

neuropsychological tests, anticipating strong negative correlations for tests known to be

important in the identification of individuals at risk for AD, particularly tests of episodic

memory.

3. Results

3.1. Group comparisons from main participant sample

Demographic, functional, and cognitive data on the participant sample used for classifier

training at baseline are shown in Tables 1 and 2. (See Supplemental Table e-1 for the same

measurements on relevant subsets of participants.) Participants were matched in terms of

age, sex, and educational level. One-way ANOVA revealed a difference in the number of

annual follow-up visits that they undertook (p < 0.0001) with participants diagnosed with

AD at baseline returning for fewer follow-up assessments. Significant differences were

observed among the four groups on all cognitive measures.

3.2. Diagnosis of AD

Baseline scores on 44 CN participants and 41 AD patients were entered into the random

forests algorithm with diagnosis of AD as the outcome variable. Figure 3A shows ROC

curves for raw (gray) and augmented (black) models created by aggregating votes across the

first five classifiers. Table 3 shows measurements of prediction quality for these models

based on aggregated votes. Both models exhibited high AUC measurements, although the

AUC of the augmented model significantly exceeded that of the raw model (0.97 vs. 0.95, Z

= 2.27, p < 0.05). Correlations among the trees (ρ) were higher for the raw model (0.68 vs.

0.57) as was OOB error (0.22 vs. 0.15).
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3.3. Classification of MCI converters and non-converters

The two MCI groups (36 MCI-N, 44 MCI-C) were entered into the random forests

algorithm, using conversion (at any time point) as the outcome variable. All participants had

at least one year of follow-up. Table 3 contains measurements of quality and Figure 3B

shows ROC curves for the raw baseline model (gray-dashed), the raw baseline+Y1 model

(gray-solid), the augmented baseline model (black-dashed) and the augmented baseline+Y1

model (black-solid). The augmented baseline+Y1 model performed best, with AUC 0.91.

The difference between the corresponding raw and augmented models was statistically

significant (baseline raw vs. augmented: Z = 2.69, p < 0.01; baseline+Y1 raw vs. augmented:

Z = 3.15, p < 0.01). Despite the fact that the correlations among trees were higher for the

augmented models, they exhibited a lower OOB error.

3.4. Identification of participants with increase in CDR-SOB

Table 1 shows the fraction of participants from each group with higher CDR-SOB score at

follow-up year 1 or year 2. Table 3 contains measurements of quality and Figure 3C shows

ROC curves for the four classifiers. The augmented baseline model performed best, with

AUC 0.90. The difference between the corresponding raw and augmented models was

statistically significant (baseline raw vs. augmented: Z = 3.75, p < 0.001; baseline+Y1 raw

vs. augmented: Z = 2.63, p < 0.01). OOB error was lower for the augmented models than for

the corresponding raw models, but the average correlation among trees did not follow a

definite pattern. For the baseline only models, ρ was 0.46 (raw) vs. 0.42 (augmented), while

for the baseline+Y1 models, ρ was 0.40 (raw) vs. 0.43 (augmented).

3.5. Identification of participants with decline in FCI

Table 1 shows the proportion of participants with declines of ≥ 10 points at follow-up year 1

or year 2. Table 3 contains measurements of quality and Figure 3D shows ROC curves for

the four classifiers. The augmented baseline+Y1 model performed best, with AUC 0.88. The

difference between the baseline+Y1 raw and augmented models was statistically significant

(baseline raw vs. augmented: Z = 1.12, p > 0.05; baseline+Y1 raw vs. augmented: Z = 2.88,

p < 0.01). OOB error and ρ were lower for augmented models than for the corresponding

raw models.

3.6. Convergent validity with neuropsychological measures

Correlations of neuropsychological raw scores with risk estimates from the baseline,

augmented classifiers are shown in Table 4. Risk scores from all three predictive classifiers

correlated significantly with the following neuropsychological test scores: Mattis Dementia

Rating Scale (total score, initiation and perseveration, and memory), Trail Making Test C,

California Verbal Learning Test (total score), and WMS-Logical Memory (I, II, and

recognition). Estimated risk of conversion to AD correlated with CVLT long delay free

recall and WMS-Visual Reproduction recognition. Estimated risk of CDR-SOB increase

correlated with digit span (forward and backward), Trail Making Tests A and B, 10/36

Spatial Recall (delayed), and the CVLT long delay free recall. Estimated risk of decline on

the FCI correlated with digit span (forward and backward), Trail Making Tests A and B,
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10/36 Spatial Recall (total and delayed), WMS-Visual Reproduction I, and the Boston

Naming Test.

3.7. Longitudinal stability of risk scores

Figure 4 depicts the stability of the risk scores from the baseline classifiers over subsequent

follow-up years. The clear delineation of risk for all three classifiers persisted for at least

two years of follow up. Cronbach’s alpha for the three classifiers was calculated to be 0.85

for the MCI-conversion classifier (subset of 47/80 MCI participants with four years of

follow-up, 95% CI 0.77–0.90), 0.84 for the CDR-SOB classifier (subset of 106/165

participants with three years of follow-up, 95% CI 0.79–0.88), and 0.85 for the FCI

classifier (subset of 106/165 participants with three years of follow-up, 95% CI 0.80–0.89).

3.8. Validation sample

Two of the previously generated random forest classifiers were used to make predictions of

risk for functional decline on a group of research subjects who had undertaken these two

semantic fluency tasks as part of a separate study. Specifically, these were the baseline,

augmented classifiers trained with data from the animals and fruits and vegetables tasks.

Pearson correlations between estimated risks and neuropsychological test scores are shown

in Table 4. All significant correlations were in the predicted direction (i.e., negative, except

for positive correlations with the Trail Making Tests, in which higher scores indicate worse

performance). The strongest correlations were with the CVLT and verbal fluency measures.

No risk estimate correlated with either part of the Pyramids and Palm Trees. Estimated risk

of increasing CDR-SOB score correlated with extended-MMSE score, and Trail Making

Tests A and B. Estimated risk of decreasing score on the FCI correlated with three non-

verbal measures: Trail Making Test B, and the total and delayed recall scores from the 10/36

Spatial Recall. Boston Naming Test scores correlated only with risk estimates from the

conversion and CDR-SOB classifiers.

4. Discussion

We report the use of random forests with three methods of semantic fluency list scoring that

potentially add to the value of the standard scoring method when predicting functional

decline in individuals at risk for AD. These three scoring methods are: clustering and

switching scores (Troyer & Moscovitch, 2006), generalized variants of clustering and

switching scores, and scores derived from an ICA analysis of the verbal fluency lists. We

find that these scoring methods, when used as predictors in random forest classifiers,

improve on predictions of functional decline using only demographic variables and

traditional scores (i.e., raw counts of valid items, intrusions, and repetitions). Estimates of

risk based on these classifiers correlate with neuropsychological test scores, particularly

those of episodic memory, in the original training sample and in a validation sample of

participants from a separate study. Cronbach’s alpha is high for all three of the baseline

classifiers over at least three years of follow-up, indicating good stability of the risk

estimates over time.
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Raw scores from verbal fluency tasks have utility for diagnosing dementia and for

differentiating between AD and vascular dementia (Duff-Canning, Leach, Stuss, Ngo, &

Black, 2004), and the current work demonstrates that raw scores remain useful for

characterizing the population from which this participant sample was drawn. Despite the

utility of the raw scores, however, we find that models augmented with newer methods of

scoring outperform the models based on raw scores. AD diagnosis was significantly more

accurate for the augmented model (AUC 0.97). For the three predictive models, the AUC of

the best augmented model ranged from 0.89 to 0.91.

Random forests have advantages over standard statistical methods that make them useful for

the approach presented here. First, they can give accurate results even when the relationship

between the predictor and outcome variables is non-linear. Second, it is possible to generate

a useful classifier when the number of predictors exceeds the number of subjects. Third,

collinearity among the predictor variables does not prevent convergence of the model or

diminish measures of predictor variable importance. However, rather than providing the user

with a compact set of coefficients for interpretation, random forests provide only measures

of variable importance, which are useful for variable selection but do not constitute a

summary of the model.

We note that after the variable selection step every augmented model incorporated more

than one ICA component score. Boxplots of the six most important variables for predicting

MCI conversion from animal fluency data are shown in Figure 5. Four of these six variables

are ICA component scores. Attempting to simplify the classifiers by omitting the ICA

variables (not shown here) results in worsened performance. ICA stands out as potentially

the most useful of the new scoring methods, based on the frequency with which ICA-derived

variables exceed the threshold of variable importance for remaining in the model. ICA

component scores have the disadvantage that they are not readily interpretable, but future

work could address this by evaluating the correlation of specific, relevant ICA scores with

neuropsychological tests or brain imaging. Switching scores and the generalized switching

scores often meet the selection threshold. Examination of their relationship with risk of

conversion reveals that higher switching scores are associated with lower risk of conversion,

but generalized switching scores are associated with higher risk. This apparent contradiction

is likely due to the fact that the generalized switching scores are based on proximities, which

are normalized for list length and are therefore inflated by low raw scores. This work merely

scratches the surface of potentially useful new scoring methods (see also Pakhomov &

Hemmy, 2013).

Correlation of risk estimates from these classifiers with neuropsychological test scores in the

original training sample and a separate validation sample (Tables 4 and 5) reveals a

significant relationship between classifier output and episodic memory as measured with the

CVLT in participant groups from both studies, WMS-Logical Memory in the training

sample, and, to a limited extent, 10/36 Spatial Recall in both samples. These findings have

potential importance, as episodic memory is the most commonly affected cognitive domain

in MCI and AD. In general, the correlations with classifier output are strongest for verbal

measures, and perhaps one should expect this finding, since the inputs are derived from

purely verbal data. There are some correlations with non-verbal measures, suggesting that
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the method is sensitive to changes in domains outside of verbal semantics. For example,

portions of the 10/36 Spatial Recall test correlate with output from the CDR classifier on the

training data (delayed recall scores), and with output from the FCI classifier on both the

training data and the validation data (total and delayed recall scores). Apart from strong

correlations with FAS in the validation sample, there is evidence that the classifiers are

detecting executive dysfunction as measured with non-verbal tests, based on the findings in

the training sample that all three classifiers correlate with Trail Making Test C and two of

the classifiers (for CDR and FCI) correlate with Trails B. This pattern is also observed in the

validation sample, in which risk estimates from the CDR and FCI classifiers correlate with

time to complete Trails B. The relatively greater association between estimated risk of FCI

decrease and non-verbal neuropsychological measures in both participant samples suggests

that the classifiers are sensitive to the relatively greater importance of non-verbal cognition

for this particular outcome measure. The findings from the correlation analysis with the

validation sample suggest that the output from the classifiers is sufficiently generalizable to

warrant further longitudinal study.

Several limitations of this research should be noted. First, although letter fluency tasks are

known to be a useful complement to semantic fluency (Duff-Canning, Leach, Stuss, Ngo, &

Black, 2004) we did not perform them on the participants in the training sample. Classifiers

that use raw and augmented scores from letter fluency tasks might be more accurate than

those presented here. Second, there is a risk of circularity in the prediction of conversion,

CDR scores, and AD diagnosis based on verbal fluency scores, as the consensus team was

not blinded to the raw scores for animals, clothing, or fruits and vegetables during the

consensus meeting, nor were they blinded to the CDR. However, this concern does not relate

to the finding that the augmented models outperformed the raw models. In addition, the

consensus team was always blinded to all aspects of the FCI. A third limitation is that the

use of handwritten verbal fluency transcriptions introduces some imprecision into the

measurements. Although these measurements were made on electronic files with absolutely

no typographical errors, the possibility of real-word, within-category substitutions by the

technicians cannot be excluded. Future work will make use of audio recordings, which may

improve the accuracy of transcription and will permit precise quantification of time between

words. Fourth, the semantic category cues employed included three nested categories. That

is, all vegetables are elements in the set of fruits and vegetables, and all fruits and vegetables

are elements in the set of items one might find in a supermarket. It is common for such

nested categories to be used in studies of verbal fluency (e.g., see Hodges & Patterson,

1995) and it is possible that their use may enhance the evaluation of fine-grained semantic

distinctions that are clinically relevant. However, use of these overlapping categories could

generate order effects in the neuropsychological battery as a whole. For example, patients

with cognitive impairment could suffer greater semantic interference and generate more

intrusions on the vegetables task as a result of having been recently asked to generate a list

of fruits and vegetables. Alternatively, those with cognitive impairment could derive less

benefit on the vegetables task due to poor memory for the fruits and vegetables task. Either

of these possibilities could cause cognitively impaired individuals to perform worse on the

vegetables task (which was administered last). The quality of the classifications described

here could be enhanced by such order effects, which are a feature of the test battery as a
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whole rather than a feature specific to semantic fluency tasks. Finally, although we do offer

some evidence that the measures generalize to unseen data points (i.e., the measures

correlate with neuropsychological measures in a comparable sample), a better validation

could be performed if longitudinal data were available on the participants from the second

study. If such data were available, then the analysis could take advantage of the baseline+Y1

classifiers (instead of using the baseline classifiers only) and classifier performance could be

characterized in terms of actual accuracy or AUC.

In summary, our results demonstrate that computerized analysis of semantic fluency lists can

be used to generate sound predictions of functional decline. The artificial intelligence

techniques described here, but potentially also other machine learning methods, such as deep

belief networks (Hinton & Salakhutdinov, 2006) and AdaBoost (Freund & Schapire, 1997),

may reveal a wealth of information relevant to the study of diseases that affect the brain

when used in conjunction with verbal fluency tasks, which are widely used due to their

brevity and ease of administration. The random forest classifiers generated for this work

compare favorably with results reported on similar research subjects using classifiers based

on more invasive, expensive, and time-consuming methods. Future work will address the

potential of these methods to add to the predictive power of biological markers, such as

brain imaging, genotype, or cerebrospinal fluid markers.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Description of procedure for deriving ICA component scores. (1) Semantic fluency lists

were obtained from the participants. (2) The proximity of every pair of words in each list

was calculated using the formula , where p2 was the position of the later

word, p1 was the position of the earlier word, and L was the length of the list. (3) For each

list, a sparse N × N proximity matrix was created, where N was the total number of all

words generated (by all participants) for the given semantic category. (4) The entries in the

upper triangular portion of each sparse matrix were transferred into a column vector in a

fixed order. (The superscript T indicates the transpose of the row vector shown.) (5) Column

vectors generated by this method were arranged in a large M × P matrix, where M = (N × (N

−1))/2 and P = the number of verbal fluency lists available (at least 380, but up to 550). (6)

Independent components analysis (ICA) was performed on the M × P matrix. The output of

the ICA algorithm consists of component vectors the same size as the column vectors. One
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of these components is shown here, transformed back into a matrix the same size as the

original sparse matrices (N × N). (7) Twenty component scores were obtained for each

fluency list by computing the dot product of each ICA component with each column vector

from the large matrix. (8) Component scores were then used as inputs to the random forests

algorithm, along with raw scores and measures of clustering and switching.
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Figure 2.
Boxes and arrows description of methods for generating classifiers. (A) The classifier built

for AD diagnosis included only the CN and AD participants. The gray arrows indicate the

pathway for constructing classifiers using only raw scores and demographic data, while the

black arrows indicate the pathway for constructing classifiers that incorporate latent

information. (B) The classifier built for discerning MCI-C from MCI-N participants

included only MCI participants. Gray and black arrows represent the same meaning as in

Figure 2A. Dashed arrows represent the pathway used for constructing classifiers using only

baseline data, while solid arrows represent the use of baseline+Y1 data. (C) The classifiers

built for predicting CDR-SOB increase and FCI decrease included data from all participants.

The numbers in the figure refer to the numbers of participants in each group at baseline.

Arrows have the same meanings as in Figure 2B.
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Figure 3.
ROC curves of random forest classifiers constructed by aggregating votes from classifiers

made from the five individual semantic fluency tasks. (A) Diagnosis of AD at baseline from

semantic fluency raw scores (gray) and augmented scoring methods (black). (B) Prediction

of conversion from MCI to AD using baseline semantic fluency raw scores (dashed gray),

baseline+Y1 raw scores (gray), a baseline model with new scoring methods (dashed black),

and baseline+Y1 augmented scores (black). (C) Increase in CDR-SOB one year after

evaluation. The shading scheme is the same as for MCI conversion. (D) Decrease in FCI

score ≥ 10 points one year after evaluation. The shading scheme is the same as for MCI

conversion.
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Figure 4.
Average level of risk within each group assigned by the baseline, augmented random forest

classifiers at each follow-up year. Error bars represent standard error. The dashed lines

represent risk level for the participants with the undesirable outcome as assigned by a

classifier trained to predict conversion to AD (A), increase in CDR-SOB score (B), and

decrease in FCI score of at least 10 points. Solid lines represent the level of risk assigned to

participants without the undesirable outcome. Levels of risk are higher for the participants

with the undesirable outcome for a minimum of two years after the baseline evaluation.

Clark et al. Page 25

Cortex. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5.
Box and whiskers plots depicting the values of the six most important variables for

predicting MCI conversion from animal fluency data. The median values (heavy black

horizontal line) are always lower for the MCI-C group, but each variable appears to have

only weak independent value for discerning the groups. Note that four of the variables are

ICA component scores and one of these variables exceeds the measured importance for the

raw score (ICA Component 20).
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