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Abstract

Simulation of in vivo cellular processes with the reaction-diffusion master equation (RDME) is a

computationally expensive task. Our previous software enabled simulation of inhomogeneous

biochemical systems for small bacteria over long time scales using the MPD-RDME method on a

single GPU. Simulations of larger eukaryotic systems exceed the on-board memory capacity of

individual GPUs, and long time simulations of modest-sized cells such as yeast are impractical on

a single GPU. We present a new multi-GPU parallel implementation of the MPD-RDME method

based on a spatial decomposition approach that supports dynamic load balancing for workstations

containing GPUs of varying performance and memory capacity. We take advantage of high-

performance features of CUDA for peer-to-peer GPU memory transfers and evaluate the

performance of our algorithms on state-of-the-art GPU devices. We present parallel e ciency and

performance results for simulations using multiple GPUs as system size, particle counts, and

number of reactions grow. We also demonstrate multi-GPU performance in simulations of the Min

protein system in E. coli. Moreover, our multi-GPU decomposition and load balancing approach

can be generalized to other lattice-based problems.
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1. Introduction

Reaction diffusion processes are ubiquitous in biology. The random nature of gene

expression and behavior of genetic switches was demonstrated by a series of pioneering

experiments that have been recently reviewed [1]. These cellular processes are governed by

stochastic interactions between a relatively small number of proteins and nucleic acids,

giving rise to large fluctuations in the substances appearing in the underlying biochemical

reactions. The distributions of copy numbers and phenotypic behavior of members within in

a population of cells motivate a probabilistic formulation of the reactions rather than a

deterministic one used to describe the mean behavior of chemical reactions with large

concentrations of reactants. Even though cellular volumes range from only 1-1000 cubic

microns, the cell has a crowded environment with many reactions being localized to

particular parts of the cell requiring reactants to diffuse to the reaction sites. Stochastic

modeling of a system of biochemical reactions at the cellular level can be divided into

methods which handle spatial inhomogeneity such as the reaction-diffusion master equation

(RDME), and those that assume a well-stirred environment like the chemical master

equation (CME). Since the CME and RDME are both analytically intractable for systems of

significant complexity, the reactions are generally studied using large ensembles of

computationally generated trajectories (realizations) of the Markov processes and transition

probabilities described by the master equations.

The CME assumes the reaction volume is well-stirred such that reactions are equally likely

between any reactant molecules in the entire volume. For in vitro biochemical systems the

well-stirred approximation proves reasonable [2], but spatial organization and molecular

crowding inside cells bring this assumption into question for in vivo systems [3]. The RDME

extends the master equation formalism of the CME to account for spatial degrees of freedom

by dividing the system volume into discrete subvolumes with molecules diffusing between

adjacent subvolumes and reacting only with other molecules in the local subvolume. In our

previous studies of small bacteria and in vitro systems, we developed the Lattice Microbes

software [3, 4] to e ciently sample trajectories from either the CME and RDME on high

performance computing (HPC) infrastructure, taking advantage of attached GPUs or other

many-core processors to increase performance.

To probabilistically study chemico-physical processes using the master equation formalism,

one solves the time evolution of the probability P for the system to be in a given state x. In

our treatment of the RDME for modeling chemical reactions under conditions of slow

diffusion [5, 6, 7], the system's volume is divided into a set of uniform subvolumes with

spacing λ and with the molecules in the system distributed amongst the subvolumes.

Reactions occur only between molecules within a subvolume and each subvolume is

considered to be well-stirred such that reactions within it follow standard kinetic theory and

can be described by the CME solved using the Gillespie stochastic algorithm [8]. The CME

using the Gillespie algorithms has already been applied by others to enzyme reactions

obeying Michaelis–Menten kinetics [2]. Other more complex reaction schemes described by

Hill functions can be broken down into elementary first and second order reactions and

solved with either CME or RDME approaches. The Lattice Microbes software uses operator

splitting to calculate the reaction and diffusion operations separately. Diffusion is accounted

Hallock et al. Page 2

Parallel Comput. Author manuscript; available in PMC 2014 May 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



for by random transitions of molecular species between neighboring subvolumes at a

predetermined time according to their macroscopic diffusion coe cient. The software

combines the multiparticle (MP) method for diffusion developed by Chopard et al. [9] in

lattice gas automata for reaction diffusion systems with Gillespie's stochastic simulator

algorithm for reactions within the subvolumes. This approach is most similar to the Gillespie

multi-particle (GMP) method first introduced by Rodríguez et al. [10]. Using the

multiparticle diffusion (MPD) method, the diffusion operator of the RDME is parallelized

for efficient calculation on a GPU at a per-subvolume granularity [11]. Uniquely, our MPD-

RDME approach is of sufficient performance to permit the inclusion of in vivo crowding

into the model, by constructing an approximation of the crowded cytoplasm using reflective

sites.

The time evolution of the probability for the system to be in a specific state x (where xv

contains the number of molecules of each of N species in the ψ ∈ V subvolume) is the sum

of the rates of change due to reaction and diffusion, as described by the operators R and D,

respectively:

The reaction operator is simply the CME applied to each subvolume independently, where

ar(x) is the reaction propensity for reaction r of R and S is the N×R stoichiometric matrix

describing the net change in molecule number when a reaction occurs. The diffusion

operator describes the rate of change of the probability due to the molecules’ propensity to

diffuse between the subvolumes. xα
v is the number of molecules of species α ∈ N in

subvolume v and dα is the diffusive propensity for a molecule of species α to jump from

subvolume v to neighboring subvolume v + ξ, which is related to its macroscopic diffusion

coefficient by . The first part of the diffusion operator then is probability flux out of the

current state due to molecules diffusing from subvolume to subvolume v + ξ, where ξ is a

neighboring subvolume in the ±x, ±y, or ±z direction, as indicated by the î, ĵ, and k̂ units

vectors. The second part of the diffusion operator describes probability flux into the current

state due to molecules diffusing into the current subvolume from a neighboring subvolume.

The 1α 
v syntax represents a single molecule of type α in subvolume v.

In our previous studies of small Escherichia coli (E. coli) bacteria with cellular volumes of

2-3 cubic microns and over one-half million obstacles fixed at lattice sites to represent the

molecular crowding, the above time evolution equation was stochastically simulated on a

single GPU to mimic the lac genetic switch controlling transitions between two distinct

phenotypic states. The kinetic model involved 23 reactions for ten different molecular

species which for the observed cellular concentrations resulted in 1 million active particles

being simulated. The memory capacity and performance of a single GPU ultimately limits

the number of particles, reactions, resolution, and size of the organism that can be simulated.
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These restrictions can be lifted to simulate larger organisms such as dividing bacteria and

yeast over biologically relevant timescales by utilizing multiple GPU accelerators attached

to a single workstation to carry out the MPD-RDME simulations.

The main target platforms for our multi-GPU MPD-RDME algorithm are multi-GPU

workstations and HPC cluster nodes. These machines are composed of two or more GPUs

connected to the host through a PCI Express (PCIe) bus. Modern GPUs are throughput-

oriented devices with massively parallel architecture. State-of-the-art GPUs are capable of

performing up to 4 trillion single-precision floating point operations per second (4

TFLOPS), and they contain their own high-bandwidth on-board memory subsystems

capable of transferring data at rates of up to 250 GB/sec. Although a few multi-GPU laptop

computers do exist, one of the GPUs is typically incorporated onto the main system board or

within the CPU itself, and therefore does not have a high-bandwidth memory subsystem

comparable to that of a traditional discrete GPU.

For computation of the MPD-RDME trajectory, a 3-dimensional regular lattice serves as a

spatial representation for the system, with each lattice site describing the properties and state

of a subvolume. A major limiting factor for the physical size of the biological system we

wish to simulate is the amount of global memory available on the GPU to store the lattice.

The GPU memory requirement is dependent on the lattice spacing and the maximum

number of particles that can be stored per lattice site. Two to eight particles per lattice site

can be expressed with a single 32-bit word [11], with a trade-off between the number of

unique particle species that can be present in the simulation and the lattice site particle

capacity. Alternatively, multiple 64-bit words can be used to express eight particles each [4]

with a constant number of unique species. If the number of particles in a subvolume exceeds

the capacity of a lattice site, the additional particles are considered to have overflowed the

data structure and are added to a list to be re-integrated into the simulation at the end of the

timestep [11]. Overflow handling is performed by the host CPU, so it is best to choose a

lattice spacing and site capacity that will minimize the occurrence of these events, but these

choices will impact the memory required to perform the simulation.

To overcome the limited memory capacity of a single GPU, our approach applies a spatial

decomposition of the simulation lattice over multiple GPUs. This method has proven

successful in other multiple-GPU parallelizations applied to 3D finite difference

discretizations of the wave equation [12]. A multidimensional spatial decomposition is also

applied in a number of packages that provide auto-parallelization of stencil kernels over

regular lattices, such as Physis [13] and CaKernel [14]. Both Physis and CaKernel provide

multiple GPU support via MPI that allows execution over multiple host machines to

aggregate GPUs. Our approach targets a single workstation with multiple directly-attached

GPUs, which neither CaKernel or Physis is optimized to handle. Our approach streamlines

inter-GPU communication by establishing a unified memory address space between GPUs,

and utilizes direct communication via PCIe DMA operations when possible. This allows us

to o er powerful multi-GPU accelerated computations simply by having multiple GPUs

present in the machine. Our approach does not rely on an MPI implementation to be

installed or configured allowing for easier deployment and use, removing the requirement

and burden of compiling MPI applications. The multi-process parallelization that MPI
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provides can not take advantage of the lowest latency communication channels between

GPUs by directly using DMA operations over the PCI-Express bus to move information

from one GPU to another. The domain of discrete particle diffusion is also difficult to

express in the domain specific language that is provided by the automatic stencil

frameworks. For example, Physis is optimized to operate on a periodic lattice of floating-

point data types. Other works, such as PARTRANS [15], investigates single host, multi-

GPU configurations as well. However, it is unable to have GPUs directly communicate as

OpenCL lacks peer-to-peer GPU memory transfers. This multi-GPU implementation of the

MPD-RDME algorithm has the additional benefit of bit-wise identical results with the single

GPU version, which allows for trivial verification of correctness with respect to the single

GPU implementation.

In principle, the aggregate arithmetic capabilities, memory capacities, and memory

bandwidths provided by multi-GPU computers allow simulation of much larger biological

systems than can fit onto a single GPU, as well as increasing simulation performance for

smaller systems. Dynamic load balancing is used to tune the spatial decomposition in order

to maximize performance, making optimal use of all GPU resources. In addition to assisting

with increasing physical size, multi-GPU simulation is also helpful for reducing runtimes

associated with increasing particle counts and larger numbers of reactions.

2. Methods

The adaptation of the MPD-RDME algorithm for parallel execution on multiple GPUs

presents several challenges. First, the lattice must be dynamically distributed among GPUs

using a spatial decomposition, which requires communication and synchronization to ensure

data dependencies are satisfied. Next, MPD-RDME kernels must be modified to operate

only on portions of the lattice at a time to facilitate concurrent overlap of communication

with kernel execution. Finally, load balancing metrics need to be collected to optimize

performance for inhomogeneous workloads and when utilizing accelerators with differing

performance characteristics.

The majority of the kernel-level algorithms from the single GPU implementation [11] are

kept intact during the process of moving to multiple GPUs. Only a few kernel modifications

are required, as a GPU already performs work on a fine-grained level. Most of the

challenges arise from efficiently performing the algorithm in a distributed memory

environment.

2.1. Lattice Partitioning for Spatial Decomposition

The lattice is stored in host memory as a 3-dimensional array, and when using a single GPU

the lattice in GPU memory is laid out and sized identically. For multiple GPUs, as illustrated

in Figure 1, the lattice is partitioned in one spatial dimension, creating a sublattice for each

available GPU. The partitioning occurs in the z-dimension so that each sublattice is

represented by a single contiguous memory region. The amount of data that must be

communicated between adjacent sublattices is proportional to the cross-sectional area of the

lattice when cut along the z-axis, therefore it is beneficial to performance to orient the

simulated volume in a way that minimizes this area. Physically, E. coli cells are typically
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longer in one dimension, so the long axis of the bacterial cell is aligned with the lattice z-

axis for the smallest cross-section. Other parallel decomposition schemes, such as a

functional decomposition where diffusion and reactions are processed on different devices,

would require that the full lattice be exchanged between devices at every step. A spatial

decomposition allows for minimal data exchange, and distributing the lattice into the

memory of multiple devices has the additional benefit of allowing for a lattice that would be

too large for the on-board memory of any one GPU.

Each sublattice is extended to add an halo of lattice sites from each of the neighboring

sublattices to account for diffusion on sublattice boundaries. The halo sites of each sublattice

are redundantly calculated by the neighboring GPUs and allows the diffusion operator to be

a communication-free operation, as all cells that the kernels must access are present in local

GPU memory. At the end of every timestep, the halo sites are updated from the neighboring

GPU. In the case of simulations with periodic boundary conditions, the first and last GPUs

are also considered neighbors and their sublattices are extended as if they were adjacent.

The halo sites are redundantly simulated by both the GPU that “owns” that sublattice and the

neighboring GPU. In order to preserve simulation consistency, random number generation

for each stochastic event must be identical on both devices to arrive at the same outcome. To

facilitate this, the random number generator is seeded with a combination of the current

timestep and the index of the global lattice position. This is analogous to the single GPU

implementation where the random seeds were derived from the global memory index of the

lattice site. Using the global lattice position allows multiple GPUs to independently perform

redundant work and arrive at identical results.

The lattice data structure has a finite number of particles that can be stored per site. It is

possible that too many particles will need to occupy the same site and will have to overflow

into a neighboring site. The list of overflow events must be examined every timestep to

determine if there are any particles that must be relocated. The overflow list bu er is stored

in host memory and is directly mapped into the GPU address space, enabling zero-copy

memory accesses that fully overlap kernel execution and host-device memory transfers [16].

The use of the zero-copy scheme avoids the need for an explicit host-device memory copy to

retrieve the overflow list thus improving performance, particularly when overflow

exceptions are rare.

Parallel execution among GPUs is facilitated by a host thread that is spawned to control each

GPU. A multi-threaded approach, as opposed to a multi-process approach, allows for

efficient shared-memory communication between host threads, and avoids high GPU

context switching overheads that would otherwise occur for multi-process access. The

POSIX thread library provides mutexes and condition variables that are used for low-

latency, inter-device synchronization and coordination via their controlling threads. Each

thread is responsible for scheduling all kernel launches and memory transfers for its device.

At the end of every timestep, the host threads perform a parallel sum reduction on the count

of overflow events that occurred on the GPU during the timestep. If the sum is non-zero,

sublattices are copied back to host memory for overflow resolution. The updated lattice is

then returned to the GPUs, and simulation continues.
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2.2. Hiding Inter-GPU Communication Latency

In order to reduce inter-GPU communication overhead, it is important to exploit the ability

of the GPU hardware to overlap kernel execution with memory transfers [17, 18]. Before

starting diffusion events, the halo sites of the sublattice must be updated with the current

data from the neighboring GPU. Instead of waiting for any memory transfers to complete

before beginning work, x-axis diffusion is broken into two separate parts. The first part is to

compute x-axis diffusion events on the interior of the sublattice, and the second is x-axis

diffusion in the halo regions. The interior diffusion events can be computed while

performing the memory copies to update the halo. Once those memory transfers complete,

the second part of x-axis diffusion performs updates on the halo region. Overlapping kernel

execution and memory transfers requires the operations be performed in two independent

asynchronous CUDA streams [19]. A CUDA stream is a queue of GPU operations such as

kernel launches or memory transfers that are run in the order in which they are enqueued.

The sequence of events across the two streams of every GPU is shown in Figure 2. In order

to synchronize events between streams, a CUDA event is inserted in one stream, and a

blocking operation waiting on that event is inserted into the other. We use this to block the

execution of the y-axis and z-axis diffusion until both invocations of the x-axis kernel are

complete. The y-axis and z-axis diffusion steps operate on the entire sublattice at once. The

reaction kernel is also split in two parts. The first part computes reactions in sites that are

halos in other sublattices, and the second part is the remaining interior of the sublattice. By

computing the sites along the edge first, memory copies transferring that data to the

neighboring GPUs can be overlapped with computation of the reactions on the interior.

2.3. Host Machine NUMA Topology

Modern computers are composed of a collection of tightly coupled network links that

facilitate the movement of information between components. Figure 3 contains a block

diagram illustrating the topological layout for the computers that were used in our multi-

GPU performance analysis. The topology of the host machine must be considered as it has a

strong influence on multi-GPU performance [20, 21]. Many multi-GPU computers contain

multiple non-uniform memory access (NUMA) nodes and multiple I/O Hubs (IOH) to

connect the host CPUs to the PCIe buses and other peripherals. NUMA describes the

locality of memory to CPUs by defining a distance metric between processors and regions of

memory with relation to how quickly a given processor can access that memory. Each IOH,

like memory, also has an intrinsic locality in that there is similar non-uniformity in access

times from different CPU sockets. There is a significant difference in the performance for

transfers between a local GPU and a local memory bank, as opposed to a non-local GPU and

a local memory bank, and furthermore, for a non-local GPU and a non-local memory bank

[20, 21].

There are two methods for copying data between GPUs. The first method stages copies

through host memory by copying the data from the source GPU to host memory and then

copying from host memory to the destination GPU. The second method is direct peer-to-

peer transfer, where the source GPU transfers data directly to the destination GPU over the

PCIe bus. Peer-to-peer transfers require that participating GPUs support mapping of peer

memory into their virtual address spaces and have associated hardware DMA support. When
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a GPU is able to directly access memory on a remote GPU as described above, the two

GPUs are said to be “peered”. However, certain factors may prevent all GPUs from peering

with each other. Non-peering GPUs are a result of multi-IOH computers which result in

multiple roots in the PCIe bus topology. In these computers, direct memory transfers must

traverse another internal network, e.g., HyperTransport (HT) or QuickPath Interconnect

(QPI). Support for peer-to-peer transfers over HT exists, however there is currently no

support for Intel-based chipsets that use QPI as an inter-processor network.

When GPUs are peered, halo sites are transferred directly to a bu er on the neighboring GPU

after reactions are evaluated. A GPU only needs to perform a fast local memory copy to

update its sublattice. If a pair of GPUs cannot be peered, communication between those

devices must be bu ered through host memory. This can be transparently handled by the

device driver and runtime library as an “unpeered” transfer, however we choose to handle it

explicitly to control where the memory buffer is placed and to control the timing of the send

and receive host-to-device memory copies that make up the exchange. The buffer is placed

in host memory that is local to the receiving GPU, and is written to and read from with the

CUDA asynchronous memory copy functions. To maximize the potential for peering of

GPUs containing neighboring sublattices, it is important to map sublattices to GPUs such

that communicating GPUs are under the same PCIe root whenever possible. This mapping

reduces memory pressure caused by host memory accesses, thereby preventing the host

memory controllers from becoming a communication bottleneck.

Figure 4 shows benchmarked data transfers for a range of payload sizes from host-to-GPU

and between GPUs. A driver flag determined whether the GPUs link to the computer using

the PCIe version 2 protocol or PCIe version 3 protocol. Each GPU has a full PCIe ×16 link

to an IOH. When communicating with host memory, it is possible to fully utilize the bus as

message sizes approach one megabyte in size. In PCIe 2 mode, we also start to observe peak

throughput around this size for peered copies, but at a reduced rate. Non-peered PCIe 2

copies do not match the performance of peered copies as the copies are internally handled as

a copy to host memory from the first GPU and then to the second GPU. However, the peered

copy rate is lower than expected for PCIe 3, especially with respect to the PCIe 2

performance. This may not be a factor of the GPU hardware but may be a host machine

chipset or driver anomaly that warrants further study. For comparison, an approach using

MPI to do inter-process transfers with MPI Send and MPI Recv is shown to highlight

potential gains in throughput from using direct peer-to-peer GPU memory transfers. In a

latency-sensitive application, peered memory transfers are the best choice for inter-GPU

communication.

Memory copies to and from GPUs to the host memory lattice are optimized in regards to

memory locality as well. The lattice is stored as a contiguous array of memory that can be

directly indexed with the (x, y, z) coordinate for a site. Different GPUs access different slices

of this array, so it is possible to optimize for NUMA locality here as well. Using the move

pages Linux system call, we advise the kernel virtual memory subsystem to re-allocate slices

of the lattice array to be physically stored in memory that will be local to the GPU that will

be accessing it. The virtual memory addressing remains contiguous and the indexing into the

array remains unchanged.

Hallock et al. Page 8

Parallel Comput. Author manuscript; available in PMC 2014 May 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2.4. Capacity-Aware Heterogeneous GPU Load Balancing

By default, the lattice is partitioned into sublattices of equal sizes, presuming that all GPUs

will complete their work at the same rate. To support instances when performance differs

between GPUs, a dynamic load balancing approach is used to repartition the lattice among

GPUs. At regular intervals, the load balancer compares the relative performance of each

GPU. If a work imbalance is detected, the lattice is repartitioned to assign more lattice sites

to GPUs that completed timesteps quicker than the other units.

One intuitive source of load imbalance arises in workstations where different models of

GPUs are installed and some models are faster than others. The high performance GPU(s)

are given larger sublattices compared to the lower performing GPUs. Another source of load

imbalance can arise from spatial heterogeneity. Different densities of particles may be found

in different spatial regions of the simulation, or some regions may have a larger number of

reaction types that occur there, such as between mitochondria and cytoplasm. This localized

area takes more time to compute, so smaller sublattices are given to those GPUs to

compensate.

While the goal of load balancing is to equalize the runtime between heterogeneous GPUs,

we must also consider available GPU memory when deciding how much of the lattice will

be assigned to each GPU. Therefore, the load balancer must be aware of the memory

capacity of each GPU and impose a constraint on the maximum size sublattice that each unit

is able to support. In the case of a faster GPU with less device memory than other present

GPUs, or in workstations with similarly-capable GPUs with different amounts of memory, a

sub-optimal partitioning of the simulation may be necessary in order to avoid exceeding any

GPU's memory capacity.

To assess the load balance across the system, the wall-clock time required to execute a

timestep is collected and averaged for a batch of steps, which is then averaged among all

GPUs to determine the mean compute time. The imbalance metric for a given GPU is its

percentage difference from this mean time. A certain threshold for the imbalance metric

must be crossed because the lattice cannot be divided at any arbitrary point along the z-axis.

Only points that are integer multiples of the CUDA thread block size used for the z-

dimension diffusion kernel are acceptable division points. Unless the sublattice is reduced

by enough in the z-dimension, it does not result in a smaller CUDA thread block grid for the

GPU to compute, because a partial block is still needed to cover the whole sublattice.

Additionally, a partial block would also be needed on the neighboring GPU, resulting in

more overall work.

3. Results

A number of variables affect the simulation performance of a single GPU and the parallel

efficiency of multiple GPUs. The foremost factor affecting performance is the total number

of lattice sites that result from the combination of the volume of the simulated cellular

system and the choice of lattice spacing, which together determine the lattice dimensions.

Since the multi-GPU algorithm detailed here uses a spatial decomposition, this is the one

factor that our approach most directly addresses in our performance test simulations listed in
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Table 1. Other simulation parameters will have a noticeable e ect as well, such as the

number of particles being simulated and the number of distinct reactions. We will explore

the performance as a function of these parameters.

3.1. Test Models

To evaluate multi-GPU performance as a function of lattice size, we have constructed a

series of tests to mimic widely studied biological organisms of varying cell sizes, namely, E.

coli, E.coli undergoing cell division, yeast, and red blood cells. For the purposes of

comparison, each simulation assumes a spatially homogeneous volume with four different

chemical species that interact via four reactions, A ⇋ B, B + C ⇌ D. The lattice data

structure uses 32 bits for each site with four bits per particle and four bits for the site type.

This configuration allows for as many as seven particles per site and for each site to be one

of sixteen types, such as lattice sites representing the cytoplasm, membrane, or extracellular

space. Our primary machine for performing the following performance tests is “Eir”, a dual-

socket workstation with Intel Xeon E5-2640 six-core processors, with four NVIDIA

GeForce GTX 680 GPUs, each attached to a dedicated PCIe 3.0 ×16 slot. To test larger

biological systems with an increased quantity of GPU devices, we also made use of the

NCSA Forge GPU cluster, comprised of compute nodes each containing two AMD Opteron

6136 “Magny-Cours” eight-core processors and eight NVIDIA Tesla M2070 GPUs. Finally,

for tests of load balancing among heterogeneous GPUs, we used “Tokyo”, a dual-socket

workstation with Intel Xeon X5550 4-core processors, with two NVIDIA Tesla K20c GPUs

installed in dedicated PCIe 2 ×16 slots, and an external NVIDIA QuadroPlex 7000 chassis

containing two NVIDIA Quadro 7000 GPUs cabled to a PCIe 2 ×16 slot. Hereafter, we refer

to NVIDIA GeForce GTX 680 GPUs as “GTX680”, and NVIDIA Tesla M2070 GPUs as

“M2070”.

Each of the cellular test systems in Table 1 were run for a short simulated time and

extrapolated to the wall time required for one simulated hour. The E. coli cell cycle is about

one hour long, so it marks a reasonable goal for simulation length. The runtimes of the

cellular performance test systems can be seen in Figure 5, and the achieved simulation

runtime speed-ups are shown in Table 2. As the simulation volume increases, we observe a

linear increase in runtime using a single GPU. Two and four GPUs provide a speedup over

the single device, however for smaller volumes the benefit of four GPUs is less. Eight GPUs

did not provide any speedup below 64 μm3 using a 16 nm lattice, but performs well for

larger test systems. Note that tests using an 8 nm lattice spacing over a 16 nm lattice spacing

also have a shorter timestep to conserve the diffusion coefficient values. Not only is the

lattice eight times as large, but it also requires four times as many timesteps to achieve one

simulated hour. We can see where the single-device limits begin to be overcome. With one

M2070 GPU, it is not possible to simulate beyond 512 μm3 at 16 nm lattice spacing or

beyond 64 μm3 with 8 nm lattice spacing. This is because the memory required exceeds the

6 GB on-board memory capacity of the M2070. The GTX680 GPU fares worse with its 2

GB on-board memory; even with four devices those limits can not be overcome. Multi-GPU

computers make biological systems larger than E. coli possible, however very large cells are

still not realizable on a single machine.
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3.2. Particle Concentration Affects Performance

A greater number of particles in a simulation intuitively increases runtime. However, unlike

volume, this relationship is not linear. At low particle counts there is little work to perform,

but at high concentrations performance is strongly affected by site overflow exceptions

because they are resolved by the CPU and involve additional serial overhead. We

constructed a simulation to iteratively add particles to a fixed volume and chart

performance, as shown in Figure 6. For a single GPU, runtime grows steeply at first until it

nearly doubles. This can be explained by a work imbalance among blocks of each kernel

launch. With low particle counts, some blocks are empty and they can be retired quicker

than blocks that contain particles. After the initial rise, runtime grows linearly until site

overflows begin to occur, and runtime exhibits a steep increase. At the upper-end of the

second rise, overflows are occurring during every timestep and the cost of extra memory

transfers to and from the host needed to resolve the overflow exceptions is a hindrance to

simulation throughput.

On multiple GPUs, the performance curve is similar, however the initial rise is flattened due

to the grid size being smaller, and the linear growth is not as steep. As can be seen on the

inset graphs of Figure 6, the parallel efficiency is maximal after the initial rise and remains

steady until overflows start to occur. A spatial decomposition results in a distribution of

particles among the sublattices and spreads the work among devices. The use of multiple

GPUs is an effective approach for countering additional runtime as simulation particle

counts increase.

3.3. Reactions in a Lattice Site are Independent of all Other Sites

Particles may only interact with other particles that are present in the same lattice site, and

all sites can be processed independently as communication with neighboring sites is not

required. With ideal load balancing, we expect linear performance gains from the use of

multiple GPUs for computing reactions because the lattice sites are distributed among

devices. However, quantifying the wall-clock cost of reactions is difficult. Not only is the

performance determined by the number of reactions in the kinetic model, but the rate at

which the reactions proceed and the number of substrate particles in the simulation also

affect timings.

Consider the following test case to examine the effect from the quantity of reactions. Similar

to the particle simulation test described above, a simulation was constructed to iteratively

add one reaction and chart performance. All reactions are first-order reactions with a rate of

1 s−1. Examining the slopes of the curves in Figure 7, it can be seen that for a system

containing 100, 000 particles that runtime per timestep increases at a rate of 40 μs per

reaction for a single GPU. When compared against the slopes of multi-GPU runs, the rate of

growth is cut proportionally by the number of devices. With multiple GPUs, efficiency

remains constant when increasing the quantity of reactions. The use of multiple GPUs is a

therefore a key strategy for evaluation of large reaction networks.
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3.4. Parallel Efficiency

The overall parallel efficiency of multi-GPU execution is affected by three factors:

redundant computation, communication overhead, and inter-device synchronization. We can

examine efficiency by considering the scalability of the three separate diffusion kernels and

the reaction kernel separately. Redundant computations are performed by the x- and y-

dimension diffusion kernels for the halo sites. Since the spatial decomposition is along the z-

axis, the z-axis diffusion kernel only needs to read the halo sites but does not need to update

them. Reactions are local to a lattice site and therefore the reaction kernel only needs to

update sites in its sublattice and not the halo.

Ideally, communication overhead is negated by the ability to overlap computation and

communication across multiple CUDA streams. This scheme imposes a deadline on

computation such that overlapped communication can be considered free as long as the time

required for the communication to complete does not exceed the time it takes to run the

computation. The communication volume with each neighbor is 2×Lx×Ly lattice sites in size.

For example, a lattice of dimensions 64 × 64 × 128 using a 32-bit site requires that 32 kB

must be transferred to each neighbor. The profiled peer-to-peer transfer time for this copy

size is on average 4.7 μs, which is shorter than either computation kernel that the

communication overlaps with.

An added source of overhead is the parallel reduction that occurs after each timestep across

all GPU threads for overflow detection. Each sublattice must be fully processed before the

reduction on the number of overflow events can occur. This exposes any potential work

imbalance as idle time for other threads. The synchronization requires more time as more

devices are added, however adding devices decreases the time to compute the timestep. This

results in an increased fraction of timestep run time that is spent on the barrier

synchronization. This can be seen in profiling, and the per-operation times are described in

Table 3.

3.5. Load Balancing

To demonstrate the ability to react to changes in workload due to the dynamics of the

simulation, we constructed a model of simple diffusion across a barrier. A lattice of

128×128×256 with 16 nm lattice spacing is initialized with 500,000 particles in the upper

quarter, and a barrier to slow down diffusion is placed in the middle of the simulated

volume. The diffusion coefficient for the particles is 1 × 10−13 m2 s−1 in the barrier and 1 ×

10−12 m2 s−1 elsewhere. When run on two GPUs, the initial division of labor assigns the

upper-half to the first GPU and the lower-half to the second. In this case, there are no

reactions, so the work that a GPU must perform is correlated to the size of the sublattice that

it must process and the number of particles located in that sublattice. Initially, work is

imbalanced as the lower-half contains zero particles. As the simulation progresses, as seen in

Figure 8, the distribution of particles begins to spread out in the upper-half, and around t =

0.5, particles begin to enter the lower-half. The red line in the figure represents how the

volume is split into the sublattices for the two GPUs, and how the change in particle density

over time causes those sublattices to be reshaped to better distribute the work. Every 25 ms

the relative computation time is compared, and any imbalance is detected. The lattice
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distribution between devices is shifted to give a larger sublattice to the lower device, thus

giving it a volume with particles to compute diffusion for. As the particles diffuse and

become more uniformly distributed, the load balancer incrementally shifts to equalize work.

Towards the end of the simulation, the particles are sufficiently distributed that the lattice is

equally divided between the two GPUs.

The other application for load balancing is for handling GPU heterogeneity. In machines

that have GPUs of differing computational ability, load balancing can help minimize

runtime by assigning a larger portion of the lattice to faster devices. To test this aspect, we

constructed “Tokyo”, a test machine containing two Tesla K20c cards and two Quadro 7000

cards, as described above. Running the large 16 nm “blood” performance test, load

balancing boosted the simulation rate from 1.6 simulated seconds per hour to 2.1 seconds

per hour, a 32% increase in throughput and would be a savings of 22 days to compute one

full hour.

4. Case Study: Cell Division Regulation

The Min protein system of E. coli regulates the division process of the cell. This protein

system has been well studied using both experimental and computational methods [22, 23,

24]. We use it as a case-study with increased complexity arising from the heterogeneity of

the reactions. The system consists of three proteins, MinC, MinD, and MinE. MinD, upon

phosphorylation, self-catalytically binds to the cell membrane, while MinE attaches to

membrane-bound MinD and causes dephosphorylation, resulting in detachment. MinC

attaches to membrane-bound MinD and inhibits FtsZ polymerization, which prevents cell

constriction in those areas. One hallmark characteristic of this system is the periodic

oscillation of MinD. The observation is that the reduced presence of the species in the center

of the cell is what drives the location of cell constriction for division.

As bacteria undergoing cell division are elongated, the simulation volume is larger than our

previous experiments on E. coli, allowing us to leverage the performance from multiple

GPUs. Additionally, since we wish to capture the motion over a long period of time, multi-

GPU execution helps realize this quickly.

The simulation uses a 4 μm long E. coli cell undergoing cell division. The cell membrane

geometry is constructed from a 3 μm long cylinder with a 1 μm diameter, and 1 μm diameter

hemispheres on both ends. The model is discretized to a simulation lattice of dimensions 64

× 64 × 256 with 16 nm spacing, and simulated with a timestep of 50 μs. The kinetic model is

adapted from Fange and Elf [23], which includes only experimentally known interactions

between the Min proteins and is capable of replicating the characteristic features of the Min

system. The implemented reactions can be seen in Figure 9 with their corresponding rate

constants and diffusion coefficients. When the simulation starts, the initial species are

randomly distributed within the cytoplasmic space, and no proteins are initially on the

membrane. The amount of MinD present is equally split between MinDADP and MinDATP

species with 1758 particles each. MinE has an initial count of 914 particles.

As the Min system involves reactions both on the membrane surface as well as the

cytoplasm interior, we had to alter the set-up used in previous benchmarks. The out-most
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layer of lattice sites are designated as a distinct type (membrane) from the inner region of

the cell. Unbound proteins can freely move between the two types of sites, but complexes

associated to the membrane (designated with a subscript m) may only diffuse between

membrane sites. With the exception of MinD phosphorylation which occurs in cytoplasmic

sites, all other reactions occur within the membrane sites of the lattice.

Even though the simulation is purely stochastic, the expected macroscopic time evolution of

the system with the oscillatory behavior of the membrane-bound species is observed. In

Figure 10, we track the location of MinDm proteins along the cell over time, and present the

average occupancy in terms of number of particles present versus the number of membrane

lattice sites. The end to end oscillations are clearly visible.

A single GTX680 GPU is able to simulate the Min system at a rate of 134 simulated seconds

per wall-clock hour on the “Eir” machine described above. Using two and four GPUs we

achieve a simulation rate of 249 and 384 seconds per hour, respectively. Comparing back to

the benchmark systems discussed earlier, the speed-up shown in Table 2 for the dividing E.

coli family was 1.91 and 3.30 for two and four GPUs. On this system, we observe speedups

of 1.86 and 2.87. The parallel efficiency is lower but the overall simulation rate is higher – it

would take only a bit over a day to compute a full hour of the simplified Min system as

opposed to nearly two days for the benchmark model. With an initial count of 4430 particles

and a lattice that contains one million sites, the expected concentration of particles per site is

low. As some species are restricted to the membrane sites, the concentrations are locally

higher in those areas of the lattice. This is still less than the 80,000 particles that were

present in the benchmark test of the same lattice size. Refer back to Figure 6 and note the

strong initial increase in runtime with added particles. While the Min system has more

reactions than the benchmark, it is not a significant increase as compared to the additional

runtime from the difference in particle counts. The benchmark systems, although lacking

heterogeneity, are reasonable performance predictors for actual systems one wishes to study.

5. Discussion and Conclusion

We have shown that a one-dimensional spatial decomposition of the simulation lattice is an

effective approach for use with the MPD-RDME operator implemented by the previous

Lattice Microbes software [4]. Leveraging a moderate number of GPUs in a workstation, it

enables effective use of advanced GPU hardware features such as peer-to-peer memory

transfers for reducing communication bottlenecks via host memory by careful consideration

of the overall hardware topology. Multiple GPUs help stem rising runtimes associated with

the increase in physical size of the simulated biological system, with the addition of

increased particle counts, and with the increased complexity from adding more reaction

types to the simulation. We optimize performance via dynamic load balancing that can make

efficient use of GPUs that have different levels of computational power, and adapt to

performance changes and heterogeneity of work in the underlying simulation.

Practical matters involved in GPU hardware design and production costs are expected to

begin favoring products that incorporate multiple GPU chips on a single circuit board. One

of the key GPU performance characteristics, global memory bandwidth, is determined in
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part by the number of external pins on the GPU chip package, which is limited by the

surface area of the GPU chip package. It is easy to see that for applications like Lattice

Microbes, in which performance is ultimately bound by global memory bandwidth, that

GPU products that incorporate multiple GPU chips per board can o er potentially greater

performance per unit volume or per PCIe slot than single-chip GPU designs, at the cost of

additional programming complexity.

Looking forward, although we expect that individual GPU performance will continue to

increase, the computation rates required to maintain reasonable turnaround times for

simulation of biological cells will eventually exceed the capabilities of multi-GPU

workstations. Such challenging simulations will ultimately require the development of a new

distributed memory parallelization layer for execution on large GPU clusters and

supercomputers. Maintaining good parallel efficiency on distributed memory computers will

require a multi-dimensional parallel decomposition scheme to provide a distributed memory

implementation with sufficiently fine-grained work decomposition to exploit a large number

of single- or multi-GPU compute nodes. Other challenges that will need to be solved for

efficient scaling of a distributed memory parallel implementation include maximizing the

use of advanced GPU and networking hardware features that enable zero-copy RDMA data

transfers between GPUs on different nodes, and the development of efficient mechanisms

for strided memory transfers for sublattice boundary exchanges when using 2-D or 3-D

spatial decompositions.

Finally, the remaining major challenge will be handling lattice site overflow events in a

distributed memory environment. We plan to first parallelize the process by allowing GPUs

to resolve overflows without the CPU involvement. For situations where multiple sublattices

are within the particle replacement search radius, a vote will need to be tal-lied on which

volume can accommodate the particle at the smallest distance from the location where the

exception occurred.

While the methods described here were applied to parallelization of Lattice Microbes over

multiple GPUs, many of the approaches taken here are directly applicable to other grid-

based calculations with similar nearest-neighbor data dependency patterns between grid

cells. By segregating neighbor-dependent cells from independent cells and allowing the

hardware to perform memory copy operations concurrently with calculations, highly

efficient scaling onto multiple GPUs can be achieved.
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Figure 1.
Spatial decomposition of the RDME stochastic simulation onto four GPUs. The assigned

GPU is responsible for storing and computing particle diffusions and reactions that occur

within the region. Storing the lattice in distributed memory allows simulations of aggregate

lattice sizes that exceed the memory capacity of a single GPU.
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Figure 2.
Execution of a timestep on each GPU is a three-phase process: On GPU n, the first phase

processes x-axis diffusion on the interior (white area) of its sublattice while receiving the

updated lattice state along the sublattice boundaries (gray) from neighboring GPUs (n – 1, n

+ 1). These operations are executed asynchronously on two CUDA streams to overlap peer-

to-peer GPU memory copy operations with the computational kernels. X-axis diffusion is

run on the sublattice edges once the receive operations complete. A stream/event barrier

(red) synchronizes the two streams before continuing, ensuring that x-axis diffusion is

complete across the entire sublattice and all memory transfers are complete. The second

phase evaluates the y- and z-axis diffusion on the entire sublattice as sequential operations,

and no communication with other GPUs is necessary. The third phase begins with the

computation of reactions on the sublattice edges. The remaining sublattice interior is

evaluated for reactions while the updated states of the two sublattice edges are

asynchronously sent to the neighboring GPUs.
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Figure 3.
Block diagrams of (a) A typical layout for a four GPU, dual IOH computer, and (b) an eight

GPU node of the NCSA Forge cluster.
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Figure 4.
Inter-GPU and GPU-host memory copy speeds for PCIe 2.0 and PCIe 3.0 buses over a range

of message sizes. Small transfers do not achieve high throughput due to being latency-

bound. Larger transfers between the host and device are able to realize the full PCIe

bandwidth. Direct peer-to-peer GPU memory copies o er higher bandwidth for smaller

transfer sizes. Driver acceleration boosts unpeered GPU to GPU transfers, and we observe

higher performance for those transfers than peered at large transfer sizes. The GPU-to-GPU

transfer bandwidth for devices controlled by different MPI ranks is shown for comparison.

MPI incurs high latency from copying data in host memory between rank processes as part

of the GPU to GPU copy process. Tests were performed on a workstation containing a

Supermicro X9DRG-QF motherboard with dual Xeon E5-2640 CPUs and four GTX680

GPUs using NVIDIA driver version 310.32 with the NVreg EnablePCIeGen3 option used to

select between PCIe 2 and PCIe 3.
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Figure 5.
Time required for simulating one hour of the performance test systems using multiple GPUs.

Runtime grows with system volume in a nearly linear fashion. The simulations were run

using four GTX680 GPUs and also with eight M2070 GPUs. The test systems are spatially

homogeneous volumes simulating four reactions with four species (A ⇌ B, B + C ⇌ D) at

constant density, with initial particle counts given in Table 1. Performance exhibits linear

scaling as simulation volume increases on two and four GPUs, whereas using eight GPUs

for the two smallest systems shows no benefit due to insufficient work per GPU.
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Figure 6.
One, two, and four GPU performance and parallel efficiency as a function of mobile

particles in the simulation. Graph (a) represents a simulation lattice of 64 × 64 × 128 and

graph (b) is on a 128 × 128 × 256 lattice. Both simulated a single first-order reaction (A⇌B)

with ka→b = kb→a = 1 s −1 and and DA = DB = 1 × 10−12 m2 s−1. Every 100 steps, an

additional 1000 copies of species A is randomly added into the volume. Inset shows the

parallel efficiency achieved by multi-GPU execution. Runtime grows rapidly once lattice

site overflows begin to occur, starting around 200,000 particles in (a) and 1.5 million in (b).

Parallel efficiency drops due to increased serial work when handling overflows. Both tests

were run on our “Eir” machine.
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Figure 7.
Linear time complexity of reaction processing can be seen in the comparison of simulation

timestep lengths for varying quantities of distinct reaction types. A test system with 10,000

particles (solid lines) and another with 100,000 particles (dashed lines) were simulated in a

64 × 64 × 128 lattice with an increasing number of first-order reactions. Evaluating the slope

of the regression line (written above the graph lines) serves as a metric for the growth in

runtime from adding one more reaction. Multiple GPUs are effective at reducing this

increase as the number of reactions increases. Each system was run on GTX680 GPUs on

“Eir”.
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Figure 8.
Load balancing distribution over time for a diffusion simulation on two GPUs. The time-

varying spatially heterogeneous concentration of particles is represented in the graph with

the vertical axis corresponding to lattice z-dimension, and color corresponding to particle

concentration in that lattice plane. At t = 0, all of the particles are in the upper quarter of the

volume, and a barrier in the center slows the flow of particles into the lower half of the

volume. The red line indicates the spatial division of the lattice between the two GPUs over

time as the load balancer reassigns work in response to changing particle densities.
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Figure 9.
Min protein system schematic and simulation parameters for the simplified model. Rates are

shown for diffusion and reaction events. There are two site types in this simulation,

cytoplasm and membrane. Each species has a specific diffusion rate within each site type,

and reactions can progress at different rates (or not occur at all) depending on the site. The

particle counts for t = 0 are shown in the right-hand table.
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Figure 10.
Periodic oscillations of the membrane bound MinDm species can be seen in a space-time

plot of the average occupancy. The occupancy is calculated from the number of proteins

present within a plane along the z-axis divided by the number of membrane sites in that

plane.
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Hallock et al. Page 28

Table 1

Description of performance test systems.

Representative Size Physical Dimensions Lattice Spacing Lattice Dimensions Timestep Initial Particle Count

E. coli 1 μm × 1 μm × 2 μm 16 nm 64 × 64 × 128 50 μs 40,000

8 nm 128 × 128 × 256 12.5 μs

Dividing E. coli 1 μm × 1 μm × 4 μm 16 nm 64 × 64 × 256 50 μs 80,000

8 nm 128 × 128 × 512 12.5 μs

Yeast 4 μm × 4 μm × 4 μm 16 nm 256 × 256 × 256 50 μs 1,280,000

8 nm 512 × 512 × 512 12.5 μs

Red Blood Cell 8 μm × 8 μm × 8 μm 16 nm 512 × 512 × 512 50 μs 10,240,000

8 nm 1024 × 1024 × 1024 12.5 μs

Four different models with physical dimensions representative of various cellular systems were constructed at two lattice spacings, 16 nm and 8
nm. The number of particles were kept at a constant concentration for better comparability between systems. The initial particle count is assigned

with species counts of A = C and B = D = 0. Diffusion constants for all species is 1 × 10–12 m2 s–1. First-order reactions proceed at a rate of 1 s–1

and second-order reactions at a rate of 1 × 10–11 M–1 s–1.
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Hallock et al. Page 29

Table 2

Achieved n-fold speed-up from multi-GPU execution of benchmark systems.

Device Spacing GPUs E. coli Dividing E. coli Yeast Red Blood Cell

GTX680 16 nm 2 1.83 1.91 1.98 1.99

4 2.84 3.30 3.78 3.91

M2070 16 nm 2 1.74 1.85 1.98 1.98

4 2.04 2.64 3.79 3.91

8 1.56 2.37 4.04 6.79

GTX680 8 nm 2 1.96 1.96 1.99 -

4 3.61 3.81 3.88 -

M2070 8 nm 2 1.92 1.96 1.99 -

4 3.27 3.59 3.91 -

8 3.08 3.77 6.36 -

Large systems exhibit nearly linear scaling, with smaller systems performing well on lesser numbers of GPUs. For the red blood cell test, 8nm
speed-up data is not available because it to large be run on one GPU for comparison.
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