Skip to main content
. Author manuscript; available in PMC: 2014 May 30.
Published in final edited form as: Parallel Comput. 2014 Apr 2;40(5-6):86–99. doi: 10.1016/j.parco.2014.03.009

Table 2.

Achieved n-fold speed-up from multi-GPU execution of benchmark systems.

Device Spacing GPUs E. coli Dividing E. coli Yeast Red Blood Cell
GTX680 16 nm 2 1.83 1.91 1.98 1.99
4 2.84 3.30 3.78 3.91
M2070 16 nm 2 1.74 1.85 1.98 1.98
4 2.04 2.64 3.79 3.91
8 1.56 2.37 4.04 6.79
GTX680 8 nm 2 1.96 1.96 1.99 -
4 3.61 3.81 3.88 -
M2070 8 nm 2 1.92 1.96 1.99 -
4 3.27 3.59 3.91 -
8 3.08 3.77 6.36 -

Large systems exhibit nearly linear scaling, with smaller systems performing well on lesser numbers of GPUs. For the red blood cell test, 8nm speed-up data is not available because it to large be run on one GPU for comparison.