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Abstract

Endplate cartilage integrity is critical to spine health and is presumably impaired by deterioration

in biochemical composition. Yet, quantitative relationships between endplate biochemical

composition and biomechanical properties are unavailable. Using endplate cartilage harvested

from human lumbar spines (six donors, ages 51–67 years) we showed that endplate biochemical

composition has a significant influence on its equilibrium tensile properties and that the presence

of endplate damage associates with a diminished composition–function relationship. We found

that the equilibrium tensile modulus (5.9±5.7 MPa) correlated significantly with collagen content

(559±147 μg/mg dry weight, r2=0.35) and with the collagen/GAG ratio (6.0±2.1, r2=0.58).

Accounting for the damage status of the adjacent cartilage improved the latter correlation

(r2=0.77) and indicated that samples with adjacent damage such as fissures and avulsions had a

diminished modulus–collagen/GAG relationship (p=0.02). Quasi-linear viscoelastic relaxation

properties (C, t1, and t2) did not correlate with biochemical composition. We conclude that

reduced matrix quantity decreases the equilibrium tensile modulus of human endplate cartilage

and that characteristics of biochemical composition that are independent of matrix quantity, that is,

characteristics related to matrix quality, may also be important.
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The structural integrity of the cartilaginous endplate is critical to intervertebral disc health.

Proper endplate integrity is important for resisting certain disc herniations1–4 and tears,5

maintaining a uniform intradiscal stress distribution,6 and regulating the transport of disc

nutrients and metabolites.7–9 Importantly, failure of the endplate to perform these functions

is hypothesized to accelerate disc degeneration.6,9 Endplate integrity is also critical for

vertebral bone health; endplate cartilage damage significantly associates with inner-vated

bone marrow lesions,10–13 which are suspected to be the pain generator in 30–40% of

patients with chronic low back pain (LBP).14,15 Consequently, elucidating the factors that
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influence endplate cartilage integrity is fundamental to understanding the cause of disc

degeneration and chronic LBP and could help establish new targets for diagnosis and

treatment.

Several factors may influence endplate integrity, including loading conditions5 and disc

behavior.16,17 The biochemical composition of the cartilage matrix is also presumed

essential because the composition determines the material properties of the cartilage, which

affect its ability to resist load or deformation. Since excessive load or deformation can

damage the tissue, any changes in endplate biochemical composition that diminish its

material properties could heighten the risk of damage. Although the composition of the

endplate cartilage deteriorates dramatically with age,18,19 quantitative relationships between

composition and material properties are unavailable. We sought to determine this

relationship, being the first to report elastic and viscoelastic tensile properties of human

endplate cartilage and to relate the presence of endplate cartilage damage to variation in

composition and properties.

METHODS

Cadaver Materials

Six lumbar spines were obtained from human cadavers (donor ages 51–67 years; two

females, four males) and sectioned into slabs for biomechanical testing and histology. First,

the musculature and posterior elements were removed. Next, the spines were cut into four 5-

to 7-mm-thick para-sagittal slabs. The slabs were then cut transversely to produce individual

bone-disc-bone units. One of the two medial slabs was randomly chosen from each unit and

processed for testing; the remaining medial slab was processed for histology (Fig. 1).

Endplate Cartilage Sample Preparation

Endplate cartilage strips cranial and caudal to the disc were removed from the subchondral

bone and planed to uniform thickness with a cryostat microtome. Next, dogbone-shaped

tensile samples with a 5 mm × 1.5 mm gauge section were punched from the cartilage using

a custom die (Fig. 2A), maintaining the gauge section parallel to the AP direction (the

primary orientation of the collagen fibrils in the endplate20). Final sample thickness was

measured with a micrometer designed to sense the tissue's electrical conductivity.21 All

samples were screened with radiography to exclude those with bone fragments in the gauge

section (Fig. 2B). Of 25 intact samples, 4 were damaged with the microtome, and 1 was

excluded with bone fragments, leaving 20 (Table 1). Samples could not be harvested from

35 levels owing to fluctuations in endplate topology and thickness that precluded the

extraction of sufficiently sized samples for testing.

To calculate tissue strains, the central surface of the gauge section was marked with two

small steel pins (head diam. 0.75 mm, shaft diam. 0.30 mm) inserted through the thickness

(Fig. 2C). This method has the disadvantage of introducing a foreign object, but the fibrous

nature of the tissue and its self-sealing properties limit the influence of the pins on tissue

behavior. A previous study found that repeated pin insertions were insignificant when

compared to other randomizing effects.22
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Biomechanical Testing

The samples were tested in uniaxial tension using a custom testing apparatus22,23 consisting

of grips to clamp the sample, a stepper motor (ES23B; Parker Hannifin Corp., Rohnert Park,

CA) to apply deformation, a precision load cell (SMT1; Interface, Inc., Scottsdale, AZ) to

measure force, and a computerized imaging system to calculate strains. The imaging system

utilized LabVIEW software (National Instruments, Austin, TX) to capture images, threshold

the images to locate the reference points, calculate the strain in the direction of applied

deformation, control the motion of the stepper motor, and calculate the stress (force/original

cross-sectional area).

At the start of testing, samples were equilibrated in PBS with protease inhibitors (Complete

Protease Inhibitor; Roche Applied Science, Indianapolis, IN). After 1 h of equilibration,

samples were loaded in the apparatus and preconditioned to establish a repeatable reference

configuration. Each sample was stretched to 2% strain over 8 s and held for 10 min before

unloading and re-equilibrating at zero force for 10 min. We repeated this preconditioning

sequence twice; after the 2nd sequence, the equilibrated state was taken as the reference

configuration for the subsequent stress relaxation tests.

Incremental stress relaxation tests24,25 were performed by applying 2% strain over 8 s. The

resulting force was recorded every second during a 10-min relaxation period. Strain

increments were repeated until 10% strain (Fig. 3A).

Data Analysis

To calculate the equilibrium elastic properties, the equilibrium tensile stress sσe achieved at

each strain increment e was fit to an exponential constitutive model σe(ε) = A(eBε – 1) 24,25

(fig. 3B), where A and B represent material constants. The equilibrium tensile modulus was

calculated for the initial part of the stress-strain curve as: E=∂σe/∂ε=ABeBε;Eε=0=AB.

To calculate the relaxation properties, the stress-time data from the first relaxation increment

was fit to a quasi-linear viscoelastic (QLV) constitutive model26 (Fig. 3C). The QLV model

assumes that the time-dependent relaxation behavior σ(t) can be expressed as

(1)

In the model, σc(ε) is the maximum stress in response to a step input of strain ε, and G(t) is

the reduced relaxation function, which represents the time-dependent stress response

normalized by the stress at the time of the step in strain. We chose the reduced relaxation

function27:

(2)

where E1(y) is the exponential integral, and C, t1, and t2 are material constants. C is related

to energy dissipation in the tissue and t1, and t2 are the short and long relaxation constants.

To describe the maximum stress response, we chose an exponential model: σc(ε)=A(eBe–
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1).26 Substituting σc(ε) and G(t) into the QLVð model in Equation (1) and integrating over

the ramp time yielded an expression for stress relaxation26:

(3)

where t0 is the beginning of the relaxation period following a loading ramp with strain rate

γ. To determine the material constants for a set of stress relaxation data, the sum of the

squared differences between the experimentally measured stress-time data and the QLV

model in Equation (3) was minimized using nonlinear optimization. The optimization

scheme was a hybrid approach that consisted of a custom genetic algorithm to identify

regions of local minima followed by a Levenberg–Marquardt algorithm to determine the

global minimum. The optimization was implemented using MATLAB software

(MathWorks, Natick, MA).

Biochemistry

Tissue adjacent to the gauge section was assayed for its water, glycosaminoglycan (GAG),

and hydroxyproline contents. First, the tissue was lyophilized to obtain the dry weight. Next,

the tissue was digested in papain solution, and GAG content was calculated using the

dimethylmethylene blue binding assay.28 Aliquots were also hydrolyzed in HCl, and

hydroxyproline content was calculated.29 Hydroxyproline content was assumed to be 14%

of the total collagen content per dry weight.30

Histology

The matching mid-sagittal slabs for each motion segment were processed for histology as

described previously.11 Briefly, slabs were fixed in formalin, radiographed, and decalcified

in a mild ion-exchange decalcifying agent (IED; Biocare Medical, Concord, CA). The slabs

were then dehydrated in ethanol baths of ascending concentration, cleared in Clearite, and

infiltrated with paraffin. Finally, 7-μm-thick sections were microtomed from the paraffin

blocks, mounted on slides, and stained with Heidenhain connective tissue stain that contains

aniline blue, orange G, and acid fuchsin. Sections were assessed for the presence of endplate

damage, with damage classified as31: endplate cartilage erosions and avulsions with exposed

subchondral bone at the junction of the inner annulus and nucleus pulposus; fissuring of the

endplate cartilage; and focal, node-like indentations of the endplate with subchondral bone

disruption. Damage was distinguished from sectioning artifacts by noting the cellularity of

the adjacent bone marrow and the structure of the adjacent subchondral bone.

Statistical Analysis

The independent role of biochemical composition in the mechanical outcomes was

quantified with the Pearson correlation coefficient. We also compared the composition–

function relationships between samples with and without histologic evidence of damage

using a regression model with three explanatory variables: endplate composition, a

categorical variable indicating damage status (corresponds to a change in intercept), and the

cross-product between composition and damage status (corresponds to a change in slope).

The lower p-value among those for slope and intercept differences is reported. Additionally,
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mean values of the biochemical and mechanical outcomes were compared between samples

with and without damage using unpaired t-tests. Statistical analyses were performed using

JMP (SAS Institute, Cary, NC). All data are given as mean±SD, unless otherwise noted.

RESULTS

All samples exhibited a nonlinear equilibrium stress–strain relationship that was well

described by the 2-parameter exponential model (goodness-offit: 0.98± 0.03). The

equilibrium tensile modulus (5.9±5.7 MPa) varied substantially across samples, ranging

from <1 to >20 MPa (Table 2). The visco-elastic behavior was characterized by a stress

relaxation response with an immediate, rapid drop in stress (t1=5.7E−5±7.8E−5 s) followed

by gradual equilibration after ~6 min (t2=362±204 s). Collagen content (559±147 μg/mg dry

weight) and GAG content (100±32 mg/mg dry weight) were typical of endplate cartilage

from 50- to 70-year olds.18,19

Collagen content and the ratio of collagen/GAG content correlated best with biomechanical

properties (Table 3). The collagen/GAG ratio showed the highest association with the

equilibrium tensile modulus (r2=0.58) and with A (r2=0.31), whereas collagen content alone

showed the highest association with the modulus (r2=0.35) and with B (r2=0.24). Neither

water nor GAG content was independently associated with any of the biomechanical

properties.

The influence of biochemical composition on bio-mechanical properties was significantly

different for samples with damage adjacent to the endplate (n=8 endplates) compared to

samples without damage (p=0.02). For samples with adjacent damage, the linear relationship

between the equilibrium tensile modulus and collagen/GAG ratio had a smaller slope and

greater intercept; thus, the stiffest samples with adjacent damage had lower moduli than

would be predicted from their collagen/GAG ratios (Fig. 4). Equilibrium properties were

lower for samples with damage, consistent with their lower water, GAG, and collagen

contents, although differences in individual outcomes were not significant (Table 4).

Endplates with adjacent damage showed cartilage avulsions and fissuring at the junction

between the inner annulus and the nucleus pulposus (Fig. 5). In all but one case, the

fibrovascular or fatty bone marrow lesions co-located with the endplate damage.

DISCUSSION

The biochemical composition of the endplate had a significant influence on its equilibrium

tensile properties. About 58% of the overall variation in equilibrium tensile modulus was

explained by the collagen/GAG ratio. Moreover, accounting for endplate damage improved

this correlation to explain 77% of the modulus variation, and indicated that samples with

adjacent damage had a lower modulus than predicted by their collagen/GAG ratio. Despite

the relevance of endplate damage to disc degeneration6,9 and chronic LBP,10,12,13 the

pathogenesis of endplate damage is not well understood. Any reductions in cartilage

material properties are relevant because they could limit the ability of the matrix to resist

load or deformation and therefore increase the risk of damage. Our results are important

because they establish that reduced tensile modulus correlates with lower collagen content

Fields et al. Page 5

J Orthop Res. Author manuscript; available in PMC 2014 May 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



and collagen/GAG ratios. Collagen content decreases dramatically with age,18,19 so future

work should be aimed at understanding how diminished composition and biomechanical

properties factor into the etiology of endplate damage and chronic LBP.

The equilibrium tensile modulus correlated better with the collagen/GAG ratio than with

collagen content alone. Although the precise reasons for this are unknown, tensile modulus

likely depends not only on the amount of collagen fibrils present to resist deformation, but

also on contributions from electrostatic interactions between the positive charges on the

collagen and negative charges on the GAGs.21,32 A second explanation is that GAGs

immobilized within the collagen network enhance matrix stiffness.33

The finding that samples with adjacent damage had a diminished modulus–collagen/GAG

relationship (Fig. 4) suggests that matrix quality may be an important aspect of endplate

composition that influences its biomechanical behavior. The collagen/GAG ratio

characterizes matrix quantity since it directly relates to the quantities of the individual

matrix constituents. Conversely, matrix quality represents characteristics of endplate

composition that affect biomechanical behavior but that are not accounted for by matrix

quantity, for example, collagen fibril organization and cross-linking. Therefore, any

appreciable modification to matrix quality should change the cartilage modulus relative to

its collagen/proteoglycan ratio. Although these concepts are frequently applied to bone

fragility,34 and modulus–collagen/GAG relationships were explored in femoral articular

cartilage,21 we are unaware of reports applying the concept of matrix quality to endplate

biomechanical behavior. Clearly, additional research is required to elucidate endplate matrix

quality, but our findings indicate that such research may clarify the alterations in

biomechanical behavior that associate with endplate damage.

The relaxation properties (C, t1, and t2) did not correlate with the measured biochemical

constituents. Tensile loading might minimize any viscoelastic effects, as a previous study of

bovine articular cartilage found that energy dissipation was less significant in tension than in

compression.35 However, Setton et al.36 determined the viscoelastic compressive properties

of endplate cartilage from young baboons and also observed no correlations between

material and compositional parameters. An alternative explanation for the lack of a

significant relationship is the relatively low water content of the endplate cartilage (~40%).

Water content is much higher in articular cartilage(~80%), wherein viscoelastic effects play

a greate role.37 Additional research is necessary to determine which other biochemical

constituents are responsible for endplate viscoelastic behavior.

To promote disc health, the biochemical composition of the endplate must meet

biomechanical and nutritional demands. Biomechanically, the large degree of structural

integration between the cartilaginous and bony endplates38 and between the cartilaginous

end-plate and annulus fibrosus15,19 suggests that the cartilage must be stiff in tension to

resist the tensile loads that develop when the spine is compressed.5,16,17,39 However,

nutritionally the cartilage matrix must contain sufficient pore space to allow nutrient and

metabolite transport to and from the avascular disc.9 The amount of pore space depends on

osmotic swelling pressure, and hence, on the relative concentration of GAG and collagen.

Roberts et al.40 measured the transport properties of endplate cartilage from humans aged 5
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to 67 years and found that even the endplates with the lowest GAG and collagen

concentrations could permit solute transport; in fact, solute transport increased as GAG and

collagen concentration decreased because more pore space was available to the solutes. Our

results suggest that the equilibrium tensile modulus would decrease because less solid

matrix is available to carry load. Together, these findings suggest that endplate tensile

properties are inversely related to transport properties. One might speculate that an optimal

range of biochemical compositions exists to balance the endplate's bio-mechanical and

nutritional demands; identifying this range could clarify the etiology of disc degeneration

and have implications for disc regeneration.

Prior work analyzing the histopathology of chronic LBP cases reported that innervated bone

marrow lesions bordered endplate cartilage damage10,12,13 and that damage was not well

visualized with conventional MR sequences owing to the tissue's short T2 values.11,41

Recent studies indicated that new sequences, for example, ultrashort echo time and fast low-

angle shot can enhance visualization of the endplate's anatomic details.42–44 If these

sequences can also demonstrate sensitivity to variation in collagen content, then our findings

suggest that such sequences could enable noninvasive assessment of endplate biomechanical

properties, which might prove useful for prognostic purposes.

We focused on tensile loading since spinal compression appears to induce high tensile

stresses in the endplates.5,16,17,39 The resistance to tensile deformation in cartilage is

generated principally by the intrinsic stiffness of the collagen fibrils and entangled GAGs.45

The equilibrium tensile modulus is a measure of this intrinsic resistance. Another measure

relevant to understanding the pathogenesis of endplate damage is tensile strength. Our

observation that cartilage fissures and avulsions often occurred near the inner annulus

junction is consistent with the anatomy of failure in certain disc herniations1–3 and tears,5

and suggests that the tensile strength at the inner annulus junction could also be important.

Likewise, compressive loading is physiologically relevant to the end-plates, and thus, the

biphasic compressive properties may have additional clinical importance.36

We are the first to our knowledge to measure the biomechanical properties of human

endplate cartilage, so additional studies are required to confirm these results and extend

them to younger individuals with greater collagen and GAG concentrations. For the samples

without adjacent damage, the average tensile modulus (6.6±6.9 MPa) is similar to that

reported for femoral articular cartilage in adults (6.0±4.5 MPa),21 and comparison of the

composition–function relationships between endplate and femoral cartilage indicated a

similar effect of the collagen/GAG ratio on tensile modulus (p=0.19 for differences in

slope). Thus, despite the absence of endplate cartilage biomechanical studies for

comparison, the consistency of our findings with those from femoral cartilage supports their

validity.

This study had several limitations. All samples were obtained from mid-sagittal sections and

were tested in the AP direction. We did not evaluate intraendplate heterogeneity or

anisotropy. The cross-sectional study design prevented us from concluding whether endplate

damage was a cause or effect of the diminished composition–function relationship. For

example, other factors such as differences in loading5 or the mechanical properties of the
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osteochondral interface38 could influence endplate cartilage stress and therefore contribute

independently to damage risk. Finally, the small sample size was derived from adults with a

narrow age range; expansion to larger and younger cohorts is required to confirm some of

the findings. In particular, none of the relaxation properties correlated significantly with

biochemical composition. A larger sample size with younger individuals may have greater

variations in composition and properties, which could increase its role.

In conclusion, we provide quantitative data regarding the influence of biochemical

composition on material properties in human endplate cartilage. Using biomechanical

testing, biochemical analysis, and histology, we found that endplate collagen content and

collagen/GAG ratios significantly influence equilibrium tensile properties and that the

presence of endplate damage associates with a diminished composition– function

relationship. These quantitative relationships help bridge a knowledge gap between

deterioration in endplate composition18,19 and loss in endplate bio-mechanical function.

This motivates future work to understand how diminished endplate composition and

function factors into the etiology of endplate damage and chronic LBP.
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Figure 1.
Bone-disc-bone motion segment with mid-sagittal slab extracted for endplate cartilage

dissection and biomechanical testing. A matching mid-sagittal slab from each motion

segment was processed for histology to assess for the presence of any endplate damage.
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Figure 2.
(A) Cartilage sample punched from the endplate using a dogbone-shaped die. Gauge section

dimensions: 5 mm × 1.5 mm. (B) Radiographs were used to screen samples for the presence

of calcified cartilage and bone in the gauge section. Note the bits of bone (opaque areas) in

the grip section of the sample. (C) Sample with black reference points for strain calculations.
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Figure 3.
(A) Example of stress-time behavior in response to 2% strain increments applied after 10-

min relaxation periods. (B) Equilibrium stress versus applied strain for the incremental

loading in panel A. (C) Stress relaxation behavior after the first strain increment in panel A.

Stress-time data were fit to a five-parameter QLV model using nonlinear optimization (see

the Methods Section for model details).
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Figure 4.
The relationship between equilibrium tensile modulus and collagen/GAG ratio was

significantly different for samples from levels with histologic evidence of endplate damage

compared to samples from levels without endplate damage (p=0.02).
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Figure 5.
(A) Mid-sagittal histology section from a spinal level with an intact cartilage endplate. (B)

Endplates with damage were typified by cartilage avulsions and fissures at the interface

between the inner annulus and nucleus pulposus. Note the fibrovascular and fatty marrow

reactions adjacent to the location of the endplate damage (arrows). (C) Normal

hematopoietic endplate marrow with blood vessel (arrow) and vascular sinusoids. (D)

Richly vascularized endplate marrow with dense fibrous tissue corresponding to the arrows

in panel B. (E) Fatty marrow with low cellularity corresponding to the leftmost arrow in

panel B. In all panels, left side is anterior. In panels C–E, scale bars are 50 μm. Heidenhain

connective tissue stain.
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Table 1

Donor Age, Sex, and Spinal Level for n = 20 Endplate Cartilage Samples

Donor No. Age (Years) Sex Levels
a

1 51 Male L2i, L3s, L4s, L5i, S1s

2 57 Male L4i, L5s, L5i, S1s

3 60 Male L3i

4 61 Female L5s

5 63 Female L1i, L2s, L3i, L4i, L5i

6 67 Male L3i, L4s, L5i, S1s

a
Levels denote cartilage samples taken from the superior (s) and inferior (i) endplate of a given vertebra.
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Table 2

Biomechanical and Compositional Data for Samples Included in the Study (n = 20 Endplates)

Mean SD CV (%) Range

Equilibrium properties

    A (MPa) 0.24 0.25 104.2 0.02–0.92

        B 26.8 13.7 51.1 10.9–67.4

    Tensile modulus, E0% (MPa) 5.9 5.7 96.6 0.5–21.8

Viscoelastic properties

    Energy dissipation, C (MPa) 0.035 0.016 45.7 0.015–0.065

    Short relaxation constant, τ1 (s) 5.7E–5 7.8E–5 135.8 8.7E–8–2.7E–4

    Long relaxation constant, τ2 (s) 362 204 56.4 129–766

Biochemical composition

    Water content (%) 39.7 11.0 27.7 22.1–62.4

    GAG content (μg/mg dry wt) 99.8 31.7 31.8 43.7–184.8

    Collagen content (μg/mg dry wt) 558.5 146.9 26.3 329.0–886.9
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Table 3

Independent Role (Pearson's Correlation Coefficient, r) of Endplate Biochemical Composition on

Biomechanical Properties (n = 20 Endplates)

Collagen/GAG Ratio Collagen Content GAG Content Water Content

A (MPa)
0.56

b 0.20 –0.38 0.09

B 0.19
0.49

a 0.02 –0.04

Tensile modulus, E0% 0.76
c

0.59
b –0.34 0.07

Energy dissipation, C –0.34 –0.33 0.17 0.03

Short relaxation constant, τ1 0.03 –0.02 –0.14 –0.01

Long relaxation constant, τ2 0.20 0.19 –0.06 0.13

a
p < 0.05.

b
p < 0.01.

c
p < 0.001.
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Table 4

Comparison of Mean Biomechanical Properties and Biochemical Composition Between Endplate Cartilage

Samples With and Without Histologic Evidence of Damage

No Damage (n = 12 Endplates) Damage (n = 8 Endplates) % Difference
a p-Value

A (MPa) 0.25 ± 0.19 0.22 ± 0.12 –15.4 0.74

B 30.5 ± 10.2 21.2 ± 5.8 –30.2 0.15

Tensile modulus, E0% (MPa) 6.6 ± 4.4 4.8 ± 3.5 –27.7 0.50

Energy dissipation, C (MPa) 0.031 ± 0.010 0.041 ± 0.013 31.3 0.18

Short relaxation constant, τ1 (s) 4.7E–5 ± 5.3E–5 7.3E–5 ± 6.7E–5 55.3 0.48

Long relaxation constant, τ2 (s) 382 ± 132 336 ± 187 –12.1 0.64

Water content (%) 42.3 ± 7.3 35.8 ± 8.1 –15.4 0.15

GAG content (μg/mg dry wt) 108.3 ± 21.3 87.1 ± 21.3 –19.6 0.20

Collagen content (μg/mg dry wt) 593.4 ± 107.8 506.1 ± 75.2 –14.7 0.20

Data given as mean ± 95% CI.

a
Percent difference calculated with respect to the “No damage” mean values.
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