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Time-, frequency-, and wavevector-resolved x-ray diffraction
from single molecules
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Using a quantum electrodynamic framework, we calculate the off-resonant scattering of a broadband
X-ray pulse from a sample initially prepared in an arbitrary superposition of electronic states. The
signal consists of single-particle (incoherent) and two-particle (coherent) contributions that carry dif-
ferent particle form factors that involve different material transitions. Single-molecule experiments
involving incoherent scattering are more influenced by inelastic processes compared to bulk mea-
surements. The conditions under which the technique directly measures charge densities (and can
be considered as diffraction) as opposed to correlation functions of the charge-density are spec-
ified. The results are illustrated with time- and wavevector-resolved signals from a single amino
acid molecule (cysteine) following an impulsive excitation by a stimulated X-ray Raman pro-
cess resonant with the sulfur K-edge. Our theory and simulations can guide future experi-
mental studies on the structures of nano-particles and proteins. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4878377]

I. INTRODUCTION

X-ray techniques have long been applied to image
the electronic charge density of atoms, molecules, and
materials.1–3 Recently developed X-ray free electron laser
sources, which generate short (attosecond), intense pulses,
open up numerous potential applications for high temporal
and spatial resolution studies.4–9 One exciting application is
the determination of molecular structure by X-ray diffrac-
tion of nanocrystals4, 10 avoiding the crystal growth process
which is often the bottleneck in structure determination;11, 12 it
may take decades to crystallize a complex protein. It is much
easier to grow nanocrystals than the many-micrometers-sized
samples required by conventional crystallography. This has
been demonstrated experimentally in nanocrystals for the wa-
ter splitting photosynthetic complex II,13 a mimivirus,14 and
a membrane protein.4, 15

Extending this idea all the way to the single-molecule
level, totally removing “crystal” from crystallography is an in-
triguing possibility.16–18 Obtaining a protein structure by scat-
tering from a single molecule is revolutionary. Many obstacles
need to be overcome to accomplish this ambitious goal. For
instance, the molecule will typically break down when sub-
jected to such high fluxes. However, it has been argued16, 19–21

that, for sufficiently short pulses, the scattering occurs prior
to photon damage, so that this should not affect the measured
charge density. This point is still under debate.

In this paper, we consider the scattering of a broadband
X-ray pulse from a system composed of a single, few, or
many molecules prepared in a superposition of electronic
states and show under what conditions the signal may be de-
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scribed solely by the time-dependent charge density. We as-
sume that the X-ray pulse is off-resonance from any material
transitions and that the pulse is sufficiently short so that the
electrons in the sample do not appreciably re-arrange during
the pulse time. The fluence is assumed sufficiently low so that
the scattering is linear in pulse intensity. Scattering off non-
stationary evolving states is an area of growing interest. When
the time-dependent state of matter merely follows some clas-
sical parameter (as in the case of tracking the time-dependent
melting of crystals8, 22) no coherence of electronic states is
prepared and the analysis of scattering is simplified consid-
erably. Time-dependent diffraction can then be described by
simply replacing the charge density in stationary diffraction
by the time-dependent charge-density. The situation is more
complex in pump-probe experiments in which a superposi-
tion of electronic states is prepared by the pump and is then
probed by X-ray scattering. Such superpositions, which in-
volve electronic coherence, can be prepared, e.g., by inelastic
stimulated Raman processes,23 a photoionization process,24

off-resonant femtosecond pulses,25 or high-intensity optical
pumping.26 Diffraction is a macroscopic, classical effect that
involves the interference of wavefronts emanating from dif-
ferent sources treated at the level of Maxwell’s equations.27

A fundamental difficulty in extending it to single molecules
is that X-ray scattering (as any light scattering) from a sin-
gle molecule may not be thought of simply as a diffraction
since it has both elastic (Thompson/Rayleigh) and an inelastic
(Compton/Raman) components.28 Using a quantum electro-
dynamic (QED) approach, we discuss and analyze the single-
particle vs. the cooperative contributions to the signal. We find
that the two terms carry different particle form factors that
permit Raman scattering in different frequency ranges. Simu-
lations are presented for the scattering of a broadband X-ray
pulse from a single molecule of the amino acid cysteine either
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in the ground state or when prepared in a nonstationary state
by a stimulated resonant X-ray Raman process with various
delay times between preparation and the scattering event.

II. CLASSICAL THEORY OF DIFFRACTION

As the expressions developed in this paper bear a resem-
blance to the standard classical theory of diffraction, we re-
view it briefly. The diffraction signal from a system initially
in the ground state |g〉 is

S(q) ∝ |σgg(q)|2, (1)

where σgg(q) = 〈g|σ̂ (q)|g〉 is the ground state charge density
in q-space and q ≡ ks − kp is the momentum transfer (ks is
the outgoing mode and kp is the incoming mode). More gen-
erally, σ̂ (q) is the Fourier transform of the charge-density op-
erator

σ̂ (q) =
∫

drσ̂ (r)e−iq·r.

Equation (1) assumes that the scattering is elastic and treats
the entire sample as a single system (i.e., ˆσ (r) is the elec-
tron density of the entire sample). A common approach to un-
derstanding diffraction patterns involves making an approxi-
mation on the structure of the electron density. For example,
we may presume that the complete wavefunction is built up
from single-electron wavefunctions and the total electron den-
sity is the sum of the densities associated with each electron
wavefunction. If the system is composed of N identical parti-
cles and each electron is bound to a particle, then the ampli-
tude of the signal from each particle carries a relative phase
related to the particle position. The term “particle” is used
here as a generic partitioning of the system and may stand for
atoms as well as large (molecules) or small (unit cell) groups
of atoms. Practically speaking, they should be large enough
that the electron density between particles may be safely ne-
glected and small enough that electronic structure calculations
can be performed. Separating single- and multi-particle con-
tributions yields for the intensity27

S(q) ∝ |σaa(q)|2
⎡
⎣N +

∑
α �=β

e−iq·rαβ

⎤
⎦ , (2)

where rαβ ≡ rα − rβ is the position of particle α relative to
β. Here, σaa(r) stands for the electron density in a single par-
ticle and σaa(q) is known as the particle form factor. Thus,
the signal is factored into a product of the signals from the
particle electron density and from the distribution of parti-
cles. The two terms in Eq. (2) both contribute linearly in N
to the integrated signal.29 However, the former yields a sig-
nal that is generally distributed throughout reciprocal space
while the various terms in the α �= β summation carry differ-
ent phases that cause a redistribution of the signal into points
of constructive and destructive interference (a Bragg pattern
for crystalline samples).30

III. OFF-RESONANCE X-RAY SCATTERING SIGNALS

We calculate the X-ray scattering by a sample initially
prepared in a non-stationary state using a quantum descrip-
tion of the field, in which radiation back-reaction (which leads
to inelastic scattering) is naturally built in. Incorporation of
the broad frequency bandwidth of incoming X-rays is an im-
portant point as ultra-short pulses need to outrun destruction
in single-molecule scattering. We assume that the molecule
is initially prepared in an arbitrary density matrix, represent-
ing a pure or mixed state such as photo-ions. We extend the
quantum field formalism developed in Refs. 28 and 32 for
spontaneous emission of visible light to off-resonant X-ray
scattering. Our calculation starts with the minimal-coupling
Hamiltonian, which contains a term proportional to Â2σ̂ as
well as ĵ · Â where ĵ is the electronic current operator. The
former describes instantaneous scattering where the electrons
do not have the time to respond during the scattering process.
The second term dominates resonant processes and allows
for a delay between absorption and emission during which
electronic rearrangement, ionization, and breakdown can oc-
cur. Since hard X-rays are always resonant with the electronic
continua representing various ionized states, the relative role
of the ĵ · Â term should be investigated further in order to
clarify how important are these processes. In our study, we
treat only off-resonant scattering and therefore focus on the
Â2 term, which dominates such processes.33, 34

In the interaction picture, the Hamiltonian is given by

Ĥ = Ĥ0 + Ĥ ′(t), (3)

where Ĥ0 is the bare field and matter Hamiltonian while Ĥ ′(t)
is the field-matter coupling. Assuming the diffracting X-ray
pulse is not resonant with any material transitions and its in-
tensity is not too high, its interaction with the matter is given
by34

Ĥ ′(t) = 1

2

∫
drÂ2(r, t)σ̂T (r, t). (4)

We consider a sample of N non-interacting, identical parti-
cles (molecules or atoms) indexed by α with non-overlapping
charge distributions so that the total charge-density operator
can be partitioned as σ̂T (r) = ∑

α σ̂ (r − rα). The signal is
given by the electric field intensity arriving at the detector and
may be generally expressed as the overlap integral of a detec-
tor spectrogram (given in terms of the detection parameters)
and a bare spectrogram (Eq. (A9)).

The scattering signal mode is initially in the vacuum state
|0〉〈0|. Therefore, an interaction on both bra and ket of the
field density matrix is required to generate the state |1〉〈1|
which gives the signal. We thus expand the signal as

S(ω̄, t̄ , r̄, k̄) =
∫

dt

∫
dr〈E(trf k)†(r, t)E(trf k)(r, t)〉. (5)

It is given in terms of the gated electric fields (defined in
Appendix A), to second order in Ĥ ′ (Eq. (4)). This natu-
rally leads to a double sum

∑
α, β over the scatterers. Terms

with α = β arise when the probe pulse is scattered off a sin-
gle particle (Fig. 1(a)) and terms with α �= β describe two-
particle scattering events (Fig. 1(b)). The former contains N
terms which add incoherently (at the intensity level), giving
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FIG. 1. Loop diagrams for incoherent (a) and coherent (b) X-ray scattering
processes. The shaded area represents an unspecified process that prepares
the system in an arbitrary state (|g〉 is the electronic ground state). We de-
note modes of the pump with p and p′ whereas s, s′ represent relevant scat-
tering modes (kp(′) has frequency ωp(′) and ks(′) has frequency ωs(′) ). The
time T between the termination of this preparation process and the central
time of the scattered pulse is shown via the arrow in the center of the figure.
Elastic scattering corresponds to ωab = ωbc = 0 (i.e., ωac = 0 for the inco-
herent and ωbc = ωed = 0 for the coherent contribution). Elastic scattering
therefore originates from scattering off populations. For diagram rules, see
Refs. 28 and 31.

a virtually isotropic signal. The latter, in contrast, is gov-
erned by N(N − 1) terms which carry different phase-factors
and can interfere destructively or constructively (yielding the
Bragg peaks in a crystalline sample or, more generally, a
speckle pattern).27 In general, both contributions must be con-
sidered as it is frequently not sufficient to sample a signal only
at the points of constructive interference (Bragg diffraction)
where the two-particle terms dominate.35 In this paper, we re-
fer to the single-particle contribution as “incoherent” and the
two-particle contribution as “coherent” reflecting the way in
which these contributions add (at the intensity versus ampli-
tude level). In the X-ray community, incoherent is commonly
taken to refer to inelastic contributions while coherent refers
to elastic. The two nomenclatures coincide when considering
scattering from the ground state because, as will be shown
below, two-particle scattering from the ground state (or any
population) is necessarily elastic while single-particle scatter-
ing from the ground state has only a single elastic term (or one
term for each initially populated state). Two-particle scatter-
ing from a nonstationary superposition state, in contrast, has
both elastic and inelastic terms which add coherently (since
they are both proportional to a spatial phase-factor ei�k·rab de-
pendent on the distance between the two particles). On the
other hand, the elastic terms from the single-particle scatter-
ing add incoherently since their spatial phase factors are can-
celed by the opposite-hermiticity interactions on the ket/bra.

In the coherent terms, the product of charge densities
on different particles can be factorized and the signal is pro-
portional to the modulus square of the single-particle elec-
tron density σ̂ (r). Such factorization is not possible for the
incoherent terms where the signal is given by a correlation
function of the charge density rather than the charge density
itself. As discussed below, restricting attention to elastic scat-
tering reduces the correlation function to the modulus-square
result and eliminates the need to consider the correlation func-
tion. Thus, the signal is expressible in terms of the charge-
density alone either when the coherent contribution dominates
or when attention is restricted to elastic scattering.

Figure 1 illustrates the incoherent (Fig. 1(a)) and coher-
ent (Fig. 1(b)) scattering processes from a sample follow-
ing preparation in a non-stationary electronic superposition
state described by the density matrix ρ̂ = ∑

cb ρcb|c〉〈b|. The
preparation process is represented by the gray box. In this
paper, we will consider a Raman preparation process (in an-
other work, we examine the case where the preparation pro-
cess is itself an off-resonant scattering process36). After the
preparation process (which terminates at t = 0) the system
evolves freely until an X-ray probe pulse with an experimen-
tally controlled envelope centered at time T impinges on the
sample and is scattered into a signal mode that is initially in
a vacuum state. This signal photon is then finally absorbed by
the detector. Time translation invariance of the matter corre-
lation function implies the basic energy-conservation condi-
tion ωp − ωp′ + ωs ′ − ωs = ωac for an incoherent scattering
event (Fig. 1(a)). Coherent scattering events (Fig. 1(b)) give
two such conditions corresponding to the two diagrams ωp

− ωs = ωab and ωp′ − ωs ′ = ωcd . For a broadband pulse in
which ωp and ωp′ can differ appreciably, the signal will con-
tain contributions from paths in which ωs and ωs ′ take all pos-
sible values within this bandwidth. These can be controlled by
pulse-shaping techniques as well as by the choice of detection
parameters.37

It follows from the diagrams that, since each particle
must end the process in a population state and has only inter-
actions on one side of the loop, coherent scattering from popu-
lations will always be Rayleigh type while Raman (inelastic)
processes result from scattering off coherences. In contrast,
the single-particle energy conservation condition for an initial
population (i.e., ωac = 0) allows for inelastic processes.

IV. FREQUENCY-GATED SIGNALS

Complete expressions for the signal which include ar-
bitrary gating and pulse envelopes (i.e., the bare spectro-
grams) are given in Appendix B. In this section, we dis-
cuss the simpler signal that results when no time-gating
is applied. The formulas are simplest when we employ
delta functions for the detector spectrograms. As shown in
Appendix A, we have separate detector spectrograms for the
time-frequency gating and the space-propagation gating. As
seen in Appendix B (Eqs. (B22) and (B25)), both coherent
and incoherent bare spectrograms carry the delta function
factor δ(k′ − ω′

c
r̂′). This connects ω′ to k′ in the usual way

(though this is not automatic since the two are not a priori
related in this way but rather both begin as separate gating
variables) as well as fixing the direction of k′. For this reason,
the logical choice for the spatial-propagation detector spec-
trogram is

WD(r′, k′; r̄, k̄) = δ(r′ − r̄). (6)

This represents a spatially resolved signal; that is, the loca-
tion of the detection event (the pixel location) is resolved. All
signals considered in this paper use this choice.

If the detector spectrogram does not depend on t′ (no
time-gating is applied), we may separate the time-dependent
phase factors from the auxiliary functions and carry out the
time integration to give a factor of δ(ωp − ωp′ + ω̃′ − ω̃). The
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signals are therefore given by

Scoh(ω̄, r̄,	)=K

∫
dω′|Ff (ω′, ω̄)|2ω′2

×
∑
αβ

∫
dωpdωp′Ap(ωp)A∗

p(ωp′)e−i(q·rα−q′ ·rβ )

× 〈σ̂ (q, ω′ − ωp)〉〈σ̂ (−q′, ωp′ − ω′)〉, (7)

Sinc(ω̄, r̄,	) =K

∫
dω′|Ff (ω′, ω̄)|2ω′2

×
∑

α

∫
dωpdωp′Ap(ωp)A∗

p(ωp′)e−i(q−q′)·rα

× 〈σ̂ (−q′, ωp′ − ω′)σ̂ (q, ω′ − ωp)〉, (8)

where q(′) ≡ ω′
c

ˆ̄r − kp(′) is the momentum transfer, Ff (ω, ω̄)
is the frequency gating function of Appendix A, and 	 stands
for the set of parameters that define the external pulse en-
velopes (including kp(′) ). We approximate

K = |ε̄(k̂p) · μD|2
72πc4r ′2 (9)

as a constant on the assumption that all pixels are roughly
equidistant from the sample. In approaches to x-ray scatter-
ing that do not incorporate the detection event, the differential
scattering cross section is calculated and found to be propor-
tional to r2

0 ( ωs

ωp
)|εp · εs |2 with r0 the classical electron radius.

Our incorporation of the detection event included a summa-
tion over polarizations of the signal field and an averaging
over initial polarizations and emission directions. This was
shown to lead to the replacement εp · εs → ε̄(k̂p) · μD while
the use of atomic units equates r2

0 = 1
c4 . Finally, since we cal-

culate the signal (defined as the expectation value of the gated
electric field) by explicitly incorporating the detection event
(which is linear in ωs) our result is proportional to ω2

s . Re-
calling that A(ω) ∝ 1

ω
E(ω), we see that our result carries the

appropriate proportionality factors compared to the usual dif-
ferential scattering cross section (Ref. 34).

That the arguments of Eqs. (7) and (8) are ω̄ and r̄ re-
flects the fact that they correspond to taking a spectrum at
every pixel. Since the final observed signal frequency is ω̄,
we may as well relabel it ωs to make the interpretation more
intuitive. Aside from the expected inverse-square dependence
on r̄ , the signal only depends on r̄ through ˆ̄r, i.e., the direc-
tion vector pointing from the sample to the pixel. Since ˆ̄r is
the same as the direction of propagation of scattered light, this
suggests representing the directional dependence by defining
ωs

c
ˆ̄r ≡ ks . Finally, it is important to note that, although these

signals do not depend on time directly since we have assumed
no time resolution (i.e., the pixels are simply left open to col-
lect incoming light), the signal does depend parametrically
on the central time of the incoming pulse through the field
envelope Ap(ω) which carries a phase factor e−iωT. Here, T is
the central time of the pulse envelope and the zero of time
is set at the end of the state preparation process (where the
prepared state is presumed to be known). Since T therefore
represents the time separation between state preparation and

arrival of the center of the probe pulse and this is a key exper-
imental control, we explicitly write this dependence in future
expressions.

A. Eigenstate expansion of the frequency-resolved
signal

In the following, we focus on the frequency-resolved
signal because of its relative ease of interpretation. While
this has not yet been demonstrated in the X-ray regime, it
has been shown possible to discriminate a single wavelength
component from multiwavelength scattering data in the EUV
range.38 From Eqs. (7) and (8) with |Ff (ω′, ω̄)|2 = δ(ω′ − ω̄),
this signal is given by the sum of a coherent and an incoherent
contribution which are related to the transition charge density
σab(q)

S(ks , 	) =K
∑
α �=β

∑
abcd

ρabρ
∗
cdω

2
s e

i(ωbaT −qba ·rα )e−i(ωdcT −qdc ·rβ )

× Ap(ωs + ωba)A∗
p(ωs + ωdc)σba(qba)σ ∗

dc(qdc)

+ K
∑

α

∑
abc

ρacω
2
s e

i(ωbaT −qba ·rα )e−i(ωbcT −qbc ·rα )

× Ap(ωs + ωba)A∗
p(ωs + ωbc)σba(qba)σ ∗

bc(qbc),
(10)

where Ap(ω) is the spectral envelope of the scattered
pulse, σij (q) are Fourier transformed matrix elements of the
charge-density operator, and a,b,c, and d represent electronic
states. We have also defined the momentum-transfer vector
qba ≡ ks − ωs+ωba

c
k̂p.

The signal is not generally related to the time-dependent,
single-particle charge density but rather to its correlation
function.34, 39 A compact expression for the total signal is

ST (ks , 	) =K

∫
dω′|Ff (ω′, ω̄)|2ω′2

∫
dωpdωp′Ap(ωp)

× A∗
p(ωp′)〈σ̂T (−q′, ωp′ − ωs)σ̂T (q, ωs − ωp)〉,

(11)

where the correlation function of the total charge density oper-
ators may be expanded in terms of the single-particle densities
as

〈σ̂T (−q′, ωs −ωp′ )σ̂T (q, ωp−ωs)〉
=

∑
α

e−i(q−q′)·rα 〈σ̂ (−q′, ωs − ωp′ )σ̂ (q, ωp − ωs)〉

+
∑

α

∑
β �=α

e−i(q·rα−q′ ·rβ )〈σ̂ (−q′, ωs −ωp′ )〉〈σ̂ (q, ωp − ωs)〉.

(12)

For a macroscopic sample initially in the ground electronic
state, the standard classical theory of diffraction gives the
signal as the product of the modulus square of the single-
particle momentum-space electron density (the form factor)
and a structure factor which describes the interparticle distri-
bution (Eq. (2)).27 This formula is used to invert the X-ray
diffraction signal to obtain the ground state electron density
once the “phase problem” is resolved.40 Substituting Eq. (12)
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into (11) yields a close resemblance to the classical expression
for X-ray diffraction except that the coherent and incoherent
terms now carry different form-factors. Note that, if we re-
strict attention to elastic scattering, the correlation function in
the incoherent term separates into a modulus square form and
the two form factors are equal.

V. TIME- AND WAVEVECTOR-DEPENDENT X-RAY
SCATTERING FROM A SINGLE CYSTEINE MOLECULE

Cysteine is a sulfur-containing amino acid which af-
fects the secondary structure of many proteins because of the
disulfide bonds it forms. It has been implicated in biologi-
cal charge transfer in respiratory complexes.41 We have pre-
viously explored various resonant X-ray spectroscopic signals
from this molecule, including stimulated X-ray Raman scat-
tering (SXRS) and X-ray photon echo.42, 43 Below, we present
calculations of off-resonant scattering from a single cys-
teine molecule (chemical structure and orientation shown in
Fig. 2(c)). Details of the computational methodology can be
found in Sec. VII.

The scattering signal from the ground state (the second
term in Eq. (10) with a = c = g, the ground state) is depicted
in Figs. 2(a) and 2(b). We also show the ground-state electron
density, σgg(r), the pulse power spectrum, and the pulse wave
vector for reference. As these calculations are for a single iso-
lated molecule, we can restrict our scattering calculations to
the second (incoherent) term in Eq. (10). We take the scatter-
ing pulse to be a transform-limited Gaussian

Ap(ω) = Ap

√
2πτpe−τ 2

p (ω−p)2/2. (13)

The center frequency p is set to 10 keV, and we take the di-
rection of propagation to be in the positive x direction (for
molecule orientation, see Fig. 2(c)). The pulse duration is
τ p = 300 as which corresponds to a fwhm bandwidth of
3.65 eV. Future progress in pulse-generation may make such
experiments realizable. For this frequency range, the differ-
ence between q̃ and qba for any two states a and b is negligi-
bly small, and is ignored in the calculations presented herein.

We take the signal detectors to be on square grid, 2 cm
in length on each side, located 1 cm from the molecule in the
positive x direction (i.e., we detect forward-scattered light).
This corresponds to a maximum detected scattering angle of
54.7◦. We consider two different values for the detection fre-
quency ωs, one inside and one outside the pulse bandwidth.
When we set the detection frequency equal to the pulse center
frequency, we get the signal shown in Fig. 2(a). This signal
is dominated by the elastic scattering terms, where the scat-
tering process does not change the state of the molecule. At
this detection frequency, the elastic contribution is 4.4 × 106

larger than the inelastic.
The elastic scattering term can be eliminated by mov-

ing the detection frequency outside the pulse bandwidth. In
Fig. 2(b), we show the scattering signal with a detection fre-
quency ωs = p − 9 eV. With this detection frequency, we
see inelastic terms from valence states e whose excitation en-
ergy satisfies the condition that ωeg + ωs is within the pulse
bandwidth. Therefore, all states with an energy between 4
and 12 eV will contribute. The scattering pattern resulting

from the elastic and inelastic process are vastly different. The
former is more strongly centered around the origin, corre-
sponding to q = 0, and elongated in the z direction. The in-
elastic term, in addition to the feature at the origin, has two
equal-intensity peaks at (y, z) = (−0.225 cm, −0.05 cm) and
(0.25 cm, 0.0 cm), which, when converted to reciprocal space
corresponds to (qx, qy, qz) = (−0.08 a.u.−1, −0.65 a.u.−1,
0.0 a.u.−1) and (−0.07 a.u.−1, −0.60 a.u.−1, −0.13 a.u.−1), re-
spectively.

We next turn to time-resolved scattering, in which an X-
ray Raman preparation pulse AR(ω), resonant with the sulfur
K edge, arrives at t = 0 followed by off-resonance scattering
at time t = T. In this process, the Raman pulse acts twice on
the same side of the loop, first promoting a sulfur 1s electron
to the valence band before the transient core hole is filled by
another valence electron. Because the Raman pulse is broad-
band, these two dipole interactions leave the molecule in a su-
perposition of valence-excited states. This wavepacket is ini-
tially localized in the region surrounding the atom whose core
is in resonance (sulfur in this case), but becomes delocalized
across the molecule in a <5 fs time scale.44, 45

The molecular density matrix immediately following the
interaction with the first pulse is

ρ̂ = iα̂ρ̂0 − iρ̂0α̂
†, (14)

where

α̂ =
∑
c,e

|e〉 (εR · μec)(εR · μcg)

2π

×
∫ ∞

−∞
dω

A∗
R(ω)AR(ω + ωeg)

ω − ωce + i�c

〈g| (15)

is the effective polarizability operator and ρ̂0 is the initial
(equilibrium) density matrix. In Eq. (15), εR is the polariza-
tion vector for the Raman pulse and μec is the transition dipole
between the valence-excited state e and the core-excited
state c.

For a single-molecule system prepared in this manner
(and with the simplification q → q0), Eq. (10) assumes the
form

S(ks , T ) =
∑
e,e′

iαe,ge
−iωegTAp(ωs + ωe′e)

×A∗
p(ωs + ωe′g)σe′e(q̃)σ ∗

e′g(q̃) + c.c. (16)

Note that any amplitude in the ground state after the Ra-
man pulse has passed (terms in Eq. (16) where e = g) will
contribute to a background, delay-time-independent signal,
which can be filtered out. The remaining time-dependent scat-
tering signal is a difference signal and will have positive and
negative features, unlike the ground-state scattering signals
from Fig. 2 which were only positive. The largest contribu-
tions will come from terms where e′ in Eq. (16) is equal to
either e or g.

We take the Raman pulse center frequency at the sulfur
K-edge frequency R = 2.473 keV, and polarized along the x
direction. The X-ray Raman signal is highly dependent upon
the choice of polarization vector, and the nature of the un-
derlying wavepacket is quite different for a y or z polarized
pulses.47 We take both the Raman and scattering pulses to
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FIG. 2. Off-resonant scattering of a Gaussian X-ray pulse from cysteine for different detection frequencies. On the right, we show the pulse power spectrum in
blue, with the detection frequency marked as a red line. The pulse propagation vector is shown as a red arrow, pointing at the molecule aligned in the lab frame,
with the scattering pattern shown in the background. (a) The detection frequency ωs is set equal to the pulse center frequency p, and the scattering signal is
dominated by the elastic term. (b) The detection frequency is set to p − 9 eV, and the inelastic terms are dominant. (c) Chemical structure (left) and lab-frame
orientation (right) of the cysteine molecule (O is red, S is green, N is blue, C is grey, H is white).

be Gaussian with duration 100 as (fwhm of 10.96 eV). The
broad bandwidth connects the ground state with the set of va-
lence excited states, with energies between 5.7 eV and 9.0 eV.
Figure 3 shows the time-dependent X-ray scattering signal for
interpulse delays ranging from 0 to 20 fs. For each signal, we
also show the transition density for the Raman wavepacket
prior to interaction with the scattering pulse. This is defined

by

Tr[σ̂ (r)ρ̂] =
∑

e

iαege
−iωegT σeg(r) + c.c. (17)

The left panel of Fig. 3 shows that the transition density
is localized near the sulfur atom at T = 0 fs. In the supple-
mentary material,46 we show a movie of the time-dependent
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FIG. 3. Background: time-dependent X-ray scattering (with ωs = p) following X-ray Raman scattering (Eq. (16)) for various interpulse delay times. Fore-
ground: real-space transition charge densities for the Raman wavepacket (Eq. (17)). Refer to Fig. 2(c) for the positions lab-frame orientation.

scattering signal and transition density for interpulse de-
lays up to 20 fs. From the movie (see the supplementary
material46) and from Fig. 3 we see that there is a good deal
more structure in the scattering signal along the y direction
than along the z direction. This is consistent with the fact that
the electronic motion induced by the Raman pulse is mostly
in the y direction. While the correspondence between elec-
tronic motion in real space and the resulting scattering pattern
is highly suggestive, it is not immediately apparent whether
the transition density can be recovered from the scattering pat-
tern alone. This is because the scattering pattern (Eq. (16)) is
not simply the Fourier transform of the density (Eq. (17)).

The scattering signal shows a complex dependence on
time, reflecting interference between the many different elec-
tronic states which make up the superposition. The signal may
not simply be thought of as a snapshot of the instantaneous

time-dependent charge-density. The time variation strongly
depends on the scattering direction, as can be seen in Fig. 4.
Here, we depict the time evolution of six points from the
T = 0 fs signal, corresponding to the highest and lowest peaks
therein. Each trace has a beating pattern, representing a spa-
tially resolved interferogram. Decay due to finite lifetime and
dephasing is not included in the time-domain signals pre-
sented here. The contribution to the signal at a given detec-
tor due to a particular electronic coherence can be determined
by Fourier transforming with respect to the delay time. This
would give information on the transition density for the con-
tributing excited states. However, we do not pursue this anal-
ysis here.

In Fig. 5, we show the variation of the time traces in
Fig. 4 with the detection frequency ωs. In the previous figures,
ωs was set equal to the scattering pulse center frequency, p.

FIG. 4. Time-dependence of the off-resonant X-ray scattering plot (with ωs = p). Left: The scattering signal for T = 5 fs, with six different features labeled.
Right: The evolution of these different features with increasing interpulse delay.
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FIG. 5. Variation of the six features in the T = 0 fs scattering signal in Fig. 5 with detection frequency ωs and delay time T.

However, since purely elastic processes do not contribute to
the time-dependent signal, the signal is larger for ωs < p.
The signal is maximized when, for a given e and e′ from
Eq. (16), both ωs + ωe′e and ωs + ωe′g lie within the pulse
bandwidth.

VI. CONCLUSIONS

Coherent two-particle scattering from populations is an
elastic process while coherent scattering from matter coher-
ences is inelastic. Incoherent scattering, in contrast, generally
produces both elastic and inelastic contributions regardless
of the initial material state, as evident from Eq. (10). Thus,
the coherent terms can only induce transitions between states
populated by the material superposition state while the inco-
herent terms can induce transitions to any electronic state. No-
tably, the incoherent and coherent signals come with different
particle form factors. Thus, the total signal may not be sim-
ply factored into the product of a particle form factor and a
structure factor as in the classical theory. This issue had been
addressed for X-ray scattering from a single hydrogen atom
when it is prepared in a superposition state.39 Our QED ap-
proach generalizes previous treatments34, 39 to properly ac-
count for arbitrary pulse bandshape, non-impulsive pulses,
and detection details. The role of electronic coherence re-
quires full account of frequency, time, and wavevector gated
detection as is done here.

The present treatment fully incorporates inelastic scat-
tering effects, which must be taken into account for single-
molecule scattering. If the sample is initially in the ground

state, the coherent scattering is entirely elastic and if the
sample is prepared perturbatively, the coherent is dominated
by elastic scattering while the incoherent terms are affected
equally by the transition charge densities (σ eg). Since light
scattered from a single particle is not necessarily elastic and
can change the state of the particle, obtaining the charge den-
sity from single-particle scattering will require distinguish-
ing between the Rayleigh and Raman components. Further-
more, the total scattered intensity may not be fully described
by the ground state charge density alone; it requires more in-
formation about electronic excited states of the particle, i.e.,
the transition charge densities. Our approach and simulations
can provide valuable insight for future structural studies of
proteins and nano-devices.

VII. SIMULATION METHODS

The details of the electronic structure calculations can
be found in Ref. 42, and are recounted briefly here. The op-
timized geometry of cysteine was obtained with the Gaus-
sian09 package48 at the B3LYP49, 50/6-311G** level of theory.
All time-dependent density functional theory (TDDFT) cal-
culations were done at the CAM-B3LYP51/6-311++G(2d,2p)
level of theory, and with the Tamm-Dancoff approximation
(TDA).52 It was found that TDDFT with this type of long-
range-corrected density functionals and diffused basis func-
tions can describe Rydberg states well.53, 54 In these calcu-
lations, we include 50 valence excited states, with energies
ranging from 5.4 eV to 9.0 eV. Core-excited states, in which
a sulfur 1s electron is excited to the valence band, were
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calculated using restricted excitation window (REW) TDDFT
with a locally modified version of NWChem code.55, 56 We
also include 50 core-excited states for core excitations, with
energies ranging from 2473.5 eV to 2495.9 eV (shifted to
match experimental XANES results).

Transition density matrices between different valence ex-
cited states, which contribute to the summation in Eq. (9), are
calculated using the CI coefficients from the TDDFT/TDA re-
sults, and are therefore in an unrelaxed sense. More accurate
relaxed state-to-state transition density matrices could be cal-
culated using the Z-vector method,57, 58 and this research is
ongoing.
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APPENDIX A: TIME-, FREQUENCY-, AND
WAVEVECTOR-GATING OF SIGNALS

The signal is defined as the intensity of the detected elec-
tric field

S =
∫

dt

∫
dr〈E†(r, t)E(r, t)〉, (A1)

where the detected electric field is represented as

Ê(r, t) = 1

(2π )4

∫
dω

∫
dke−iωt+ik·rÊ(k, ω). (A2)

Following the procedure outlined in Ref. 28, we add a
series of gating functions to the detected electric field

Ê(t)(r, t) = Ft (t, t̄)Ê(r, t),

Ê(tr)(r, t) = Fr(r, r̄)Ê(t)(r, t),
(A3)

Ê(trf )(r, t) = Ff (ω, ω̄)Ê(tr)(r, ω),

Ê(trf k)(r, t) = Fk(k, k̄)Ê(trf )(k, ω).

This gives

Ê(trf k)(r, t ; t̄ , ω̄, r̄, k̄)

=
∫

dr′
∫

dt ′Ê(r′, t ′)Fk(r − r′, k)Ff (t − t ′, ω̄)

× Fr(r′, r̄)Ft (t
′, t̄). (A4)

The signal is then given by Eq. (5). We define the bare and
detector spectrograms via

WB(t ′, ω′, r′, k′)

=
∫ ∞

0
dτe−iω′τ

∫
dReik′ ·R〈T Ê†

R(r′ + R/2, t ′ + τ/2)

× ÊL(r′ − R/2, t ′ − τ/2)〉, (A5)

WD(t ′, ω′, r′, k′; t̄ , ω̄, r̄, k̄)

=
∫

dω

2π
|Ff (ω, ω̄)|2Wt (t

′, ω′ − ω, t̄)

×
∫

dk
(2π )3

|Fk(k, k̄)|2Wr(r′, k′ − k, r̄), (A6)

where we have defined the auxiliary functions

Wt (t
′, ω, t̄) ≡

∫
dτF ∗

t (t ′ + τ/2, t̄)Ft (t
′ − τ/2, t̄)eiωτ (A7)

and

Wr(r′, k, r̄) ≡
∫

dRF ∗
r (r′ + R/2, r̄)Fr(r′ − R/2, r̄)e−ik·R.

(A8)
The signal is then given by the overlap of the two spectro-
grams

S(t̄ , ω̄, k̄, r̄) =
∫

dt ′
dω′

2π

∫
dr′ dk′

(2π )3
WB(t ′, ω′, r′, k′)

×WD(t ′, ω′, r′, k′; t̄ , ω̄, k̄, r̄). (A9)

For brevity, the following definitions are used in the
derivations:

WD(t ′, ω′; t̄ , ω̄) =
∫

dω

2π
|Ff (ω, ω̄)|2Wt (t

′, ω′ − ω, t̄),

(A10)

WD(r′, k′; r̄, k̄) =
∫

dk
(2π )3

|Fk(k, k̄)|2Wr(r′, k′ − k, r̄).

(A11)

APPENDIX B: DERIVATION OF THE BARE
SPECTROGRAM

Beginning with Eq. (A5), we expand it to leading order
in H′ (Eq. (1)). This requires two interactions (one each for
the ket and bra) since the signal mode is initially in a vacuum
state

WB(t ′, ω′, r′, k′)

=
∑
ks ,ks′

∫
dτe−iω′τ

∫
dReik′ ·R

∫ t ′+τ/2

−∞
dt ′1

∫ t ′−τ/2

−∞
dt1

×
∫

dr1dr′
1〈Ê(s ′)†

R (r′ + R/2, t ′ + τ/2)

× Ê(s)
L (r′ − R/2, t ′ − τ/2)Â(s ′)

R (r′
1, t

′
1) · Â(p)†

R (r′
1, t

′
1)

×σ̂T ,R(r′
1, t

′
1)Â(s)†

L (r1, t1) · Â(p)
L (r1, t1)σ̂T ,L(r1, t1)ρT (0)〉.

(B1)

Here, the total density matrix is the direct product of field and
matter density matrices immediately following state prepara-
tion (i.e., ρT(0) = ρF(0)⊗ρM(0)). The vector potential of the
vacuum modes, Â(s)(r, t), is expanded as

Â(s)(r, t) =
∑
ks ,ν

√
2π¯

V ωs

ε(ν)(k̂s)âks ,νe
−iωs t+iks ·r. (B2)
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Here, âks ,ν is the annihilation operator for mode s and polar-
ization ν, ε(ν)(k̂s) is a unit vector in the direction of polariza-
tion, and V is the field quantization volume. The field operator
is given by

Ê(s)(r, t) =
∑
ks ,ν

√
2π¯ωs

V
ε(ν)(k̂s)âks ,νe

−iωs t+iks ·r, (B3)

while the vector potential for the classical probe beam
Â(p)(r, t) is represented as

Â(p)(r, t) =
∑

ν

Pνε
(ν)(k̂p)

∫
dωp

2π
Ap(ωp)e−iωpt+ikp ·r,

(B4)
where Pν is the fraction of the probe pulse in polarization
state ν and ε(ν)(k̂p) is a unit vector in the direction of di-
rection of polarization ν. Henceforth, we will use the short-
hand

∑
ν Pνε

(ν)(k̂p) = ε̄(k̂p) and assume a narrow beam so
that k̂p = k̂p′ . Note that, by starting the t ′1 and t1 integrations
at −∞, we assume that the scattered pulse is well separated
from the state preparation process. Inserting these definitions
into Eq. (B1), separating matter and field correlation func-
tions (and evaluating the latter with the conditions described
above), we obtain

WB(t ′, ω′, r′, k′)

= 1

4V 2

∑
ks ,ks′

∫
dτe−iω′τ

∫
dReik′ ·R

∫ t ′+τ/2

−∞
dt ′1

×
∫ t ′−τ/2

−∞
dt1e

iωs′ (t ′+τ/2−t1)−iωs (t ′−τ/2−t ′1)

×
∫

dωpdωp′Ap(ωp)A∗
p(ωp′)e−iωpt1eiωp′ t ′1

×
∫

dr1dr′
1

N∑
α,β

∑
λ,λ′

(ε(λ)(k̂s) · ε̄(k̂p))(ε(λ′)(k̂s ′ ) · ε̄(k̂p))

× (ε(λ)(k̂s) · μD)(ε(λ′)(k̂s ′ ) · μD)eiks ·(r′−R/2)

× e−iks′ ·(r′+R/2)e−i(ks−kp)·r1ei(ks′ −kp′ )·r′
1

× 〈σ̂ β†
R (r′

1, t
′
1)σ̂ α

L (r1, t1)ρM (0)〉, (B5)

where we have taken a dipolar-interaction model for the
detection event with μD the dipole moment of the de-
tector. We have also defined σ̂ α(r) ≡ σ̂ (r − rα) so that
σ̂T (r) = ∑

α σ̂ α(r).

1. Coherent terms

We first examine the α �= β terms in the above. As-
suming that the particles are uncorrelated, we have ρM(0)
= ρα(0)⊗ρβ(0). The correlation function therefore splits and
we can separately collect factors associated with each parti-

cle. That is, we define

�(α)(r, t) = 1

2V

∑
ks ,λ

∫ t

−∞
dt1e

−iωs (t−t1)

×
∫

dωp

2π
Ap(ωp)e−iωpt1eiks ·r

×
∫

dr1(ε(λ)(k̂s) · ε̄(k̂p))(ε(λ)(k̂s) · μD)

× e−i(ks−kp)·r1〈σ̂ α(r1, t1)〉α, (B6)

where 〈. . . 〉α = Tr[. . . ρα(0)] is the trace over the product of
the argument and the density matrix immediately after the
state preparation process (ρα(0)). The coherent spectrogram
is then given by

WB,coh(t ′, ω′, r′, k′)

=
∑
α,β

∫
dτe−iω′τ

∫
dReik′ ·R�(α)(r′ − R/2, t ′ − τ/2)

× �(β)†(r′ + R/2, t ′ + τ/2). (B7)

In order to carry out the integration over dt1, we use the
Fourier Transform

〈σ̂ α(r1, t1)〉α =
∫

dω̃

2π
eiω̃t1〈σ̂ α(r1, ω̃)〉α. (B8)

We thus have

�(α)(r, t) = 1

2V

∑
ks

∑
ij

ε̄i(k̂p)μDj (δij − k̂si k̂sj )

×
∫

dr1

∫
dωp

2π
Ap(ωp)

×
∫

dω̃

2π
〈σ̂ α(r1, ω̃)〉αeiks ·re−i(ks−kp)·r1e−iωs t

×
∫ t

−∞
dt1e

i(ω̃+ωs−ωp)t1 , (B9)

where we have also expanded the dot products of the polar-
izations and used the identity∑

λ

ε
(λ)
i (k̂s)ε

(λ)
j (k̂s) = δij − k̂si k̂sj . (B10)

We are now free to carry out the time integration∫ t

−∞
ei(ω̃+ωs−ωp)t1 = (−i)ei(ω̃+ωs−ωp)t

ω + ωs − ωp − iη
, (B11)

where η is a positive infinitesimal. We change the summation
over ks to an integration via

1

V

∑
ks

→ 1

(2π )3

∫
dks =

∫
ω2

s dωs

(2πc)3
ds (B12)

and make use of the relation59∫
ds(δij − k̂si k̂sj )e±iks ·r = (−∇2δij + ∇i∇j )

sin ksr

k3
s r

.

(B13)
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This gives

�(α)(r, t) = −i

2(2π )3

∑
ij

ε̄i(k̂p)μDj (−∇2δij + ∇i∇j )

×
∫

dr1

∫
dωp

2π
Ap(ωp)

×
∫

dω̃

2π
〈σ̂ α(r1, ω̃)〉αeikp ·r1ei(ω̃−ωp)t

×
∫

dωs

sin ωsr̃/c

ωs(ωs − (ωp − ω̃ + iη))

1

r̃
, (B14)

where we have defined r̃ = r − r1. The dωs integral has poles
at ωs = 0 and ωs = ωp − ω̃. The term arising from the residue
at the first pole will have a factor 1

ωp−ω̃
. Because the interac-

tion between the sample and the field is off-resonant, ωp will
not be close to any material frequency. The term arising from
the residue of the pole at ωs = 0 is negligible in such a pro-
cess. Thus, we may perform the dωs integration

∫
dωs

sin ωsr̃/c

ωs(ωs − (ωp − ω̃ + iη))
= πei(ωp−ω̃)r̃/c

ωp − ω̃
. (B15)

Using the identity

(−∇2δij + ∇i∇j )eikr

= {(δij − 3r̂i r̂j )(ikr − 1) + (δij − r̂i r̂j )k2r2}e
ikr

r2
(B16)

and rotationally averaging so that r̂i r̂j = 1
3δij results in

�(α)(r, t)=−i(ε̄(k̂p) · μD)

6(2πc)2r̃

∫
dωp

2π
Ap(ωp)

∫
dω̃

2π

×
∫

dr1e
ikp ·r1e−i(ωp−ω̃)(t−r̃/c)(ωp − ω̃)〈σ̂ α(r1, ω̃)〉.

(B17)

Placing the origin within the sample and taking the de-
tector to be far away (in comparison to the size of the sample)
allows the approximation r̃ = |r′ − R/2 − r1| � r ′ − r̂′ · (r1

+ R/2). Where we have substituted r = r′ − R/2 since that is
the point at which we will eventually evaluate �(α). Although
we will later formally integrate over all R, this represents dif-
ferent detection locations and thus should only be carried out
over the area of a detector pixel. The assumption that R is
small compared to r′ (the distance to the detector) is thus jus-
tified. Dropping the retardation due to r′ (since this uniformly
delays the signal by some constant due to travel time) and
replacing the r̃ in the denominator by r′ simplifies the expres-
sion yielding

�(α)(r′ − R/2, t)

= −i(ε̄(k̂p) · μD)

6(2πc)2r̃

∫
dωpAp(ωp)

×
∫

dω̃

2π
e−i(ωp−ω̃)(t− 1

c
r̂′·R/2)(ωp−ω̃)〈σ̂ (Q(ω̃), ω̃)〉e−iQ(ω̃)·rα ,

(B18)

where we have also carried out the dr1 integration via∫
dre−ik·r〈σ̂ α(r, ω̃)〉 = 〈σ̂ (Q(ω̃), ω̃)〉e−iQ(ω̃)·rα (B19)

with Q(′)(ω̃) ≡ 1
c
(ωp(′) − ω̃)r̂′ − kp(′) . We are now in a posi-

tion to perform the integrations over dτ and dR in Eq. (B7)

∫
dτe−i(ω′− 

2 )τ = 2πδ

(
ω′ − 

2

)
, (B20)

∫
dRe−i(k′− 

2c
r̂′)·R = (2π )3δ

(
k′ − 

2c
r̂′

)
, (B21)

with  ≡ ωp + ω′
p − ω̃ − ω̃′ defined for convenience. The

bare coherent spectrogram is then

WB,coh(t ′, ω′, r′, k′)

= |ε̄(k̂p) · μD|2
36(2π )2c4r ′2

∑
α

∑
β �=α

∫
dωpdωp′dω̃dω̃′Ap(ωp)

× A∗
p(ωp′)(ωp − ω̃)(ωp′ − ω̃′),

〈σ̂ (Q(ω̃), ω̃)〉〈σ̂ (−Q′(−ω̃′),−ω̃′)〉e−iQ(ω̃)·rα eiQ′(−ω̃′)·rβ

× e−i(ωp−ωp′+ω̃′−ω̃)t ′δ

(
ω′ − 

2

)
δ

(
k′ − 

2c
r̂′

)
. (B22)

2. Incoherent terms

The incoherent (α = β) terms contain the correlation
function

〈T σ̂
α†
R (r′

1, t
′
1)σ̂ α

L (r1, t1)〉. (B23)

Since there is only one operator on each side of the density
matrix, there is no time ordering ambiguity and we may drop
T . The Hilbert space expression is then

T r[σ̂ α†(r′
1, t

′
1)σ̂ α(r1, t1)ρα(0)]. (B24)

Although we may not factor this into a product of correlation
functions, we may still go through the same series of simpli-
fications as in the coherent case resulting in

WB,inc(t ′, ω′, r′, k′)

= 2πK
∑

α

∫
dωpdωp′dω̃dω̃′Ap(ωp)

× A∗
p(ωp′ )(ωp − ω̃)(ωp′ − ω̃′)

〈σ̂ (−Q′(−ω̃′),−ω̃′)σ̂ (Q(ω̃), ω̃)〉e−i(Q(ω̃)−Q′(−ω̃′))·rα

× e−i(ωp−ωp′+ω̃′−ω̃)t ′δ

(
ω′ − 

2

)
δ

(
k′ − 

2c
r̂′

)
.

(B25)
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The total (incoherent plus coherent) bare spectrogram may
also be written in a form similar to this

WB,T (t ′, ω′, r′, k′)

= 2πK

∫
dωpdωp′dω̃dω̃′Ap(ωp)

× A∗
p(ωp′)(ωp − ω̃)(ωp′ − ω̃′)

〈σ̂T (Q(ω̃), ω̃)σ̂T (−Q′(−ω̃′),−ω̃′)〉

× e−i(ωp−ωp′+ω̃′−ω̃)t ′δ

(
ω′ − 

2

)
δ

(
k′ − 

2c
r̂′

)
(B26)

when given in terms of the total (many-particle) charge
density.
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