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Abstract

Gene signatures have failed to predict responses to breast cancer therapy in patients to date. In this

study, we used bioinformatic methods to explore the hypothesis that the existence of multiple drug

resistance mechanisms in different patients may limit the power of gene signatures to predict

responses to therapy. Additionally, we explored whether sub-stratification of resistant cases could

improve performance. Gene expression profiles from 1,550 breast cancers analyzed with the same

microarray platform were retrieved from publicly available sources. Gene expression changes

were introduced in cases defined as sensitive or resistant to a hypothetical therapy. In the resistant

group, up to five different mechanisms of drug resistance causing distinct or overlapping gene

expression changes were generated bioinformatically, and their impact on sensitivity, specificity

and predictive values of the signatures was investigated. We found that increasing the number of

resistance mechanisms corresponding to different gene expression changes weakened the

performance of the predictive signatures generated, even if the resistance-induced changes in gene

expression were sufficiently strong and informative. Performance was also affected by cohort

composition and the proportion of sensitive versus resistant cases or resistant cases that were

mechanistically distinct. It was possible to improve response prediction by sub-stratifying
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chemotherapy-resistant cases from actual datasets (non-bioinformatically-perturbed datasets), and

by using outliers to model multiple resistance mechanisms. Our work supports the hypothesis that

the presence of multiple resistance mechanisms to a given therapy in patients limits the ability of

gene signatures to make clinically-useful predictions.
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INTRODUCTION

Current approaches for microarray-based gene expression profiling analysis have been

effective in generating gene signatures that accurately identify simple and/or overtly

dominant phenotypes associated with marked transcriptomic characteristics (e.g. between

estrogen receptor (ER)-positive and ER-negative breast cancers)(1-4). It has led to the

development of a molecular classification of breast cancer with prognostic implications, and

of prognostic gene signatures(3,5-7), both of which also identify subgroups of breast cancers

with different sensitivity to chemotherapy, seemly irrespective of the chemotherapy agent(s)

used(8-10). The prognostic and predictive power of these tests has been shown to be

primarily attributable to their ability to assess the expression levels of ER- and proliferation-

related genes(1,4,11,12).

The development of gene signatures predictive of response to specific therapeutic agents

and/or combinatorial therapies has proven challenging(1). The ability of gene signatures to

predict complex biological phenomena appears to be limited, and some biological endpoints

have been shown to be inherently difficult to predict regardless of the study design and

bioinformatics methods employed(2,13,14). The predictive signatures generated thus far

have either not been validated in subsequent studies or offered limited predictive value in

addition to that provided by standard clinico-pathological parameters(1,4,15-17). This

limited success in the development of predictive signatures can be attributed to biological

phenomena and technical issues, including pharmacokinetics variability that may not be

entirely captured by expression profiling of primary tumors (reviewed in (18)), weakly

informative features (i.e. limited difference in gene expression levels between sensitive and

resistant cases)(2,13), small sample size and/or limited proportion (<10%) of tumors

displaying informative gene expression changes(2,13), and the observation that resistance/

sensitivity to a given therapeutic agent often involve low-level expression differences in a

modest number of genes(17).

Resistance to a given therapeutic agent may be caused by multiple mechanisms underpinned

by distinct genetic/epigenetic aberrations (i.e. convergent phenotypes)(19,20). For instance,

resistance to small molecule inhibitors targeting EGFR in lung adenocarcinomas harboring

EGFR mutations has been shown to be caused by EGFR gatekeeper mutations, MET gene

amplification and conversion from adenocarcinoma to small cell lung cancer(21), multiple

mechanisms of resistance to Trastuzumab have been described in vitro and in vivo, including

loss of PTEN, PIK3CA mutations, over-expression of IGF-1R or MUC4, and HER2-p95
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expression(22,23), and resistance to Poly(ADP) Ribose Polymerase (PARP) inhibitors in

BRCA1 and BRCA2 mutation carriers with breast and ovarian cancer may be caused by

BRCA1 or BRCA2 intragenic deletions or revertant mutations, P-glycoprotein

overexpression and 53BP1 loss of expression (reviewed in (24)). These convergent

phenotypes pose a challenge for the development of predictive signatures, as tumors with

different resistance mechanisms may display either completely different or only partially

overlapping gene expression patterns(4,17,25), and conventional methods of genome-wide

microarray analysis may only be able to identify genes significantly altered in the majority

of therapy-resistant or sensitive tumors in a given dataset(25).

In studies aiming to derive gene expression predictors of response, resistant samples have

been treated as a single, homogeneous group without the knowledge of the underlying

mechanisms of resistance(25). Hence, we sought to determine the impact of the existence of

multiple mechanisms of resistance to a hypothetical therapeutic agent (or combinatorial

therapy) on the performance of predictive gene signatures. We bioinformatically spiked-in a

breast cancer gene expression dataset (n=1,550) with resistance-associated expression

changes to a hypothetical drug (or combinatorial therapy) and demonstrated that the

existence of multiple mechanisms of resistance has a deleterious impact on the performance

of predictive gene signatures. Furthermore, we assessed in actual datasets of breast cancer

patients who underwent neoadjuvant chemotherapy whether sub-stratification of the

chemotherapy-resistant cases improved the performance of the predictive signatures

generated.

MATERIAL AND METHODS

Dataset and generation of spiked-in datasets

We selected nine breast cancer gene expression datasets generated on the Affymetrix

U133a2 platform comprising 1,550 cases from Haibe-Kains et al.(26). The datasets CAL

(ArrayExpress: E-TABM-158), EORTC10994 (Gene Expression Omnibus (GEO):

GSE1561), MSK (GEO: GSE2603), VDX (GEO: GSE2034, GSE5327), MAINZ (GEO:

GSE11121), TRANSBIG (GEO: GSE7390), MDA4 (http://bioinformatics.mdanderson.org/

pubdata.html), NCCS (GEO: GSE5364), and MAQC2 (GEO: GSE20194) were downloaded

from http://compbio.dfci.harvard.edu/pubs/sbtpaper/. This platform had the largest number

of cases (n=1,550) analyzed on any single expression array platform in this collection of

datasets. We obtained normalized microarray-based gene-expression data from the above

public repository, and to account for batch/source effects, we re-normalized the merged

dataset with ComBat(27). The resulting merged dataset showed no signs of bias resulting

from batch effects (data not shown). Next, we generated bioinformatically perturbed datasets

using this merged dataset by spiking in arbitrarily-selected resistance-associated gene

expression changes (i.e. adding specific expression values to genes selected to constitute the

gene expression patterns of resistance) to a hypothetical drug or combinatorial therapy (Fig.

1). Using this approach, we have defined bioinformatically the genes associated with

resistance to the hypothetical drug or combinatorial therapy, and the cases classified as

resistant or sensitive. Sensitive cases to the hypothetical therapeutic agent (s%) were

randomly selected at varying proportions ranging from 5% to 50%. The remaining resistant
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cases (1-s%) were subdivided into 1, 2, 3, 4 or 5 resistant groups (n) on the basis of their

hypothetical mechanisms of resistance, where 1/n of the cases were randomly allocated into

having the nth resistance mechanism. For presentation purposes, the ‘ideal’ and ‘clinically-

realistic’ prevalence of resistant cases were 50% (i.e. maximal statistical power) and 90%,

respectively(28). Resistance-associated gene expression changes were ‘spiked-in’ by adding

v (v=0.5, 1.0 or 1.5) to the Log2-expression value of 100 randomly selected probes (i.e.

features), whereby 0.5 (1.4-fold), 1.0 (2.0-fold) and 1.5 (2.8-fold) were considered ‘weak’,

‘optimal’ and ‘strong’ gene expression changes in the context of microarray-based signature

generation, respectively(13). For each combination of s, v and n, we repeated the

perturbation steps to generate 100 bioinformatically-perturbed datasets. Using the same

methods, we also simulated datasets for other scenarios. First, we generated 200 iterations

where there were 2, 3, 4 or 5 resistance mechanisms (n), for which the proportions of

resistant cases driven by a pre-determined number of resistance mechanisms (i.e. 2, 3, 4 or

5) were randomly allocated (e.g. in a dataset where 50% of cases were resistant to a given

therapeutic agent and there were two resistance mechanisms, the proportions of cases driven

by mechanism 1 or 2 were randomly allocated). Second, we generated 200 iterations where

there were 2, 3, 4 or 5 resistance mechanisms (n), for which the proportions of resistant

cases were identical in the training and test sets, however, the proportion of cases driven by

a given mechanism of resistance was randomly and independently allocated for the training

and test sets. Third, we generated 100 iterations where there were 2, 3, 4 or 5 resistance

mechanisms (n) with overlapping changes in gene expression, such that the overlap (o%, o

%=0%, 1%, 5%, 10%, 20%, 50% or 90%) of the 100 spiked-in genes was identical for each

of the n mechanisms and that the remaining 1-o% genes were randomly selected and

mutually exclusive.

Predictive signature model building

As with most signatures predictive of response to a given therapeutic agent or combinatorial

therapy reported to date, we have employed a linear model, diagonal linear discriminant

analysis (DLDA), using the “Classification for MicroArrays” (CMA) package(29). t-test

was employed to rank the features based on their ability to distinguish sensitive and resistant

cases. The top 100 features were then used as the predictive signature for DLDA. In

addition, we generated predictive signatures by supervised principal component analysis

using the “superPC” package(30). Feature selection was performed by ranking the features

using Wald score. The top 100 features were selected as the gene predictive signature, the

optimal number of principal components (up to 3) was selected by cross-validation of the

training set and a predictive signature was defined by superPC. For both DLDA and

superPC, validation of the predictive signatures was performed by 50 iterations of 3-fold

Monte-Carlo cross-validation (MCCV), stratified to preserve the proportions of the different

groups of sensitive and resistant cases. Semi-stratified 3-fold MCCV was performed when

only the sensitive to resistant ratio had to be preserved but not the proportion of cases driven

by a given mechanism of resistance between training and test sets.

For each analysis performed, as performance indicators, we measured the area under curve

(AUC) of the receiver operating characteristic (ROC) curves, sensitivity, specificity,
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accuracy, positive predictive value (PPV) and negative predictive value (NPV) by taking the

median of the MCCV repeats, and selected distributions for illustrative purposes.

Statistical methods

We performed two types of statistical analyses. First, we performed a trend test to calculate

the statistical significance of the linear slope fitted to the logits of the AUCs (y – dependent

values), the logits of the AUCs being inverse variance weighed and the independent values

set to the integers 1,2,3,4 or 5 or 1,2,3 or 4 depending on the number of data points. This test

is used to calculate the statistical significance of increasing the number of resistance

mechanisms. Second, if confidence intervals (CIs) touch or do not overlap, the significance

level satisfies p<0.05. Standard errors for differences were calculated by dividing the

difference between the confidence limits and the mean by 1.96. If the two standard errors are

se1 and se2, then the standard error of the difference is  and the difference

between the means is 2(se1 + se2), hence the p-value can be calculated from

. We have tested the results for a range of values and observed that the p-

values satisfy p<0.05. For example, se1=0.01, se2=0.01, seDiff=0.014, Diff=0.0392 and

z=2.77186 result in a p= 0.005573725, se1=0.01, se2=0.1, seDiff=0.1, Diff=0.2156 and

z=2.1453 result in a p=0.031928854, and se1=0.2, se2=0.15, seDiff=0.25, Diff=0.686 and

z=2.744 result in a p=0.006069554. On this basis, this rule was employed to define

statistically significant differences between different classifiers generated.

Predictive signature performance using actual breast cancer datasets

To assess the impact of multiple resistance subgroups on predictive signature performance,

we employed two actual (i.e. non-bioinformatically perturbed) breast cancer datasets

obtained from patients undergoing neoadjuvant taxane-anthracycline-based chemotherapy

(i.e. GSE25055 and GSE25065). GSE25055 was used as the training dataset and GSE25065

was employed as the test (i.e. validation) dataset. Normalized gene expression data from

these studies were obtained from Hatzis et al. (31). Data were re-normalized using

ComBat(27) to account for batch/source effects. To avoid the impact of proliferation-related

genes on the ability to define chemotherapy response predictors, only ER-negative breast

cancers were included in the analysis, as these consistently display high levels of

proliferation-related genes(1). GSE25055 comprises 129 ER-negative breast cancers, of

which 34.9% evolved to pathologic complete response (pCR), and GSE25065 comprises 68

ER-negative breast cancers, of which 33.8% evolved to pCR. Predictive signatures were

derived using pCR as a surrogate for sensitivity to the chemotherapy regimen. Performance

was determined in the ER-negative cases (n=129 training set, pCR rate 34.9%) by selecting

features using either t-tests comparing all sensitive vs resistant cases (‘standard t-test’), a

modified Cancer Outlier Profiling Analysis (mCOPA) method(32,33), or a mixed linear

model and mCOPA approach (80% and 20% of features derived using the standard t-test

and mCOPA, respectively; ‘Mixed (20% mCOPA)’). To investigate the impact of clinical

parameters as other potential sources of heterogeneity, we further defined the performance

of predictive signatures using a mixed approach where features were derived from age-

related signatures (80% and 20% of features derived using standard t-test and age-related
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signatures, respectively; ‘Mixed (20% age)’), nodal status (80% and 20% of features derived

using standard t-test and nodal status-related signatures, respectively; ‘Mixed (20% nodal

status)’) and tumor size-related signatures (80% and 20% of features derived using standard

t-test and tumor size-related signatures, respectively; ‘Mixed (20% tumor size)’; see below).

For a direct comparison, the 80% of features selected by t-test were kept constant in all

mixed approaches.

To select features by modified COPA, we used the implementation of mCOPA as described

by Wang et al (33) with further modifications. Briefly, COPA transformation was performed

on normalized expression values. Using the COPA-transformed scores, we defined over-

expressed resistant outliers as features greater than the 75th percentile plus 1.5 times the

inter-quartile value of the sensitive cases and under-expressed resistant outliers as features

less than the 25th percentile minus the inter-quartile value of the sensitive, as originally

described. Only candidate features that did not have sensitive outliers in the same direction

(either up-regulated or down-regulated) as the resistant outliers and had at least 5% of the

resistant cases as outliers were included. Furthermore, only candidate features that displayed

at least a 2-fold difference between the mean expression of the resistant outliers and the

mean expression of the sensitive cases were included. Using the same approach, candidate

features using sensitive outliers were also identified by comparing the sensitive cases to the

resistant cases. The features up- and down-regulated in the resistant cases and those up- and

down-regulated in the sensitive cases were combined and ranked by the difference in

expression between the outliers and the control group (i.e. the resistant outliers vs the

sensitive cases and vice-versa) in decreasing order.

To select features associated with age, the cohort was stratified according to age at diagnosis

(≤45 vs >45 years of age). Features were selected using t-tests comparing all sensitive vs

resistant cases within each sub-cohort of the training set, and selected features were merged

from the individual sub-cohorts by ranking according to the t-statistics. Feature selection

based on nodal status (N0 vs N1/2/3) and tumor size (T0/1 vs T2/3) was performed in the

same manner.

For ‘standard t-test’ and ‘mCOPA’ signatures, the top 100 genes were selected as the gene

signature for superPC classification(30). In the mixed approaches, to overcome the potential

overlap of predictive genes identified by t-test and mCOPA or by t-test and the methods

employed for signature generation using the clinical parameters, the 100 genes that compose

the final signature were selected by iteratively adding one feature at a time such that the

proportion of genes not shared by the two sources of features was maintained. Validation of

the predictive signatures was performed by leave-one-out cross-validation (LOOCV) of the

training set. A separate approach was employed, whereby signatures were generated as

described above using GSE25055 as the training dataset, and validated using ER-negative

samples from GSE25065 (n=68 test set, pCR rate 33.8%) as the validation dataset. At no

point, signatures were generated using the validation dataset GSE25065. For each analysis

performed, we measured the accuracy, sensitivity, specificity, PPV and NPV.

The R scripts and codes employed for the analyses described are available as a

Supplementary file.
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RESULTS

The number of distinct resistance mechanisms impacts on the performance of predictive
gene signatures

In a scenario where distinct and equally prevalent mechanisms of resistance would result in

optimal (i.e. 2-fold) gene expression changes whose overlap is not different from that caused

by chance (i.e. random but not necessarily mutually exclusive), increasing the number of

resistance mechanisms significantly reduced the performance of the predictive signatures

(Fig. 2, Table 1, Supplementary Table S1). In an ideal setting (i.e. 50% resistant cases), an

increase in the number of resistance mechanisms resulted in a statistically significant trend

of decreasing AUCs (p<0.0001). Employing a more realistic clinical estimate (i.e. 90% of

resistant cases(28)), similar findings were obtained (Fig. 2A, Table 1), and an increase in the

number of resistance mechanisms from 1 to 5 also resulted in significant trend of decreasing

AUCs (p<0.0001). Increasing the proportion of resistant cases from the ideal to the

clinically-realistic settings (i.e. from 50% to 90%) did not have a significant impact on

trends of AUCs (p>0.05) at optimal signature strength (i.e. ≥2-fold).

Gene expression changes associated with sensitivity or resistance to a given therapeutic

intervention have been shown often to be weaker than 2.0-fold(13). Hence, by using a

clinically-relevant ‘weak’ signature (i.e. an increase of 0.5 on the Log2-expression or 1.4-

fold, Fig. 2B, Table 1, Supplementary Table S1), we observed that the deteriorating effect of

the increase in the number of equally prevalent resistance mechanisms was even more

pronounced. The trends of decreasing AUCs as the number of mechanisms of resistance

increased from 1 to 5 in the ideal setting (50% sensitive cases) and the realistic clinical

estimate (10% sensitive cases) were both significant (p<0.0001), as was the difference

between them (p<0.0001; Fig. 2B, Table 1). The impact of multiple mechanisms of

resistance on the performance of the predictive signatures was less pronounced but still

statistically significant when the signature was strong (i.e. 2.8-fold, equivalent to an increase

of 1.5 on the Log2-expression scale; ‘strong’, Fig. 2C, Table 1, Supplementary Table S1).

Consistent with the notion that 2-fold expression changes are optimal(13), we observed that

reducing the signature strength from 2-fold to 1.4-fold significantly decreased the

performance of the predictive gene signature for any given proportion of resistant cases

(p<0.0001, Supplementary Table S2), whereas a 2-fold to 2.8-fold increase did not result in

a significant improvement (p>0.05, Supplementary Table S2), except for when 95% of the

cases were therapy-resistant.

When the same analysis was repeated using superPC as the classifier, similar results were

obtained (Supplementary Tables S3, S4), however DLDA performed better than superPC,

particularly when the proportion of sensitive cases was low and when >3 mechanisms of

resistance were present; hence, the remaining analyses performed employed DLDA for

signature generation.

We also investigated scenarios where the different mechanisms of resistance had an uneven

and randomly determined prevalence, but identical distributions in the training and test sets.

As observed when each resistance mechanism was equally distributed in the resistant
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population, increasing the number of unevenly distributed resistance mechanisms reduced

the AUCs. Given the wider confidence intervals due to the randomly determined prevalence

of each resistance mechanism, the trends in AUC reduction were only significant when

‘weak’ changes in gene expression were employed (Supplementary Fig. S1, Supplementary

Table S5).

Taken together, these results suggest that the existence of multiple mechanisms of resistance

has a negative impact on the performance of predictive signatures.

The proportion of different mechanisms of resistance in training and test sets influences
signature performance

To investigate whether differences in the prevalence of distinct resistance mechanisms

between the training and test datasets affect the performance of predictive gene signatures,

the training and test datasets were spiked-in with similar proportions of resistant cases, but

the proportions of resistant cases driven by each mechanism in the two datasets were

randomly and independently allocated. In this scenario, the mean AUCs were consistently

lower when the prevalence of each resistance mechanism varied between the training and

test set than when the different resistance mechanisms had similar prevalence in the training

and test sets irrespective of the strength of gene expression changes and proportion of

resistant cases (Fig. 3, Supplementary Table S6). Analysis of the deviation of the proportion

of each resistance mechanism in the test set from the training set revealed a systematic

decrease in the AUCs as the differences between the proportions of each resistance

mechanism in training and test datasets increased, irrespective of signature strength and the

number of resistance mechanisms (Fig. 4, Supplementary Fig. S2). Hence, the performance

of predictive signatures is affected by varying proportions of resistance mechanisms in the

training and test datasets.

Overlapping changes in gene expression mitigate the impact of the existence of multiple
resistance mechanisms

To determine the impact of distinct resistance mechanisms resulting in partially overlapping

gene expression changes on the performance of the predictive signatures, we spiked-in

resistance-associated gene expression changes for each mechanism that overlapped by up to

90%, and the non-overlapping genes were randomly distributed and mutually exclusive (Fig.

5, Table 2, Supplementary Table S7). Using an optimal signature (i.e. 2-fold change) in the

realistic clinical setting (i.e. 10% sensitive cases), an increase in the number of mechanisms

of resistance resulted in a significant reduction in signature performance when the overlap

genes whose expression was affected by the distinct resistance mechanisms was up to 5%

(Table 2, Supplementary Table S7). In this setting, an overlap of 10% of genes whose

expression was affected by the distinct resistance mechanisms resulted in a significant

increase in the AUC compared to a scenario with no overlap (p-value compared to non-

overlapping signatures=0.02, Fig. 5A, Table 2, Supplementary Table S7). When testing

weak signatures (i.e. 1.4-fold change), a significant improvement in the AUC was observed

with an overlap of just 5% or more of genes whose expression was affected by the distinct

resistant mechanisms (p-value compared to non-overlapping signatures=0.0009, Fig. 5B,

Table 2, Supplementary Table S7); however, an increase in the number of mechanisms of
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resistance resulted in a significant reduction in signature performance when the overlap

genes whose expression was affected by the distinct resistance mechanisms was up to 20%

(Table 2, Supplementary Table S7). When testing strong signatures (i.e. 2.8-fold change),

perfect performance was achieved with as few as 5% of overlapping genes between the 5

resistance mechanisms (Table 2, Supplementary Table S7). These simulations suggest that

the impact of the existence of multiple mechanisms of resistance in clinically relevant

scenarios is mitigated by overlapping changes in gene expression caused by distinct

resistance mechanisms.

Impact of sub-stratification of chemotherapy-resistant breast cancers on predictive
signature performance

Without sub-stratification of resistant tumors according to resistance mechanisms,

microarrays may not capture gene expression changes associated with resistance

mechanisms present only in a small subset of resistant cases(25). Hence, we sought to define

whether sub-stratification of resistant cases based on an analysis of outliers would improve

the performance of predictive signatures, as suggested by Rottenberg et al.(25). Using gene

expression data from a study of predictive signatures of response to taxane-anthracycline-

based neoadjuvant chemotherapy(31), we defined subgroups of chemotherapy-resistant

breast cancers based on the expression of outliers using mCOPA(32,33). This analysis was

restricted to ER-negative breast cancers to avoid the confounding effects of the differences

in gene expression, prevalence of pCR (10.5% ER-positive vs 34.5% ER-negative breast

cancers (31)) and predictive impact of the expression levels of proliferation-related genes in

ER-positive breast cancers(1).

Predictive signatures were derived from features selected using a standard t-test (‘standard t-

tests’), a modified COPA (‘mCOPA’), or, to capture both overall and subgroup-specific

resistance mechanisms, a mixed mCOPA (20%) and t-test approach (80%; ‘Mixed (20%

mCOPA)’) in the training set (n=129). The generated signatures were cross-validated by

LOOCV of the training set (n=129), and an increase in the predictive signature performance,

in particular the accuracy and sensitivity, was observed for both the mCOPA and mixed

mCOPA approaches (e.g. LOOCV, accuracy ‘standard t-tests’ 0.643, ‘mCOPA’ 0.659,

‘Mixed (20% mCOPA)’ 0.705; Supplementary Fig. S3). When these predictive signatures

were applied to an independent validation set of taxane-anthracycline-resistant ER-negative

breast cancers (n=68), the increase in accuracy and sensitivity, in particular in the ‘Mixed

mCOPA’ vs ‘standard t-test’ approaches, was maintained (Supplementary Fig. S3).

We further investigated the impact of other potential sources of heterogeneity, namely age at

diagnosis, tumor size and nodal status, on the development and validation of predictive

signatures in this breast cancer dataset. To address this, a mixed t-test (80%) and age at

diagnosis (20%; ‘Mixed (20% age)’), a mixed t-test (80%) and nodal status (20%; ‘Mixed

(20% nodal status)’), and a mixed t-test (80%) and tumor size (20%; ‘Mixed (20% tumor

size)’) approach was employed for feature selection in the training set (n=129). In these

mixed signatures, only the 20% of features obtained with mCOPA in the ‘Mixed (20%

mCOPA)’ approach were replaced with the 20% of features obtained from the age, nodal

status and tumor size signatures to generate the respective ‘Mixed (20% age)’, ‘Mixed (20%
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nodal status)’ and ‘Mixed (20% tumor size)’ signatures, whereas the 80% of features

obtained through the “standard t-test” were kept constant. The signatures generated were

cross-validated by LOOCV of the training set (n=129). Small numerical increases in the

accuracy of all mixed clinical signatures were observed when compared to the ‘standard t-

test’ signature, however the highest accuracy was observed with the ‘Mixed (20% mCOPA)’

signature, which takes outliers into account (Supplementary Fig. S3). When these predictive

signatures were applied to the validation set (n=68), we observed a similar or reduced

prediction accuracy in the ‘Mixed (20% age)’, ‘Mixed (20% nodal status)’ and ‘Mixed (20%

tumor size)’ compared to the ‘standard t-test’ approaches, whereas the accuracy of the

‘Mixed (20% mCOPA)’ approach was increased (Supplementary Fig. S3). These

observations suggest that the presence of multiple mechanisms of drug resistance in a given

cohort may have a greater impact numerically on the accuracy of predictive gene signatures

than clinical parameters alone.

Taken together, these results provide evidence to suggest that stratification of resistant breast

cancers based on a combination of standard t-tests and the expression of outliers, which may

account for the overall and distinct mechanisms of resistance, respectively, improves the

accuracy and sensitivity of predictive gene signatures.

DISCUSSION

Here we demonstrate, through bioinformatic modeling of a large breast cancer dataset, that

if resistance to a given therapeutic agent or combination therapy is driven by multiple

mechanisms that result in distinct gene expression changes, increasing the number of

mechanism of resistance has a deleterious impact on the predictive power of gene signatures

generated with standard approaches, even when the signal of relevant features is sufficiently

informative(13). Our findings demonstrate that not only parameters currently taken into

account and controlled for in the design of studies aiming to develop predictive signatures

(e.g. ER-status, HER2-status, molecular subtypes), but also the existence of multiple

mechanisms of resistance to a given therapeutic agent do have a detrimental impact on the

performance of predictive gene signatures if these mechanisms result in non-overlapping

gene expression changes. In a way akin to first generation prognostic signatures whose

prognostic power is derived from proliferation-related genes which are prognostic in the

most common form of breast cancers (i.e. ER-positive/ HER2-negative breast cancer), this

study corroborates the observations that microarray-based gene expression profiling

preferentially detects a mechanism that is present in the majority of resistant tumors(25).

Our results are of clinical importance, as this concept has not been incorporated into the

design of studies developing signatures predictive of response to therapeutic agents(4,10)

and may provide an explanation for the apparent inability to develop robust and clinically

useful breast cancer predictive signatures based on microarray gene expression profiling.

Split-sample approaches and validation of the results in an independent dataset have been

widely employed to develop and validate microarray-based signatures(1,34). Although the

test datasets are usually designed to represent a population similar to that of the training set,

if multiple mechanisms of resistance exist, controlling for their prevalence between the

datasets has not been incorporated into the design of previous studies. Here we demonstrate
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that large deviations in the prevalence of each resistance mechanism between the training

and test datasets reduce the performance of the predictive gene signature. Signatures based

on different sources of heterogeneity within a cohort of patients (e.g. age and anatomical

variables, such as nodal status and tumor size) yielded conflicting results in the LOOCV of

the training set and split sample analyses performed; on the other hand, gene expression

features obtained from an analysis of outliers, which may recapitulate the existence of

multiple mechanisms of resistance(25), consistently provided additional predictive

information.

We demonstrate, however, two scenarios in which the deleterious effect of multiple

resistance mechanisms may be circumvented. Overlapping changes in gene expression

caused by distinct resistance mechanisms partially mitigate their deteriorating impact on the

performance of predictive signatures, and sub-stratification of resistant breast cancers on the

basis of outliers(25) improved the accuracy of the predictive gene signatures generated.

This study has several limitations. For our simulations, no selection for a specific breast

cancer subtype was performed as i) most studies developing therapy-specific predictive

signatures included un-stratified breast cancers(4,10,17), ii) the magnitude of changes

spiked-in the dataset was sufficiently strong to circumvent the ‘noise’ induced by the

inclusion of multiple breast cancer subtypes (data not shown), and iii) statistical power is

maximized by including all samples. Although we only spiked-in fixed, positive values (i.e.

up-regulation) randomly, in real clinical datasets, components within gene signatures are

likely to be correlated, the direction of differential expression is likely to be in both

directions and the changes in expression values are likely to vary. We chose this approach to

minimize the potential problems related to non-expressed genes and the confounding effect

of transcriptional modules. Therefore, our simulation represents the ‘best case scenario’,

with strong signal in the informative features, large numbers of informative features in the

signatures and large numbers of resistant cases(2,13). Real clinical datasets are unlikely to

have features as favorable(13). Although an improvement in predictive signature

performance was observed when chemotherapy-resistant breast cancers were sub-stratified

using a mixed standard t-test and mCOPA approach, the accuracy of such predictors is still

not sufficient for them to be of clinical utility. Finally, given the nature of microarray

experiments, we were unable to model the impact of intra-tumor genetic heterogeneity,

which is likely to reduce the performance of predictive gene signatures even further(20,35).

From a statistical standpoint, weakly informative features, small sample size and a limited

proportion of patients displaying an informative gene expression signature have been shown

to have a detrimental effect on the ability of deriving robust predictors(2,4,13,17).

Approached purely from a statistical standpoint, the ability to detect an effect will be smaller

for weakly informative features because the difference being sought is small. If the sample

size is not large then statistical power will necessarily be weak. Lastly if the proportion of

patients displaying an informative gene expression signature is small, statistical power will

also be reduced. Typically, statistical power is at similar levels, if the proportion of patients

displaying an informative gene expression signature is in the range 30%-70%; however it

decreases when this proportion is outside the 30%-70% range.
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In conclusion, we demonstrate that the presence of multiple mechanisms of resistance to a

given therapeutic agent in a patient population has a deleterious impact on the performance

of predictive gene signatures. Understanding the diversity of mechanisms of resistance to a

given agent or combinatorial therapy, and developing bioinformatic methods taking into

account this information, may be required for the successful development of genomic

predictors of therapeutic response.
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Refer to Web version on PubMed Central for supplementary material.
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QUICK GUIDE TO EQUATIONS AND ASSUMPTIONS

Spiking in

To generate the bioinformatically perturbed datasets, we spiked-in arbitrarily selected gene

expression changes associated with the ith resistance mechanism (gi) into a normalized

microarray gene expression dataset.

where Xj0 is the normalized gene expression of the jth case and Pi is the set of cases with the

ith resistance mechanism. Resistant cases were arbitrarily selected.

To build the predictive signatures, the following methods were employed:

Diagonal linear discriminant analysis (DLDA)

As the number of features p far exceeds that of the number of cases in microarray gene

expression study, we employed the diagonal linear discriminant analysis (DLDA) model, a

variant of linear discriminant analysis. The discriminant function to partition the feature

space into regions for classes A and B is written as:

Supervised principal component analysis (SuperPC)

Supervised principal component analysis was used as a prediction model as follows:
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1. Compute the regression coefficients for each feature using the response variable

(i.e. a categorical variable indicating pathological complete response (pCR)).

2. Select the top 100 features and compute the first m principal components.

3. Use these principal components in a regression model to predict response.

Modified cancer profile outlier analysis (mCOPA)

For the generation of signatures based on the expression of outliers, a modified version of

the cancer profile outlier analysis (mCOPA) was employed.

First, outliers were identified using the following steps:

1. Normalized expression values were median centered, with the median expression

value of each gene set to zero.

2. The median absolute deviation (MAD) was calculated and subsequently scaled to 1

by dividing each gene expression value by its MAD.

3. Genes were ordered according to their percentile scores, and subclassified as ‘over-

expressed resistant outliers’ (i.e. features >75th percentile plus 1.5 times the inter-

quartile value of the sensitive cases), ‘under-expressed resistant outliers’ (i.e.

features <25th percentile minus 1.5 times the inter-quartile value of the sensitive

cases), ‘over-expressed sensitive outliers’ (i.e. features >75th percentile plus 1.5

times the inter-quartile value of the resistant cases) and ‘under-expressed sensitive

outliers’ (i.e. features <25th percentile minus 1.5 times the inter-quartile value of

the resistant cases).

4. For the selection of outliers for the gene signature building, only candidate features

that displayed the following characteristics were included. For the ‘resistant

outliers’, i) features that were not found to be outliers with the same directionality

in sensitive cases and were present as outliers in ≥5% of the resistant cases were

included, and ii) features that displayed at least a 2-fold difference between the

mean expression of the resistant outliers and the mean expression of the sensitive

cases. For the ‘sensitive outliers’, i) features that were not found to be outliers with

the same directionality in resistant cases and were present as outliers in ≥5% of the

sensitive cases were included, and ii) features that displayed at least a 2-fold

difference between the mean expression of the sensitive outliers and the mean

expression of the resistant cases.

After the identification of the outliers, features up- and down-regulated in the resistant cases

and those up- and down-regulated in the sensitive cases were combined and ranked in

decreasing order by the difference in expression between the outliers and the control group

(i.e. the resistant outliers vs the sensitive cases and vice-versa).
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MAJOR FINDINGS: If resistance to a given drug or combinatorial therapy is caused by

more than one mechanism, robust and highly accurate predictive gene signatures may not

be successfully derived using current bioinformatics approaches, even if the changes in

gene expression are strong and informative. The detrimental impact on predictive

signature performance by the existence of multiple mechanisms of resistance was found

to be maximum when these resulted in distinct patterns of gene expression, but

overlapping changes in gene expression mitigated this effect. We propose that the sub-

stratification of resistant cancers according to the potential resistance mechanisms may

improve the ability to generate clinically useful predictive signatures.
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Figure 1. Schematic representation of the study design
Perturbed datasets were generated using microarray-based gene expression profiles of 1,550

breast cancer cases analyzed with the Affymetrix U133a2 platform. We assumed that s% of

the cases were therapy sensitive (grey boxes), while the remaining 1-s% were therapy

resistant (colored boxes). Within the 1-s% resistant cases, we further assumed that there

were n resistance mechanisms, where the resistant cases were randomly allocated into the

nth resistance mechanism (colored boxes). For illustration purposes, we assumed up to three

resistance mechanisms (i.e. n=1, 2 or 3). Each resistance mechanism was represented by

adding v (v=0.5, 1.0 or 1.5) to the Log2-expression value of 100 randomly selected, but not

necessarily mutually exclusive, probes (black boxes). Predictive signature models were

derived by ranking the features (probes) by t-tests using the CMA package. The top 100

features were then used as the predictive gene signature for diagonal linear discriminant
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analysis (DLDA) or supervised principal components (superPC) classification. Validation of

the predictive gene signature was performed by stratified 3-fold Monte-Carlo cross-

validation, repeated 50 iterations. Comparing the predicted and actual classes, we calculated

the area under curve of receiver operating characteristic curves, sensitivity, specificity,

accuracy, positive predictive value and negative predictive for each predictive gene

signature. For each combination of variables, we repeated the spiking-in and classification

up to 200 times.
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Figure 2. Impact of multiple mechanisms of resistance on the performance of the predictive
signatures
Perturbed datasets in which s% (s%=5%, 10%, 20%, 30%, 40% or 50%) of the cases were

designated to be therapy sensitive were generated. Within the 1-s% resistant cases, we

allocated the cases randomly into n (n=1, 2, 3, 4, 5) equally sized groups of resistance

mechanisms. For each nth resistance mechanism, 100 genes were randomly selected as the

“true” gene expression changes and were spiked-in by v (v=0.5, 1, 1.5). For each

combination of s, n and v, we repeated the spiking and classification 100 times.
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Representative receiver operating characteristic (ROC) curves and the mean area under

curve (AUC) for the cases are shown, where the Log2-expression of the 100-gene “true”

gene expression changes were spiked-in by 1 (A, labeled “Signature strength=1 (Optimal)”),

0.5 (B, labeled “Signature strength=0.5 (Weak)”) and 1.5 (C, labeled “Signature

strength=1.5 (Strong)”). Within each of A, B and C, (top row, labeled “Mean”) simulations

for 1-s%=50%, 60%, 70%, 80%, 90% or 95%, (middle row, labeled “Ideal”) simulations for

an optimal setting where 1-s%=50% and (bottom row, labeled “Realistic”) simulations for a

clinically-realistic setting where 1-s%=90% are shown. Within each row, the representative

ROCs for (from left) n=1 (“1 mechanism”), n=2 (“2 mechanisms”), n=3 (“3 mechanisms”),

n=4 (“4 mechanisms”), n=5 (“5 mechanisms”) groups of distinct resistance mechanisms are

shown.
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Figure 3. Impact of varying proportions of resistance mechanisms within the resistant groups of
the training and test sets on the performance of the predictive gene signature
Perturbed datasets in which s% (s%=5%, 10%, 20%, 30%, 40% or 50%) of the cases were

designated to be therapy sensitive were generated. For “Equal proportions”, within the 1-s%

resistant cases, we allocated the cases evenly either into n (n=2, 3, 4, 5) equally sized groups

of resistance mechanisms. For “Random training/test”, within the resistant cases, although

the total percentage of resistant cases remained the same in training and test sets, the cases

were allocated randomly into n (n=2, 3, 4, 5) groups of resistance mechanisms and the case

allocation for training and test datasets was performed independently. Furthermore, for each
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nth resistance mechanism, 100 genes were randomly selected as the “true” gene expression

changes and were spiked-in by v (v=0.5, 1, 1.5). For each combination of s, n and v, we

repeated the spiking and classification 100 times for “Equal proportions” and 200 times for

“Random training/test”. Representative receiver operating characteristic (ROC) curves and

the mean area under curve (AUC) for the cases are shown, where the Log2-expression of the

100-gene “true” gene expression changes were spiked-in by 1 (A, labeled “Signature

strength=1 (Optimal)”), 0.5 (B, labeled “Signature strength=0.5 (Weak)”) and 1.5 (C,

labeled “Signature strength=1.5 (Strong)”). Within each of A, B and C, representative ROCs

and mean AUCs of “Equal proportions” (top row, labeled “Equal proportions”) and of

“Random training/test” (bottom row, labeled “Random training/test”) scenarios are shown.

Within each row, the representative ROC curves of 2 to 5 resistance mechanisms are

presented from left to right. The AUC values presented are the mean values for n resistance

mechanisms.
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Figure 4. Comparative impact of multiple unevenly distributed resistance mechanisms with
random and independent prevalence in training and test sets on the performance of the
predictive gene signatures
Perturbed datasets in which s% (s%=5%, 10%, 20%, 30%, 40% or 50%) of the cases were

designated to be therapy sensitive were generated. Within the resistant 1-s% cases, the cases

were allocated randomly into n (n=2, 3, 4, 5) groups of resistance mechanisms and the case

allocation for training and test datasets was performed independently, in both test and

training sets, the total proportion of resistant cases is identical. For each nth resistance

mechanism, 100 genes were randomly selected as the “true” gene expression changes and

were spiked-in by v (v=0.5, 1, 1.5). For each combination of s, n and v, we repeated the

spiking and classification 200 times. The performance of the predictive gene signature for

each repeat where each data point represents the median of 50 Monte-Carlo Cross

Validation (MCCV) repeats. The performance of the predictive gene signature was

measured by the area under curve (AUC) of receiver operating characteristic (ROC) curves.

For v=1 (A, labeled “Signature strength=1 (Optimal)”), v=0.5 (B, labeled “Signature

strength=0.5 (Weak)”) and v=1.5 (C, labeled “Signature strength=1.5 (Strong)”), AUC is

plotted against the deviation of the sizes of the distinct resistance mechanism groups in the

test dataset from those in the training dataset, calculated as  where

fi,test is the size of the ith subgroup in the test set and fi,train is the size of the ith subgroup in

the training set for (from left) n=2 (labeled “2 groups”), n=3 (labeled “3 groups”), n=4
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(labeled “4 groups”) and n=5 (labeled “5 groups”). For each of (A), (B) and (C), AUCs are

plotted for the “Ideal clinical setting” (where s%=50%) and for “Clinically-realistic setting”

(where s%=10%).
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Figure 5. Impact of the extent of overlapping gene expression changes caused by distinct
mechanisms of resistance on the performance of the predictive gene signature
Perturbed datasets in which s% (s%=5%, 10%, 20%, 30%, 40% or 50%) of the cases were

designated to be therapy sensitive were generated. Within the 1-s% resistant cases, we

allocated the cases randomly into n (n=2, 3, 4, 5) equally sized groups of resistance

mechanisms. For each nth resistance mechanism, 100 genes were selected as the “true” gene

expression changes, of which o% (o%=0%, 1%, 5%, 10%, 20%) of the 100 genes were

common to all n mechanisms. The selected genes were then spiked-in by v (v=0.5, 1, 1.5).

For each combination of s, n, o and v, we repeated the spiking and classification 100 times.
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Representative receiver operating characteristic (ROC) curves of the cases where the Log2-

expression of the “true” gene expression changes were spiked-in by 1 (A, labeled “Signature

strength=1 (Optimal)”) and 0.5 (B, labeled “Signature strength=0.5 (Weak)”). Within each

of A and B, we showed the representative ROCs depicting the mean area under curve

(AUC) for simulations where 1-s%=90%, and o%=0% (“Overlap=0%”), o%=1%

(“Overlap=1%”), o%=5% (“Overlap=5%”), o%=10% (“Overlap=10%”), o%=20%

(“Overlap=20%”)(top to bottom). Within each row, the representative ROCs for n=2 (“2

groups”), n=3 (“3 groups”), n=4 (“4 groups”), n=5 (“5 groups”) groups of resistance

mechanisms are shown. The AUC values presented are the mean values for n resistance

mechanisms.
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