Table 1.
Proportion of resistant cases | Optimal signature (2.0-fold) | p-value for trend | ||||
---|---|---|---|---|---|---|
Number of resistance mechanisms | ||||||
1 | 2 | 3 | 4 | 5 | ||
0.5* | 1.000 (1.000-1.000) | 1.000 (0.999-1.000) | 0.992 (0.987-0.997) | 0.971 (0.955-0.983) | 0.931 (0.886-0.955) | < 0.0001 |
0.6 | 1.000 (1.000-1.000) | 0.999 (0.997-1.000) | 0.992 (0.985-0.996) | 0.966 (0.943-0.980) | 0.930 (0.882-0.954) | < 0.0001 |
0.7 | 1.000 (1.000-1.000) | 1.000 (0.998-1.000) | 0.991 (0.977-0.996) | 0.967 (0.933-0.980) | 0.927 (0.888-0.953) | < 0.0001 |
0.8 | 1.000 (1.000-1.000) | 1.000 (0.998-1.000) | 0.990 (0.974-0.996) | 0.963 (0.933-0.980) | 0.920 (0.870-0.947) | < 0.0001 |
0.9** | 1.000 (1.000-1.000) | 0.999 (0.998-1.000) | 0.987 (0.967-0.995) | 0.943 (0.898-0.967) | 0.866 (0.786-0.919) | < 0.0001 |
0.95 | 1.000 (1.000-1.000) | 0.999 (0.994-1.000) | 0.951 (0.864-0.987) | 0.803 (0.728-0.881) | 0.687 (0.619-0.754) | < 0.0001 |
Proportion of resistant cases | Weak signature (1.4-fold) | p-value for trend | ||||
---|---|---|---|---|---|---|
Number of resistance mechanisms | ||||||
1 | 2 | 3 | 4 | 5 | ||
0.5* | 0.999 (0.996-1.000) | 0.968 (0.935-0.982) | 0.900 (0.844-0.936) | 0.818 (0.762-0.855) | 0.736 (0.689-0.784) | < 0.0001 |
0.6 | 0.999 (0.996-1.000) | 0.970 (0.949-0.984) | 0.892 (0.843-0.925) | 0.812 (0.747-0.855) | 0.729 (0.682-0.771) | < 0.0001 |
0.7 | 0.999 (0.996-1.000) | 0.967 (0.944-0.982) | 0.895 (0.845-0.921) | 0.797 (0.738-0.839) | 0.708 (0.659-0.754) | < 0.0001 |
0.8 | 0.999 (0.996-1.000) | 0.965 (0.933-0.986) | 0.872 (0.810-0.909) | 0.746 (0.692-0.784) | 0.653 (0.619-0.689) | < 0.0001 |
0.9** | 0.999 (0.994-1.000) | 0.937 (0.883-0.968) | 0.754 (0.692-0.820) | 0.631 (0.581-0.686) | 0.573 (0.527-0.612) | < 0.0001 |
0.95 | 0.998 (0.990-1.000) | 0.808 (0.703-0.886) | 0.610 (0.550-0.685) | 0.550 (0.502-0.606) | 0.526 (0.463-0.583) | < 0.0001 |
Proportion of resistant cases | Strong signature (2.8-fold) | p-value for trend | ||||
---|---|---|---|---|---|---|
Number of resistance mechanisms | ||||||
1 | 2 | 3 | 4 | 5 | ||
0.5* | 1.000 (1.000-1.000) | 1.000 (1.000-1.000) | 1.000 (0.998-1.000) | 0.994 (0.984-0.998) | 0.985 (0.970-0.994) | 0.002 |
0.6 | 1.000 (1.000-1.000) | 1.000 (1.000-1.000) | 0.999 (0.996-1.000) | 0.995 (0.987-0.998) | 0.982 (0.963-0.991) | 0.0006 |
0.7 | 1.000 (1.000-1.000) | 1.000 (1.000-1.000) | 0.999 (0.998-1.000) | 0.994 (0.983-0.998) | 0.979 (0.958-0.989) | 0.0006 |
0.8 | 1.000 (1.000-1.000) | 1.000 (1.000-1.000) | 0.999 (0.997-1.000) | 0.993 (0.976-0.997) | 0.977 (0.953-0.989) | < 0.0001 |
0.9** | 1.000 (1.000-1.000) | 1.000 (1.000-1.000) | 0.999 (0.996-1.000) | 0.990 (0.975-0.997) | 0.966 (0.925-0.985) | 0.0006 |
0.95 | 1.000 (1.000-1.000) | 1.000 (1.000-1.000) | 0.997 (0.991-1.000) | 0.959 (0.893-0.988) | 0.850 (0.757-0.929) | < 0.0001 |
Perturbed datasets in which s% (s%=5%, 10%, 20%, 30%, 40% or 50%) of the cases were designated to be therapy sensitive were generated. Within the 1-s% resistant cases, we allocated the cases randomly into n (n=1, 2, 3, 4, 5) equally-sized groups of resistance mechanisms. For each nth resistance mechanism, 100 genes were randomly selected as the “true” gene expression changes and were spiked-in by v (v=0.5,1,1.5). Classification was performed using diagonal linear discriminant analysis (DLDA). For each combination of s, n and v, we repeated the spiking and classification 100 times. The mean value with the 95% confidence intervals in parentheses of the AUC of ROCs for each combination of s, n and v are shown. For v=1, 0.5, 1.5, the sections are labeled “Optimal signature (2-fold)”, “Weak signature (1.4-fold)” and “Strong signature (2.8-fold)” respectively. The last column depicts the p-values for the trend tests as the number of resistance mechanisms is increased from 1 to 5 for a given s%.
ideal setting;
clinically-realistic estimate