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Abstract

Biomolecular systems have been modeled at a variety of scales, ranging from explicit treatment of

electrons and nuclei to continuum description of bulk deformation or velocity. Many challenges of

interfacing between scales have been overcome. Multiple models at different scales have been

used to study the same system or calculate the same property (e.g., channel conductance).

Accurate modeling of biochemical processes under in vivo conditions and the bridging of

molecular and subcellular scales will likely soon become reality.

Introduction

The biological functions carried out by proteins and nucleic acids involve motions that occur

on disparate spatial and temporal scales (Table 1). In enzyme-catalyzed reactions, bond

breaking and formation proceed through the rearrangement of electrons and nuclei. The

activities of the enzymes may be regulated by the binding of other proteins. The enzymes

and regulators may all be components of higher complexes. These components and their

transitory complexes constitute the crowded, heterogeneous macromolecular milieus in

cellular compartments, which could in turn influence the behaviors of the constituents. In

some cases protein molecules may directly bind to a 1-dimensional (e.g., genomic DNA or

actin filament) or 2-dimensional (cell membrane in particular) surface. Here even stronger

mutual influence of the protein molecules and the surface can be expected. It is apparent that

a model based on a single type of physics and using a uniform spatial scale would not be

capable of describing this multitude of biological processes and providing fundamental

understanding. Consequently multiscale modeling of biomolecular systems has flourished in

recent years.

The importance of multiscale modeling is fittingly recognized by the award of this year’s

Nobel Prize in Chemistry to Martin Karplus, Michael Levitt, and Arieh Warshel for

“Development of Multiscale Models for Complex Chemical Systems.” These Nobel

Laureates laid some of the foundations for ongoing research. In particular, the original

concept and implementation of combined quantum mechanics/molecular mechanics
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(QM/MM) simulations [1,2] still serve as a guide in the study of enzyme activities [3,4] and

as an inspiration for modeling at other scales. The idea of coarse-graining [5] is at the core

of much current research.

Other foundational developments include the projection-operator formalism of Zwanzig [6]

and Mori [7], the umbrella sampling method of Torrie and Valleau [8] for calculating the

potential of mean force, and the particle insertion method of Widom [9] for calculating the

excess chemical potential. Via the projection-operator formalism, one can project out the

“irrelevant” degrees of freedom and focus on the motion of the “relevant” degrees of

freedom. The umbrella sampling method provides a practical way to find the potential of

mean force governing these relevant degrees of freedom. The particle insertion method,

originally developed for simple fluids, has been extended to model the effects of the

crowded macromolecular milieus on the thermodynamics and kinetics of “test” proteins

[10,11].

Space will not allow for an exhaustive coverage of the recent progress in multiscale

modeling and simulations of biomolecular systems. The following survey will focus on the

strategies for interfacing different scales and some illustrative applications. The interested

reader is referred to other recent reviews on related topics [4,12–25].

Modeling at different scales

The essence of multiscale modeling is captured by a quote attributed to Einstein:

“Everything should be made as simple as possible, but not simpler.” If one wants to study

bond breaking and formation, one must work with a quantum mechanical model that

governs the rearrangement of the electrons and nuclei involved (Fig. 1a). On the other hand,

when studying the conformational transitions of a protein molecule, it suffices to use

Newton’s equation for the motion of the atoms (Fig. 1b). One may further coarse-grain the

model, representing groups of atoms (e.g., amino-acid residues) by single beads, enabling

simulations of more extensive conformational changes and over longer timescales [12,14–

25] (Fig. 1c).

Effectively, by coarse-graining one freezes the internal motions within the groups modeled

by the beads. In an extreme form of coarse-graining, internal motions of a whole protein

domain, a whole protein molecule, or a whole protein complex are frozen. Then each such

unit is treated as a rigid body and only the overall translation and rotation are modeled

explicitly (Fig. 1d). With the rigid-body treatment, the rate constant for the site-specific

binding of an enzyme to the whole ribosome has been calculated [26] and simulations of

highly concentrated protein mixtures mimicking the bacterial cytoplasm have been carried

out [27–29].

When a protein is bound to a DNA molecule or a lipid bilayer, the mutual influence can

extend a long range. In these cases it can be fruitful to model the extended surfaces as 1-

dimensional or 2-dimensional continuum. For example, DNA has been modeled as an elastic

rod [30,31], and lipid bilayers have been modeled as an elastic membrane [32–34] or a

structureless fluid sheet [35] (Fig. 1e). The system is no longer described by discrete

particles, but by continuous “fields,” which can be the bulk deformation or velocity at an
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arbitrary position on the surface. In addition, flexible peptide linkers connecting protein

domains have been modeled as a continuous polymer chain [36].

Schemes of interfacing between scales

In a multiscale model, one effectively is dealing with variables that evolve over

(supposedly) different timescales. Essential to any multiscale modeling is the separate

treatment of the fast evolving and slowly evolving variables, perhaps assuming different

equations of motion. A general scheme for the separation of variables can be illustrated by a

system specified by fast variables r and slow variables R. Let the state of the system be

described by the time-dependent probability density p(r,R,t), governed by the following

equation of evolution:

(1)

where (r,R) is an operator serving to transform p(r,R,t) in the (r,R) space. In treating r,

one makes use of the fact that R evolves slowly on the timescale of r and solves for the

time-dependent probability density of r at a fixed R: p1(r,t|R), according to

(2)

where (r|R) is the part of (r,R) containing only transformation in the r subspace.

In treating R, one assumes that on its timescale the evolution of r is fast so that the latter

always relaxes to the equilibrium distribution: p1eq(r|R). That is, one approximates the full

probability density as

(3)

which can be formally derived via the projection-operator formalism [6,7]. The evolution in

R is then governed by

(4)

where

(5)

Different flavors of this general scheme for the separation of variables will be found below.

Because the fast and slow variables are coupled, one must deal with the interfacing of the

models at different scales. Interfacing strategies can be placed into two broad classes

[12,14,20]. In one, known as sequential (or hierarchical or message-passing; Fig. 2), one
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first carries out simulations for the full model with explicit treatment for both the fast and

slow variables. Information from these simulations is used to parameterize a reduced model

for only the slow variables [see eq (5)]. The latter then becomes the subject of study. All-

atom molecular mechanics models, coarse-grained models, and rigid-body models can all be

viewed as reduced versions of fuller models (the full quantum mechanics model in the first

case and all-atom molecular mechanics models in the second and third cases; Fig. 2a–c),

although parameterization is often supplemented by experimental data and empirical choices

[12,14–25,28,29]. In principle, the equation of motion for a coarse-grained model can be

derived by the projection-operator formalism from the Newtonian dynamics of an all-atom

model [37]. Implicit solvent models can similarly be viewed as reduced versions of explicit

solvent models. The one case where simulations of a full model can provide all the

information for parameterization is a reduced model for one or a few reaction coordinates

(Fig. 2d). Here, from the simulations of the full model, one can calculate the potential of

mean force for the reaction coordinate (e.g., an interatomic distance) via umbrella sampling

[8] and parameters for its dynamics (e.g., the effective friction coefficient) by fitting time-

correlation functions.

The second broad class of interfacing strategies is known as hybrid (or concurrent or mixed-

resolution), where different parts of a system are modeled at different scales (perhaps

following different equations of motion). QM/MM models are classical examples [1,2] (Fig.

3a). More recent hybrid models include those combining an atomistic representation for a

protein molecule (or an “active” region thereof) and a coarse-grained representation for the

solvent (plus membrane) environment (or the rest of the protein molecule) [38–45] (Fig. 3b);

those combining a rigid-body model for protein domains and a continuous-polymer or

coarse-grained model for a loop or linker [36,46] (Fig. 3c); and those combining a rigid-

body model for membrane proteins and a continuum model for the surrounding membrane

[35] (Fig. 3d). When different regions of the same molecule are modeled at different

resolutions, as in QM/MM simulations of enzyme catalysis [4], the boundary layer,

consisting of covalently bonded atoms, requires great care to ensure proper coupling

between the regions. Electrostatic interactions between regions modeled at different

resolutions, atomistic and coarse-grained in particular [45], still pose significant challenges.

By coarse-graining one eliminates energy barriers associated with degrees of freedom

internal to the groups of atoms represented by single beads, therefore the energy landscape is

flattened and becomes easier to traverse. Raising the temperature has a similar effect, which

forms the basis of temperature replica exchange [47], where simulations at high

temperatures are used to facilitate conformational sampling at a desired low temperature,

through on-the-fly swap of replicas simulated at a range of temperatures. Analogous

consideration led to the development of resolution replica exchange [48–51], where

simulations of coarse-grained models drive the simulation of an atomistic model (Fig. 4a).

This method has so far been applied only to simple systems like short peptides and its

potential remains to be exploited. The same premise is behind a serial combination of

coarse-grained and atomistic simulations, where extensive coarse-grained simulations are

used to produce seed conformations to initiate subsequent atomistic simulations. The serial

combination has been used to study much larger systems including membrane proteins [52–
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54]. In effect, the coarse-grained simulations evolve slow variables [eq (4)] whereas the

atomistic simulations evolve fast variables [eq (2)].

An interesting alternative to resolution replica exchange was recently developed [55]. In this

“multiscale enhanced sampling” scheme, an energy term that couples the atomistic model

and the coarse-grained model was introduced. The Hamiltonian replica exchange method

[56] was then adopted, in which replicas were assigned various coupling strengths, with zero

coupling resulting in the pure atomistic model. This scheme was applied to study the folding

of a β-hairpin [55] and the disorder-to-order transition of a loop in a protein [57], and has

been generalized to path sampling [58].

Instead of fixed partitioning into high- and low-resolution parts, sometimes switching

between alternative partitions during the course of a simulation can result in a significant

gain in computational speed without sacrificing accuracy. For example, when simulating the

binding of a ligand to a protein, one can treat the whole protein as rigid when the ligand is

far away but treat the loops around the binding site as flexible when the ligand is near (Fig.

4b upper panels). Interestingly, for calculating the binding rate constant one can even

completely separate the simulations in the outer and inner regions, according to a method

called BDflex [59]. Through simulations in which the ligand is confined to the outer region

while the whole protein is treated as rigid and the boundary between the outer and inner

regions as absorbing, one obtains the rate constant for absorption on the boundary (Fig. 4b

lower left panel). Subsequently the rate constant for ligand binding is obtained from

simulations in which the ligand is confined to the inner region (Fig. 4b lower right panel).

This time the loops are treated as flexible and the boundary as partially absorbing, with the

extent of absorption determined by the rate constant for absorption from the outer

simulations.

The postprocessing approach for modeling the effects of macromolecular “crowders” on the

thermodynamics and kinetics of a test protein [10,60] is another example of separating

simulations at different scales. While such effects can in principle be calculated through

simulations where the test protein and the crowders are mixed (Fig. 4c left panel), there are

distinct advantages (in particular, enabling all-atom representations) when one first carries

out separate simulations of the test protein and of the crowders and then postprocesses the

simulations (Fig. 4c right panel). Postprocessing entails weighting each conformation in the

protein simulation according to the Boltzmann factor of the excess chemical potential

arising from the interactions of the test protein with the crowders. The latter quantity can be

calculated according to Widom’s particle insertion method [9], but such a calculation is very

costly [28]. A practical method has now been developed, by expressing the protein-crowder

interactions as correlation functions and evaluating them via fast Fourier transform [61].

Illustrative applications

In many cases, multiple models are applied to study the same system at different scales,

resulting in a more comprehensive understanding. One example is the M2 proton channel of

Influenza A virus. This tetrameric protein, with 97 residues in each subunit, is essential for

viral replication and is an established drug target. Quantum mechanical calculations were

Zhou Page 5

Curr Opin Struct Biol. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



used to model the pH-dependent conformations of the His37-Trp41 tetrameric cluster [62],

which embodies the pH sensor, proton selectivity filter, and primary gate. QM/MM

molecular dynamics simulations were used to explore the local stability of alternative

conformations of the His37-Trp41 cluster [63]. Through a number of all-atom molecular

dynamics studies, the motion of the permeant proton along the channel pore was

characterized [64]; the role of Val27 as a secondary gate was proposed [65]; helix bending

around Gly34 was revealed and suggested to be coupled to channel gating [66,67]; and

inhibitors that target drug-resistant M2 mutants were designed [68]. The rate of proton

transport was calculated by modeling the gated binding to and unbinding from the His34

tetrad as diffusion-limited reactions, leading to quantitative rationalization of experimentally

observed current-voltage and current-pH relations as well as solvent isotope effect [69,70].

In addition to the binding/unbinding reaction based approach [69], ion conductance across

transmembrane channels has been calculated from models at a variety of scales [71]. The

most detailed are all-atom molecular dynamics simulations, from which channel

conductance can be calculated by counting the number of complete ion-crossing events [72–

74]. One step down the resolution hierarchy are models that treat the conducting ions

explicitly by Brownian dynamics simulations, but the channel protein, membrane, and

solvent as static dielectric continuum [75,76]. A further approximation is to replace the

discrete ions of each species by a continuous charge density and treat ion-ion interactions in

a mean-field way; the resulting Poisson-Nernst-Planck model continues to find use [77–79].

Lastly one can model ion permeation as the diffusion of one or a few ions in a 1- or 3-

dimensional potential of mean force [80–83]; this potential of mean force can be obtained

from all-atom molecular dynamics simulations.

Concluding remarks

Clearly, models at different scales can all contribute to the fundamental understanding of

complex biomolecular systems. Different spatial scales may evolve over different timescales

according to different equations of motion. From a technical standpoint, artificial coupling

to a low-resolution model can facilitate conformational sampling of a high-resolution model

[55,57,58]. In other cases, separation of the simulations in different regions [59] or of

different components [61] can be designed for efficient calculation of biophysical properties.

While the partitioning into high- and low-resolution parts is fixed in most current studies,

switchable or adaptive partitioning is being developed [84–86]. Iterative information

exchange between high and low-resolution models has also proven useful [24]. All these

activities produce an equalization of the resolution hierarchy.

This year’s Nobel Prize in Chemistry recognizes what is already achieved through

multiscale modeling, and much more can be expected to come. By focusing high-resolution

modeling on key components of complex systems, such as “test” proteins in crowded

cellular milieus, results with increasing accuracy will be attainable, including those for

biochemical processes under in vivo conditions. On the other hand, with further coarse-

graining, it will be realistic to bridge the molecular and subcellular scales [87–90].
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Highlights

• Many challenges of interfacing between scales have been overcome.

• Coupling between scales can be introduced or restricted, both to gain

computational efficiency.

• Multiple models at different scales allow comprehensive understanding of a

single system.

• Accurate modeling of in vivo conditions is becoming realistic.

• Bridging molecular and subcellular scales will be possible via coarse-graining.
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Fig. 1.
Models at different scales. (a) A quantum mechanical model. (b) A molecular mechanics

all-atom model. (c) A coarse-grained model. (d) A rigid-body model for a concentrated

protein mixture. (e) In a continuum model for a lipid bilayer, inward movement of two

protein monomers (dashed circles) in the upper leaflet induces a velocity field (arrows) in

the lower leaflet. The last panel is reproduced from Ref. [35] with permission from The

Royal Society of Chemistry.
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Fig. 2.
Information passing from high- to low-resolution models. (a) Calculations on a quantum

mechanical model can help determine the energy function of a molecular mechanics all-

atom model. (b) A similar passage from an all-atom model to a coarse-grained model. (c)
All-atom simulations of a protein in explicit solvent yield diffusion constants for overall

translation and rotation. (d) From all-atom simulations, the potential of mean force U(r) and

effective friction coefficient γ for a reaction coordinate r can be obtained (adapted from

Schaad et al. [91]).
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Fig. 3.
Hybrid multiscale models that mix (a) quantum mechanical and molecular mechanical; (b)
all-atom (for protein) and coarse-grained (for lipid and water); (c) coarse-grained (for linker)

and rigid-body (for protein domains); (d) rigid-body (for protein monomers) and continuum

(for lipid bilayer) representations. The last panel is reproduced from Ref. [35] with

permission from The Royal Society of Chemistry.
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Fig. 4.
Computational gains from the use of separated simulations (a) at different resolutions, (b) in
different regions, or (c) of different components (taken from Zhou and Qin [11]).
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Table 1

Motions involved in a few representative biological processes

Biological process Motions involved

enzyme catalysis rearrangement of electrons and nuclei in active site; conformational change of protein matrix; diffusion of
substrate and product

replication, transcription,
and translation

assembly and disassembly of multi-component machines; binding and unbinding of protein factors;
complementary base-pairing; priming or initiation and polymer chain elongation; local and large-scale
conformational transitions of components; nucleoside triphosphate hydrolysis; translocation along a nucleotide
sequence

ion conductance ion diffusion, translocation, binding and unbinding; rearrangement of pore-lining regions in response to an
arriving or leaving permeant ion; stimulus-triggered sensor motion; propagation of motion from sensor to
channel gate; reorganization of annular lipids upon channel gating

membrane remodeling membrane attachment and insertion of membrane-shaping proteins; oligomerization of these proteins; bending,
undulation, fission and fusion of surrounding membranes
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