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Abstract

Due to the difficulties in establishing correspondences between functional regions across 

individuals and populations, systematic elucidation of functional connectivity alterations in mild 

cognitive impairment (MCI) in comparison with normal controls (NC) is still a challenging 

problem. In this paper, we assessed the functional connectivity alterations in MCI via novel, 

alternative predictive models of resting state networks (RSNs) learned from multimodal resting 

state fMRI (R-fMRI) and diffusion tensor imaging (DTI) data. First, ICA-clustering was used to 

construct RSNs from R-fMRI data in NC group. Second, since the RSNs in MCI are already 

altered and can hardly be constructed directly from R-fMRI data, structural landmarks derived 

from DTI data were employed as the predictive models of RSNs for MCI. Third, given that the 

landmarks are structurally consistent and correspondent across NC and MCI, functional 

connectivities in MCI were assessed based on the predicted RSNs and compared with those in NC. 

Experimental results demonstrated that the predictive models of RSNs based on multimodal R-

fMRI and DTI data systematically and comprehensively revealed widespread functional 

connectivity alterations in MCI in comparison with NC.
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Introduction

Alzheimer’s disease (AD) is a devastating disorder that impairs memory and quality of daily 

life progressively. The impact of AD on individuals, families and the health care system 

makes the disease one of the greatest medical, social and economic challenges. The future of 

healthcare for AD lies in its early diagnosis and treatment, as early intervention helps 

patients and their families plan for the future (Grundman et al., 2004), and offers the best 

chance to delay the progression of the disease (Jack et al., 2010). Therefore, this paper 
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focuses on mild cognitive impairment (MCI), which is the precursor of AD and converts to 

AD at approximately 10% to 15% per year (Grundman et al., 2004). As powerful non-

invasive neuroimaging techniques, diffusion tensor imaging (DTI) (e.g., Bozzali et al., 2002; 

Head et al., 2004; Stahl et al., 2007; Zhang et al., 2007; Salat et al., 2010; Stebbins and 

Murphy, 2009; Zhu et al., 2013) and resting state fMRI (R-fMRI) (e.g., Greicius et al., 2004; 

He et al., 2007; Wang et al., 2007; Liu et al., 2008a; Logothetis, 2008; Dickerson and 

Sperling, 2009; Zhu et al., 2013) are poised to play an increasingly important role in the 

development of imaging markers for prediction of AD at the early stage of the disease. 

Earlier studies have shown that MCI/AD pathogenesis involves widespread alterations in 

structural/functional brain networks revealed by DTI and/or R-fMRI data (Liu et al., 2008a; 

Dickerson and Sperling, 2009; Stebbins and Murphy, 2009; Salat et al., 2010; Zhang et al., 

2011a; Liang et al., 2011; Binnewijzend et al., 2011; Zhu et al., 2013). Therefore, there has 

been increasingly significant amount of effort in the literature devoted to measuring the 

hypothesized widespread structural and/or functional connectivity alterations in MCI by DTI 

and/or R-fMRI. For instance, the NIH-funded ongoing ADNI-2 project (Jack et al., 2010) 

collects DTI or R-fMRI data for early MCI patients and conducts follow-ups for several 

years.

Essentially, when mapping brain connectivity, network nodes, or landmarks, provide the 

structural substrates for mapping connectivities within individual brains and for comparing 

results across populations. Thus, identification of robust and reproducible landmarks with 

accurate correspondences across individual brains is critically important for the success of 

brain connectivity mapping (Liu 2011). Current approaches to identifying network node 

landmarks in the neuroimaging field can be broadly classified into four categories (Li et al., 

2009; Li et al., 2012a). The first category is manual labeling of structural landmark by 

experts based on their domain knowledge (Dickerson and Sperling, 2009). The second 

school of methods aims to cluster landmarks from the brain image itself and is typically 

data-driven (e.g., Zang et al., 2004; Beckmann et al., 2005). The third category usually 

predefines landmarks in an atlas brain, and then warps them to the individual space using 

image registration algorithms (Zhang et al., 2011b). The fourth method uses task-based 

fMRI paradigms, e.g., block-based design, to identify activated brain regions as functional 

landmarks. This methodology is regarded as a reliable approach for landmark identification 

(Zhu et al., 2011a; Li et al., 2012a). Despite significant effort from the neuroimaging field, 

however, it is challenging to identify accurate and reproducible landmarks in diseased brains 

(e.g. MCI or AD) because the functional connectivities in their brain networks might have 

already been significantly altered along with the disease progression.

Recently, we developed and validated a novel data-driven discovery approach that identified 

358 consistent and corresponding cortical landmarks in over 240 brains (Zhu et al., 2011b; 

Zhu et al., 2012; Li et al., 2012b), in which each identified landmark was optimized to 

possess maximal group-wise consistency of DTI-derived fiber shape patterns (Zhu et al., 

2011a; Zhu et al., 2011b; Zhu et al., 2012). The neuroscience basis is that each brain’s cyto-

architectonic area has a unique set of extrinsic inputs/outputs, named the “connectional 

fingerprint” (Passingham et al., 2002), which principally determine the functions that each 

brain area could possibly possess. This close relationship between structural connection 

pattern and brain function has been confirmed and replicated in a series of our recent works 
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(Li et al., 2010; Zhu et al., 2011a; Zhu et al., 2011b; Zhu et al., 2012; Zhang et al., 2011b; Li 

et al., 2012a; Li et al., 2012b). These 358 landmarks are named “Dense Individualized and 

Common Connectivity-based Cortical Landmarks” (DICCCOLs) (Zhu et al., 2011b; Zhu et 

al., 2012). This set of 358 DICCCOL landmarks has been replicated and reproduced in over 

240 brains and its predictions in four different multimodal fMRI/DTI datasets (over 240 

brains) have been released online at: http://dicccol.cs.uga.edu.

In this paper, we tackle the challenge of localizing accurate landmarks in MCI brains by 

DICCCOLs and use the DICCCOL landmarks as predictive models of resting state networks 

(RSNs) obtained from a machine learning framework to assess possible functional 

connectivity alterations in MCI. Specifically, first, we identified RSNs using ICA-clustering 

approach (McKeown et al., 1998; Calhoun et al. 2001; Calhoun et al. 2004; Schmithorst and 

Holland, 2004) based on R-fMRI data in NC subjects. Second, since some RSNs in MCI are 

already disrupted and cannot be constructed directly from R-fMRI data (Rombouts et al., 

2005; Salvador et al., 2005; Sorg et al., 2007; Bai et al., 2008), the DICCCOL landmarks 

derived from DTI data were used to encode the RSNs and employed as the predictive 

models of RSNs. Third, given that the DICCCOL landmarks are structurally consistent and 

correspondent across NC and MCI, functional connectivities in MCI were assessed based on 

the predictive models and compared with those in NC.

The major contributions of this paper are summarized in the following two aspects. First, we 

assessed the widespread functional connectivity alterations in MCI via predictive models of 

RSNs obtained from a machine learning framework based on multimodal R-fMRI and DTI 

data. Since some RSNs were disrupted in MCI and can hardly be constructed using data-

driven approaches (e.g. ICA-clustering) merely from R-fMRI data, we used robust and 

consistent structural landmarks from DTI data as predictive models of RSNs. In this way, 

the correspondences between MCI and NC were established at the fine-scale of network 

node level, and widespread functional connectivity alterations in MCI could be assessed 

based on the predictive models. Since the RSNs in MCI are already disrupted, the 

comparisons of functional connectivities among consistent and corresponding structural 

DICCCOL landmark-based predictive models of RSNs provide an alternative, fair and 

meaningful way to assess the widespread RSN dysfunctions in the MCI.

Second, our work offered a general and novel framework to examine large-scale functional 

connectivity alterations in neurological or psychiatric conditions. In the brain connectivity 

mapping field, a major barrier is the critical lack of a quantitatively encoded representation 

of common structural and functional brain landmarks that can be precisely replicated across 

individuals and populations, especially for diseased populations. This barrier has posed a 

significant limit to the comparison and cross-validation of brain connectivity mapping 

results (e.g., Sporns et al., 2005; Lynall et al., 2010; Liu 2011). The predictive models of 

RSNs learned from multimodal R-fMRI and DTI data in our work potentially offer 

intrinsically-established structural correspondences across individuals and populations, in 

particular, for those diseased brains with missing or altered RSNs. These predictive models 

of RSNs provide a general bridge to compare and cross-validate functional connectivity 

mapping results across different datasets and labs.
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Materials and Methods

The flowchart of assessing the functional connectivity alterations in MCI via predictive 

models of RSNs is illustrated in Fig. 1. It consists of four major steps. In step 1, the data-

driven ICA-clustering approaches are applied to construct RSNs in normal control (NC) 

group from R-fMRI data. Step 2 introduces our DICCCOL landmark identification 

procedure in NC and MCI groups. Step 3 illustrates the machine learning framework that 

obtains the predictive models of RSNs based on the RSNs in step 1 and DICCCOL 

landmarks in step 2. In step 4, RSNs are predicted in MCI via the DICCCOL landmark-

based predictive models and functional connectivities are assessed based on the predicted 

RSNs.

Data Acquisition and Preprocessing

Twenty-eight participants (ten MCI patients and eighteen socio-demographically matched 

normal controls (NC)) were recruited and scanned in the Duke-UNC Brain Imaging and 

Analysis Center (BIAC). Informed consent was obtained from all participants, and the 

experimental protocols were approved by Duke IRB. The criteria for MCI were in 

accordance with NACC procedures and NINCDS-ADRDA diagnostic guidelines. Detailed 

inclusion and exclusion criteria have been reported in our previous work (Wee et al., 2011). 

Confirmation of diagnosis for all subjects was made via expert consensus panels at the 

Joseph and Kathleen Bryan Alzheimer's Disease Research Center (Bryan ADRC) and the 

Department of Psychiatry at Duke University Medical Center. Diagnosis was based upon 

available data from a general neurological examination, neuropsychological assessment 

evaluation, collateral and subject symptom and functional capacity reports. Confirmation of 

the diagnosis for all subjects was made by a clinical psychiatrist at Duke Medical Center. 

Characteristics of the participants in this MCI study are summarized as follows (Table 1).

The R-fMRI and DTI datasets were acquired on a 3.0 Tesla scanner (GE Signa EXCITE, GE 

Healthcare). For R-fMRI imaging, 34 slices were acquired in the same plane (as the low 

resolution T1-weighted images) using a SENSE inverse-spiral pulse sequence with echo 

time (TE) = 32 ms, repetition time (TR) = 2000 ms, FOV = 25.6 cm2, matrix = 64 × 64 × 34, 

3.8 mm3. For DTI, 25 direction diffusion-weighted whole-brain volumes were acquired 

axially parallel to the AC-PC line using diffusion weighting values, b = 0 and 1000 s/mm2, 

flip angle = 90°, TR = 17 s and TE = 78 ms. The imaging matrix was 256 × 256 with a 

rectangular FOV of 256 × 256 mm2 and 72 slices with a slice thickness of 2.0 mm.

Pre-processing steps of the R-fMRI data included brain skull removal, motion correction, 

spatial smoothing, slice time correction, global drift removal, and band pass filtering 

(0.01Hz~0.1Hz) (Li et al., 2010). Pre-processing steps of DTI data included brain skull 

removal, motion correction, and eddy current correction (Liu et al., 2007). After the pre-

processing, fiber tracts, gray matter (GM) and white matter (WM) tissue segmentation (Liu 

et al., 2007), and the GM/WM cortical surface reconstruction (Liu et al., 2008b) were 

performed based on the DTI data. Fiber tracking was performed via the MEDINRIA (http://

www-sop.inria.fr/asclepios/software/MedINRIA/). The stopping criteria are: FA 

threshold=0.2 and minimum fiber length=20. Moreover, we adopted other four different 

fiber tracking software toolkits or parameter settings (Fillard et al., 2011) to examine the 
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identification consistency of our DICCCOL landmarks: DTIStudio (https://

www.dtistudio.org/), and MRtrix (Tournier et al., 2012, http://www.nitrc.org/projects/

mrtrix/) with three parameter settings (fiber bundle number equals 10,000, 50,000 and 

100,000, respectively). Brain tissue segmentation was conducted on the DTI data directly 

(Liu et al., 2007). Based on the WM tissue map, the cortical surface was reconstructed using 

the marching cubes algorithm (Liu et al., 2008b). The reconstructed surface has 

approximately 40,000 vertices and is used as the standard space for predicting DICCCOL 

landmarks (Zhu et al., 2012) and encoding RSNs.

Construction of RSNs

For the NC subjects, we constructed their RSNs by using the group independent component 

analysis (gICA) (Schmithorst and Holland, 2004) implemented in the GIFT toolbox (http://

mialab.mrn.org/software/gift/index.html). This GIFT toolbox is established for the ICA of 

group (or single subject) fMRI data (Calhoun et al., 2001; Beckmann et al., 2005; Celone et 

al., 2006). The basic idea of gICA is that we first concatenated individuals’ data across time, 

and then computed the subject-specific components and time courses. To be self-contained, 

the GIFT toolbox performed the gICA via three major steps (Calhoun et al., 2001). In step 1, 

first, individuals’ R-fMRI data was reduced by principal components analysis (PCA) in 

order to decrease computing complexity while preserving the useful information. Second, 

the number of independent components was estimated based on all input fMRI data using 

the MDL criteria (Li et al., 2007). More details are referred to Li, et al., 2007. Our 

experiments show that although the estimated total number of ICA components might be 

slightly different if various sample sizes of the NC group are chosen, all fifteen RSNs are 

successfully identified among all ICA components. Third, individuals’ R-fMRI data was 

reduced by using PCA again based on the selected number of components. In step 2, ICA 

was applied by using the default Infomax algorithm (Linsker, 1997). In step 3, subject-

specific components and time courses were back-reconstructed and each mean component 

was transformed to z-values. For each component, there were two patterns that were 

correlated or anti-correlated to the time course of this component.

By using the templates and visual inspections similar to those used in Zhu et al., 2012, we 

determined corresponding group mean independent components that represented RSNs 

elaborated in previous published works (Damoiseaux et al., 2006; De Luca et al., 2006; 

Beckmann et al., 2005; van den Heuvel et al., 2008; Salvador et al., 2005; Sorg et al., 2007) 

and excluded the other components that were artifacts, i.e., in ventricle or cerebrospinal fluid 

(CSF).

Identification of DICCCOL Landmarks

To be self-contained, the DICCCOL landmark discovery and prediction procedures (Zhu et 

al., 2011b; Zhu et al., 2012) are briefly introduced here. In general, the DICCCOL landmark 

identification was formulated as an optimization problem. In the first step, we randomly 

selected one subject as the template brain and generated a dense and regular map of 3D grid 

points within the boundary box of the reconstructed cortical surface based on DTI data. The 

intersection locations between the grid map and the cortical surface were used as the initial 

landmarks. As a result, we generated dense landmarks on the template brain. Then, we 
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registered the landmarks to other subjects using the linear registration via FSL FLIRT to 

initialize and establish the rough correspondences of the landmarks across different subjects. 

In the second step, we extracted white matter fiber bundles emanating from small regions 

around the neighbourhood of each landmark. Each small region served as the candidate for 

landmark location optimization. Afterwards, we projected the fiber bundles to a standard 

sphere space, called trace-map (Zhu et al., 2011a; Zhu et al., 2011b; Zhu et al., 2012), and 

calculated the distance between any pair of trace-maps in different subjects. Finally, we 

performed a whole-space search to find fiber bundles which gave the best group-wise 

similarity. By using both quantitative and qualitative methods (Zhu et al., 2011a; Zhu et al., 

2011b; Zhu et al., 2012) to evaluate the consistency of converged landmarks in two separate 

groups of model brains, we determined 358 DICCCOL landmarks. More details can be 

referred to Zhu et al., 2011a, Zhu et al., 2011b, and Zhu et al., 2012. Fig. 2 shows the 

anatomical locations and index labelling of these 358 DICCCOL landmarks on one brain.

The prediction of DICCCOL landmarks on other brains was similar to the optimization 

procedure. Generally, we warped a new subject to the template brain and performed the 

optimization procedure to predict its DICCCOL landmarks. The only difference was that 

since the locations of DICCCOL landmarks in the model brains were already optimized, we 

kept them unchanged and only optimized the location of the new subject to minimize the 

trace-map distance among the models and the new subject. This set of 358 DICCCOL 

landmarks has been predicted and reproduced in four different multimodal fMRI/DTI 

datasets (over 240 brains) which are released on line at: http://dicccol.cs.uga.edu. In this 

paper, we predicted 358 DICCCOL landmarks for each brain in both NC and MCI groups.

Predictive Models of RSNs Based on DICCCOL Landmarks

In this section, we used DICCCOL landmarks derived from DTI data to learn the predictive 

models of RSNs derived from R-fMRI data. As the DICCCOL landmarks were identified in 

the DTI space, co-registration between DTI and R-fMRI data was performed using the FSL 

FLIRT, and the resulting global transform matrix was applied to the RSNs to map them into 

the DTI space. The activity peaks (represented by z-values) of each RSN were then selected 

in each subject to represent the corresponding RSNs. It was noteworthy that the activity 

peak location was defined on the DTI-derived cortical surface onto which the RSNs in R-

fMRI space were mapped.

For the purpose of encoding the RSNs using DICCCOL landmarks, first, the top 5 closest 

DICCCOL landmarks (measured by Euclidian distance) in each subject were identified for 

each corresponding activity peak in a group. Second, the DICCCOL landmark with the most 

votes (defined as frequencies of being ranked as closest distance to the activity peaks) was 

determined as the corresponding landmark for that activity peak in a group. Results showed 

that there was always a DICCCOL landmark which could be found for the corresponding 

activity peak across subjects (Zhu et al., 2012), suggesting that RSNs were well co-localized 

with a set of consistent and predictable DICCCOL landmarks across individuals and 

populations. Therefore, we encoded all RSNs via DICCCOL landmarks, and used these 

landmarks as predictive models of RSNs. Since the structural brain architectures in MCI 

brains were relative similar to those in NC group, the nodes of RSNs in MCI were then 
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localized based on the DICCCOL landmark-based predictive models. Afterwards, the 

functional connectivities among these predicted RSNs were assessed in MCI and compared 

with those in NC. Since the RSNs in MCI were disrupted or substantially altered, the 

comparisons of functional connectivities among consistent and corresponding structural 

DICCCOL landmarks between MCI and NC groups were an alternative, fair and meaningful 

way to assess the resting state functional connectivity alterations of RSNs in MCI.

Results

Construction of RSNs in NC

As described above, the group ICA approach was performed to construct RSNs in NC using 

the GIFT software. Results of the constructed RSNs are depicted in Fig. 3. In total, fifteen 

independent components representing fifteen separate RSNs were constructed, as shown in 

Figs. 3a–3o, respectively. Specifically, Fig. 3a includes the medial prefrontal gyrus (BAs 

9/10/11), anterior (BAs 12/32) and posterior cingulate cortex (BA 29), bilateral 

supramarginal gyrus (BA 39), and the inferior temporal gyrus (BA 21). This component 

corresponds to the default mode network (DMN) (Damoiseaux et al., 2006; Raichle et al., 

2001; De Luca et al., 2006; van den Heuvel et al., 2008; Sorg et al., 2007). Figs. 3b–3c show 

components that have strong lateralization in the right (Fig. 3b) and left (Fig. 3c) 

hemispheres, including the middle frontal and orbital (BAs 6/9/10) and superior parietal 

areas (BAs 7/40). These RSNs are known to be involved in memory function (De Luca et 

al., 2006; Damoiseaux et al., 2006; van den Heuvel et al., 2008; Sorg et al., 2007).

Two separate components shown in Figs. 3d–3e are in the visual cortex. Fig. 3d consists of 

the lateral and superior occipital gyrus (BA 19), while Fig. 3e includes the medial visual 

areas (BAs 17/18) (Damoiseaux et al., 2006; De Luca et al., 2006; van den Heuvel et al., 

2008; Salvador et al., 2005; Sorg et al., 2007). Fig. 3f shows the sensory-motor systems 

including pre- and post-central gyrus from the sylvian fissure to the medial wall of the inter-

hemispheric fissure (BAs 1/2/3/4), and the Supplementary Motor Area (SMA) (BA 6). This 

RSN can be seen in the bimanual motor tasks (Damoiseaux et al., 2006; De Luca et al., 

2006; van den Heuvel et al., 2008; Salvador et al., 2005). Fig. 3g includes the prefrontal 

cortex (BA 11) and dorsal anterior cingulate (BA 32) (Damoiseaux et al., 2006). This RSN 

has been found in previous research to be involved in the execution and working memory 

functions (Beckmann et al., 2005; Miller and Cohen, 2001; Salvador et al., 2005).

Fig. 3h shows the auditory system encompassing the Heschl’s gyrus, lateral superior 

temporal gyrus and posterior insular cortex (Rivier and Clarke, 1997; Rademacher et al., 

2001; Damoiseaux et al., 2006; van den Heuvel et al., 2008; Salvador et al., 2005). Fig. 3i 

shows the superior temporal gyrus (BA 22) as the main part of this RSN. This RSN shows 

the occipito-temporal pathway (ventral stream) (Damoiseaux et al., 2006; De Luca et al., 

2006; Sorg et al., 2007). Fig. 3j involves the superior parietal cortex (BA 7), occipito-

temporal (BA 37) and precentral gyrus (BA 4) (Damoiseaux et al., 2006; Salvador et al., 

2005; Sorg et al., 2007). Fig. 3k consists of a posterior part of superior parietal cortex (BA 

7) (van den Heuvel et al., 2008; Salvador et al., 2005). Fig. 3l shows temporal polar cortex 

of the medial temporal system (Salvador et al., 2005). Fig. 3m shows medial temporal 

regions of the medial temporal system (Salvador et al., 2005). Fig. 3n shows the temporal 
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association cortex of the lateral temporal/auditory-verbal system (Salvador et al., 2005). Fig. 

3o represents the anterior part of the cingulate cortex (van den Heuvel et al., 2008).

All activity peaks (represented by z-values) of RSNs in NC were then selected and 

summarized in Table 2. Overall, there were 38 peaks in all of the fifteen RSNs. All results 

were reported in the MNI_152 template space and Brodmann Area (BA). The atlases used to 

label the activity peaks were the Harvard-Oxford cortical and subcortical structural atlases 

and Talairach Daemon Labels provided by FSL.

DICCCOL Landmark Prediction in NC and MCI

In this section, we analyzed the DICCCOL landmark prediction results in NC and MCI 

qualitatively and quantitatively. Figs. 4a–4b show two examples of DICCCOL landmark 

prediction results in NC and MCI, respectively. For Figs. 4a–4b, the first two rows are ten 

model brains (Zhu et al., 2012), the third and fourth rows are the predicted results in five 

randomly selected NC and MCI brains, respectively. The example DICCCOL landmarks are 

#311 (Fig. 4a) and #315 (Fig. 4b) as shown in Fig. 2. From visual inspection, we can see that 

the fiber bundle patterns of corresponding DICCCOL landmarks in both predicted NC and 

MCI brains are quite similar with those in the model brains. More results are referred to 

http://dicccol.cs.uga.edu.

To quantitatively evaluate the similarity of fiber bundle patterns of 358 DICCCOL 

landmarks between NC and MCI, we first calculated the trace-maps of 358 DICCCOL 

landmarks in the model, NC, and MCI groups, respectively. Then, for each of the three 

groups (model, NC and MCI), we calculated the mean trace-maps of 358 DICCCOL 

landmarks. At last, distances of the mean trace-maps of 358 DICCCOL landmarks between 

any two groups were calculated via the methods in Zhu et al., 2012.

Table 3 shows the distances of the mean trace-maps of sixteen randomly selected DICCCOL 

landmarks between any pair of the three groups. As shown in Table 3, the distances of the 

mean trace-map of these sixteen DICCCOL landmarks among all three groups are all very 

small: 22.29×10−5 between model and NC, 20.87×10−5 between model and MCI, and 

6.29×10−5 between NC and MCI. To further demonstrate that the above distances are indeed 

small, we randomly selected ten vertices on the entire cortical surface of one model brain, 

extracted their fiber bundles and calculated the trace-maps. Then, the distances between 

each of the ten trace-maps and the trace-map of DICCCOL #327 were calculated as an 

example in Table 4. We can see that the mean distance is 337.06×10−5 which is obviously 

much larger than the above three mean distances. For all of the rest DICCCOL landmarks, 

we have the same finding.

Moreover, we adopted other four different fiber tracking software toolkits or parameter 

settings (Fillard et al., 2011) to examine the identification consistency of our DICCCOL 

landmarks: DTIStudio (https://www.dtistudio.org/), and MRtrix (Tournier et al., 2012, 

http://www.nitrc.org/projects/mrtrix/) with three parameter settings (fiber bundle number 

equals 10,000, 50,000 and 100,000, respectively). The basic idea is that in the DICCCOL 

landmark identification part, we predicted all 358 DICCCOL landmarks in all 28 subjects 

based on the extracted fibers in DTI image via five different fiber tracking software toolkits 
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or parameter settings, respectively. Then, for each of the predicted corresponding DICCCOL 

landmark across subjects in the NC/MCI group, we calculated the mean distance of any pair 

of the predicted locations based on the extracted fibers via five different fiber tracking 

software toolkits or parameter settings. The overall mean distance for all 358 DICCCOL 

landmarks is 4.25 mm ± 0.89 mm in NC group, and 4.87 mm ± 1.02 mm in MCI group, 

which is relatively small. The results show that our DICCCOL landmark locations are 

consistent across different subjects using different fiber tracking software toolkits and thus 

are not affected by different tracking software toolkits or parameters.

From above qualitative and quantitative results, we can conclude that: 1) given the 

DICCCOL landmarks in the model brains, we can effectively and accurately predict their 

corresponding counterparts in a new brain in NC and MCI groups with DTI data; 2) the 

patterns of fiber bundles of corresponding DICCCOL landmarks in both NC and MCI brains 

are quite consistent with model brains. We have examined all of the 358 predicted 

DICCCOL landmarks in NC and MCI subjects, and found the similar conclusion (http://

dicccol.cs.uga.edu), suggesting that the DICCCOL landmarks indeed reveal the common 

structural connectivity patterns of the human brains including MCI subjects, which is also 

the foundation that we can use these structural DICCCOL landmarks to encode RSNs and 

use them as predictive models to elucidate the functional connectivity alterations in MCI.

Predictive Models of RSNs Based on DICCCOL Landmarks

Once RSNs were identified based on R-fMRI data and DICCCOL landmarks were predicted 

based on DTI data, we mapped all RSNs to the DTI space and encoded them via DICCCOL 

landmarks by the approaches described in above sections. The learned set of DICCCOL 

landmarks was employed as the predictive models of RSNs for MCI. Fig. 5a visualizes all 

38 activity peaks of 15 RSNs in NC and their corresponding predictive DICCCOL 

landmarks on one NC subject. Fig. 5b shows the DICCCOL landmark-based predicted 

RSNs on one MCI subject.

To quantitatively evaluate the RSN encoding accuracy by DICCCOL landmarks, we 

measured the Euclidean distance between the centers of activity peaks within each RSN and 

corresponding predictive DICCCOL landmarks in the NC group, respectively. All results are 

reported in Table 5. The average distances for the fifteen RSNs in the NC group are 5.54 

mm, 5.99 mm, 4.86 mm, 7.31 mm, 8.79 mm, 4.11 mm, 5.39 mm, 6.02 mm, 4.92 mm, 5.99 

mm, 5.91 mm, 5.54 mm, 5.60 mm, 5.51 mm and 5.73 mm, respectively. On average, the 

distance is 5.81 mm. The results in Table 5 demonstrate that DICCCOL landmarks are 

consistently co-localized with RSNs, and can encode RSNs effectively and accurately.

Furthermore, we adopted a 10-fold cross-validation to validate the learned functional 

network on DICCCOL landmarks. Specifically, we divided 18 subjects in the NC group into 

ten folds (eight folds have two subjects and the other two folds have one subject 

respectively). Each time one fold was used as the testing set, and the rest of the folds were 

used as the training set to perform RSN encoding using DICCCOL landmarks. For each 

corresponding activity peak, the learned DICCCOL landmark was examined in the testing 

set to see if it is closest to the activity peak. Then the accuracy rate was calculated across ten 
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times for each activity peak. The mean accuracy rate of all activity peaks is 80.26%, 

indicating that the learned RSNs based on DICCCOL landmarks are reliable.

Measurement of Functional Connectivity in NC and MCI

Our previous studies in Zhu et al., 2011b and Zhu et al., 2012 and the results in above 

sections have demonstrated that the DICCCOL landmarks are consistently co-localized with 

RSNs (e.g., default mode network) across subjects. That is, the functional connectivities 

based on (1) activity peaks of RSNs and (2) DICCCOL landmark-based predictive models 

of RSNs should be similar. Typically, the functional connectivity between two peaks/

landmarks was defined as the Pearson correlation coefficient between their fMRI time series 

(Li et al., 2010; Li et al., 2012a; Zhu et al., 2013). Figs. 6a–6b show the average functional 

connectivities based on activity peaks of R-fMRI derived RSNs (Fig. 6a) in the NC group 

and DICCCOL landmark-based predictive models of RSNs (Fig. 6b), respectively. They are 

similar as highlighted by the white frames in the principal diagonal direction. Furthermore, 

for some RSNs (#9, 13 and 14), the average functional connectivity based on the predictive 

models of RSNs is even higher than that based on activity peaks of RSNs, suggesting that 

the DICCCOL landmarks generated by DTI data might help localize individual RSNs more 

accurately than using the group ICA approach merely based on R-fMRI data. This is in 

agreement with our previous results (Zhu et al., 2011a) that have shown that the 

maximization of group-wise consistency of structural connection patterns across functional 

landmarks could benefit functional connectivity profile as well.

Then, we used the DICCCOL landmark-based predictive models to assess the functional 

connectivity alterations in MCI compared with those in NC. Figs. 7a– 7b show the average 

functional connectivities based on the predictive models of RSNs in NC (Fig. 7a) and MCI 

(Fig. 7b), respectively. We can see that the functional connectivities between NC and MCI 

are substantially different, suggesting the widespread alterations of functional connectivity 

in MCI. To statistically examine significant between-group difference, we performed a two-

sample t-test of functional connectivities in Figs. 7a–7b. Significantly decreased (in blue) 

and increased (red) (p-value<0.05, false discovery rate (FDR) corrected for multiple 

comparisons) functional connectivities in MCI in comparison with NC are shown in Figs. 

7c–7d, respectively. These results show that the DICCCOL landmark-based predictive 

models of RSNs can reveal widespread functional connectivity alterations in MCI. First, 

there are functional connectivity alterations within a specific RSN. For instance, there are 

functional connectivity alterations between specific node pairs within the default mode 

network (RSN #1) in MCI, as highlighted by the black boxes in Figs. 7a–7b. There are also 

functional connectivity alterations within RSN #3, #4, #6, #7, #13 and #14 in MCI, as 

highlighted white boxes respectively along the diagonal in Figs. 7a–7b. Second, if we 

examine the upper/lower triangular matrices in Figs. 7a–7b, we can see that there are wide 

spread functional connectivity alterations between node pairs which belong to two different 

RSNs. In conclusion, Fig. 7 demonstrates that there are widespread functional connectivity 

alterations not only within specific RSNs, but also among different RSNs.

Finally, to demonstrate that our predictive models can improve the detection power of 

identifying functional connectivity alterations in MCI, we calculated the functional 
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connectivity alterations in MCI based on the activity peaks merely derived from R-fMRI 

data and compared the results with those in Fig. 7. First, we adopted the same gICA 

approach to identify the RSNs in MCI group. As shown in Fig. 8, we can see that 10 

corresponding RSNs were identified in MCI group, while the other five RSNs (RSN #1, #2, 

#9, #13 and #14 in Fig. 5) in NC were not found or altered in MCI. This shows the 

advantage of our proposed predictive models to locate those altered RSNs in MCI which 

cannot be identified using gICA. Second, we calculated the functional connectivity 

alterations in MCI based on the activity peaks of the ten RSNs derived merely from R-fMRI 

data. Figs. 9a–9b show the average functional connectivities based on the activity peaks of 

the ten RSNs merely derived from R-fMRI data. Similar as in Fig. 7, we performed a two-

sample t-test of functional connectivities in Figs. 9a–9b and showed the significantly 

decreased (in blue) and increased (in red) (p-value<0.05, FDR corrected for multiple 

comparison) functional connectivities in MCI in comparison with NC in Figs. 9c–9d, 

respectively. Figs. 9c–9d demonstrate that we can also identify some functional connectivity 

alterations in MCI merely based on R-fMRI data. However, many decreased/increased 

connectivity alterations were not identified compared with Figs. 7c–7d. In conclusion, our 

DICCCOL landmark-based predictive models of RSNs not only can locate those RSNs 

which are already altered and thus cannot be identified via gICA, but also have more 

detection power of identifying widespread functional connectivity alterations in MCI.

Discussion and Conclusion

Based on the predictive models of RSNs learned from multimodal R-fMRI and DTI data of 

MCI and NC groups, our results revealed widespread functional connectivity alterations 

across the whole brain in MCI. Since RSNs in MCI are disrupted and can hardly be 

constructed merely from R-fMRI data, structurally consistent DICCCOL landmark-based 

predictive models of RSNs learned from NC were used to assess the functional connectivity 

alterations in MCI, which is one of the major methodological contributions of this paper. In 

a broader sense, our work demonstrated the importance of using multimodal DTI and R-

fMRI data to localize and assess the resting state connectivities in brain conditions.

In this work, fifteen independent RSNs were identified by group-wise ICA method in the 

NC group. It should be noted that these fifteen RSNs are by no means representing all 

possible RSNs that could be inferred from R-fMRI data. Instead, these fifteen RSNs are just 

among the most reproducible and frequently reported ones in the literature, and there could 

be other RSNs that are potentially missed in our study. In the future, other alternative RSNs 

identification approaches, such as cortical surface based RSN identification methods (Li et 

al., 2010) or identification of RSNs directly from the DICCCOL systems (Zhu et al., 2012; 

Zhu et al., 2013), could be applied on our dataset to examine the reproducibility of the RSNs 

reported in this paper and to include potentially other additional RSNs. In this case, even 

larger scale assessment of altered functional connectivities in MCI could be possibly 

performed.

The results in this study were based on ten MCI patients and eighteen normal controls. 

Although this number of subjects is reasonably sufficient for report valid results (Wee et al., 

2011), it does not allow us to perform reproducibility study in separate groups. Therefore, in 
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the future, we plan to apply similar approaches in larger scale multimodal DTI/R-fMRI 

datasets of MCI and control subjects to further replicate the experimental results reported in 

this paper. In the current stage, the pair-wise functional connectivity reported in this work 

was not statistically corrected yet. In the future, it is possible to apply the network-based 

statistics (NBS) methods (Zalesky et al., 2010) for the statistical correction of the 

connectivity measurements. In addition, we can use different levels of t thresholds (Zalesky 

et al., 2010) to assess the connectivity difference between MCI brains and controls at the 

network-levels.

In the future, we plan to correlate the altered resting state functional connectivity in MCI 

with clinical parameters. For instance, longitudinal studies of the functional connectivities in 

the RSNs in MCI brains are very much desired, given the availability of such longitudinal 

R-fMRI datasets e.g., the ADNI-2 R-fMRI datasets (Jack et al., 2010) being released to the 

community. Then, the measured functional connectivity changes along the temporal domain 

could be associated with psychological and clinical parameters of MCI such as the MCI to 

AD conversion. We premise that resting state functional connectivity alterations in MCI 

brains could possibly be a useful biomarker for differential and early diagnosis of AD in the 

future.

Finally, we envision that the proposed methodology of predictive models of RSNs based on 

multimodal R-fMRI/DTI data could be possibly used to assess functional connectivities in 

other neurological or psychiatric conditions such as Alzheimer’s disease, Schizophrenia and 

Autism, in which resting state functional brain networks might have already been 

significantly disrupted during the disease progression. The experimental results in this paper 

demonstrated that although the functional connectivities between DICCCOL-based 

predictive models of RSNs in MCI were substantially altered, their structural connection 

patterns were relatively intact. Therefore, the proposed DICCCOL landmarks with intrinsic 

structural correspondences across subjects and populations (Zhu et al., 2012; Li et al., 

2012b) and their prediction framework (Zhang et al., 2011b; Zhu et al., 2012) offer a fair, 

effective and meaningful way to assess the potentially widespread RSNs dysfunctions in 

many brain diseases/conditions in the future.
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Figure 1. 
The flowchart of assessing the functional connectivity alterations in MCI via predictive 

models of RSNs.
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Figure 2. 
Anatomical locations and index labelling of 358 DICCCOL landmarks on one brain. The 

DICCCOL landmarks are highlighted by green bubbles. Additional visualizations of these 

landmarks are available online at: http://dicccol.cs.uga.edu.
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Figure 3. 
Fifteen RSNs in the NC subjects. Each group independent components representing RSNs is 

shown on a T1 structural template brain image. The color scale represents z values ranging 

from 0 to 23.1.
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Figure 4. 
Two examples of DICCCOL landmark prediction results in NC and MCI. The DICCCOL 

landmarks are represented by the yellow bubbles and their indices are (a) #311 and (b) #315 

as shown in Fig. 2. For (a) and (b), the first two rows are 10 model brains, the third and 

fourth rows are the predicted results of five randomly selected brains in NC and MCI, 

respectively. More results are referred to http://dicccol.cs.uga.edu.
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Figure 5. 
Predictive models of RSNs in NC and MCI. (a) All 38 activity peaks of 15 RSNs and 

corresponding predictive DICCCOL landmarks in NC; (b) DICCCOL landmark-based 

predicted RSNs in MCI. Activity peaks in different RSNs are represented by the bubbles 

with different colors as shown in the right panel. Corresponding predictive DICCCOL 

landmarks are represented by the white bubbles.
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Figure 6. 
Average functional connectivities based on (a) activity peaks of R-fMRI derived RSNs and 

(b) DICCCOL landmark-based predictive models of RSNs, respectively. RSNs are 

highlighted by the white frames in the principal diagonal direction and indexed in the top 

panel.
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Figure 7. 
Widespread functional connectivity alterations in MCI. (a)–(b) represent average functional 

connectivities based on the DICCCOL landmark-based predictive models of RSNs in NC 

and MCI, respectively; (c)–(d) show significantly decreased (in blue) and increased (red) 

functional connectivities in MCI in comparison with NC (p-value < 0.05, FDR corrected for 

multiple comparisons).
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Figure 8. 
Ten identified RSNs in MCI group. Each pair of group-independent components is shown 

on a T1 structural template brain image. The identified fifteen RSNs in NC group (Fig. 3) 

are also shown here for comparison. Four RSNs in NC group (B, I, M and N) are not 

identified in MCI. One RSN (DMN) in MCI as shown in A’ partially alters. The color scale 

represents z values ranging from 0 to 23.1.
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Figure 9. 
Functional connectivity alterations in MCI merely based on R-fMRI data. (a)–(b) represent 

average functional connectivities merely based on the R-fMRI data in NC and MCI, 

respectively. It should be noted that RSN #1, #2, #9, #13 and #14 are altered and not 

identified via gICA approach in MCI group. (c)–(d) show significantly decreased (in blue) 

and increased (red) functional connectivities in MCI in comparison with NC (p-value < 0.05, 

FDR corrected for multiple comparison).
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Table 1

Demographic and clinical measures of NC and MCI subjects. Data is presented as mean ± SD; NC, normal 

control; MMSE, Mini-Mental State Exam.

Parameter NC MCI

n 18 10

Age, years 72.1 ± 8.2 74.2 ± 8.6

Sex, male/female 8/10 5/5

Education 16.3 ± 2.4 17.7 ± 4.2

MMSE 29.4 ± 0.9 28.4 ± 1.5
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