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Abstract

Since Notch phenotypes in Drosophila melanogaster were identified 100 years, Notch signaling

has been extensively characterized as a regulator of cell fate decisions in a variety of organisms

and tissues. However, in the past 20 years, accumulating evidence has linked alterations in the

Notch pathway to tumorigenesis. In this Perspective, we discuss the pro-tumorigenic and tumor

suppressive functions of Notch signaling and dissect the molecular mechanisms that underlie these

functions in hematopoietic cancers and solid tumors. Finally, we link these mechanisms and

observations to possible therapeutic strategies targeting the Notch pathway in human cancers.

This year will be the centennial of the discovery of a signaling pathway that has fascinated

developmental, molecular, and cancer biologists around the world. Mutant Notch

phenotypes in the fly wing were characterized by John S. Dexter 100 years ago (Dexter,

1914) and, rapidly after, Thomas Hunt Morgan identified the mutant alleles (Morgan, 1917).

Almost seven decades later, after the molecular biology revolution, Spyros Artavanis-

Tsakonas and Michael Young cloned the Notch receptor and attributed the wing-notching

phenotype to gene haplo-insufficiency (Kidd et al., 1986; Wharton et al., 1985). These

studies brought a revolution in a large number of fields including developmental and stem

cell biology, neuroscience, and – related to this Perspective – cancer biology (Fortini et al.,

1993). Indeed, in the early nineties, gain-of-function mutations of the pathway were

identified in cancer (Ellisen et al., 1991; Gallahan and Callahan, 1997; Gallahan et al., 1987;

Jhappan et al., 1992). A deluge of reports followed, cementing the role of Notch signaling as

oncogenic but also tumor suppressive, depending on the context. In this Perspective, we

attempt to provide a detailed characterization of Notch functions in both solid and

© 2014 Elsevier Inc. All rights reserved.
*Correspondence should be addressed to: Iannis Aifantis, Ph.D. (Iannis.Aifantis@nyumc.org), or Julien Sage, Ph.D.
(julsage@stanford.edu).

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Cancer Cell. Author manuscript; available in PMC 2015 March 17.

Published in final edited form as:
Cancer Cell. 2014 March 17; 25(3): 318–334. doi:10.1016/j.ccr.2014.02.018.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



hematopoietic cancers and discuss the molecular mechanisms explaining such functions as

well as approaches to target Notch signaling in human cancers.

A brief description of the Notch signaling pathway

There are four Notch receptors (named Notch1–4) in mammals. Notch1 and Notch2 each

have 36 EGF-like repeats, while Notch3 and Notch4 have 34 and 29 repeats, respectively,

which affect their affinity for corresponding ligands (Haines and Irvine, 2003; Okajima and

Irvine, 2002; Rebay et al., 1991) (Figure 1). Notch receptors are single pass type I

transmembrane molecules coded by a single precursor that becomes a non-covalently linked

heterodimer consisting of an N-terminal extracellular (NEC) fragment and a C-terminal

transmembrane-intracellular subunit (NTM) as a result of cleavage by a furin-like protease

in the trans-Golgi network (Blaumueller et al., 1997) (Figures 1 and 2). The Notch pathway

is normally activated upon interactions with ligands such as Delta-like and Jagged, which

are also transmembrane proteins containing EGF-like repeats. In mammals, there are three

Delta-like ligands (Dll1, Dll3, and Dll4) and two Jagged ligands (Jag1 and Jag2). The Notch

pathway gets activated in a strictly controlled fashion: ADAM10/17 metalloproteases cause

an S2 cleavage in the receptor, followed by a third cleavage (S3 cleavage) mediated by the

presenilin–γ-secretase complex, composed of presenilin 1 (PSEN1), PSEN2, nicastrin

(NCSTN), presenilin enhancer 2 (PEN2), and anterior pharynx-defective 1 (APH1) (Shah et

al., 2005). This series of events releases the intracellular portion of the Notch receptor

(termed ICN) that then translocates into the nucleus to mediate target gene activation (De

Strooper et al., 1999; Schroeter et al., 1998). Notch-ICN is a transcriptional activator (Bray,

2006) consisting of ankyrin repeats, a RAM (RBP-Jκ associated molecule) domain, a

transactivation domain (TAD), a nuclear localization signal (NLS), and a PEST domain

regulating protein stability (Figures 1 and 2). Notch ligands are also cleaved by γ-secretase

and ADAM metalloprotease complexes, thus providing an additional level of regulation of

the pathway (LaVoie and Selkoe, 2003; Six et al., 2003). Despite the overall similarities

between the receptors, the differences in the ligand-binding extracellular domains and the

transactivation intracellular domains lead to distinct ligand affinities and capacity to activate

downstream transcription.

In the nucleus, Notch binds to initially inactive CBF1-Su(H)–LAG1 (CSL) (aka RBP-Jκ)

complexes and mediates their conversion to a transcriptional activator followed by the

recruitment of the co-activator protein mastermind-like 1 (MAML1) (Figure 2) (Nam et al.,

2006; Wilson and Kovall, 2006; Wu et al., 2000). The ankyrin repeats seem to play an

important role for MAML1 recruitment. The list of target genes regulated by Notch is very

much dependent on cell type and can include genes whose products are involved in

fundamental aspects of cell biology, such as cell cycle regulation (Joshi et al., 2009; Lewis

et al., 2007), cellular differentiation, and metabolism (Palomero et al., 2006). Common

targets of the pathway include the HES and HEY (Iso et al., 2001a; Iso et al., 2001b;

Jarriault et al., 1995) families of transcription repressors as well as MYC transcription factor

(Palomero et al., 2006; Sharma et al., 2006; Weng et al., 2006). The binding and function of

Notch on DNA appears to be a rapid and dynamic process controlled by the kinase CDK8

and the ubiquitin ligase Fbxw7 leading to Notch phosphorylation, ubiquitination, and its
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subsequent proteasomal degradation (Fryer et al., 2004; Mukherjee et al., 2005; O'Neil et al.,

2007; Thompson et al., 2007), which shuts off the pathway (Figure 2).

Various tools have been developed to study the transcriptional activity of the pathway, such

as ChIP-seq and ChIP-chip to map Notch1 binding on the genome (Castel et al., 2013;

Ntziachristos et al., 2012; Palomero et al., 2006; Wang et al., 2011a) and mouse models that

allow efficient tracing of receptor cleavage/activity in many different tissues (Hansson et al.,

2006; Liu et al., 2011; Mizutani et al., 2007; Souilhol et al., 2006). Recently, the group of

Artavanis-Tsakonas (Fre et al., 2011; Sale et al., 2013) and our laboratory (Oh et al., 2013)

have traced Notch pathway activity in vivo by using reporter systems for Notch receptors

expression and Hes1 activity by coupling them to fluorescent proteins (Figure 3). As there

are several unanswered questions regarding Notch ligand expression, even under

physiological conditions, an exciting next step could involve development of fluorescent

tools to probe ligand expression together with pathway activation in real-time within a living

organism.

NOTCH signaling pathway in cancer

The Notch pathway is genetically altered in a large number of hematopoietic and solid

tumors (Figure 1). Intriguingly, these alterations can lead to either activation or repression of

the pathway depending on the context and the activation status of other potentially

oncogenic pathways (Table 1 and Figure 4). Interestingly, it appears that there are multiple

and distinct modes of aberrant regulation of the pathway and its targets in cancer. They

include activating and inactivating mutations, receptor/ligand over-expression, epigenetic

regulation, and effects of post-translational modifications, most notably receptor and ligand

fucosylation (especially O-fucosylation) (Haines and Irvine, 2003; Lei et al., 2003; Okajima

et al., 2003) and ubiquitination (Fryer et al., 2004; Thompson et al., 2007). We initially

discuss T cell acute leukemia, a disease in which Notch has a well-characterized oncogenic

role. Subsequently we present several other cases of hematopoietic and solid tumors where

Notch has tumor suppressive or oncogenic roles, along with its potential mechanisms of

action and partners.

T-Cell Acute Lymphoblastic Leukemia (T-ALL)

NOTCH1 is a master transcription factor that controls innate and adaptive immunity and

plays an important role in directing hematopoietic development towards T cells (Aifantis et

al., 2008; Li and von Boehmer, 2011; Radtke et al., 2013). The very first finding of Notch

pathway alterations in cancer comes from the work of Ellisen and colleagues, which was

confirmed subsequently by other groups, that revealed a rearrangement between the

intracellular part of NOTCH1 (ICN1) and the T cell receptor beta (TRB) locus, leading to

high level expression of truncated, constitutively-active NOTCH1 in leukemia (Ellisen et al.,

1991). In vitro studies (Capobianco et al., 1997), as well as animal modeling (Girard et al.,

1996; Pear et al., 1996) then revealed that ICN1 is a strong oncogenic allele. Most

importantly, ten years ago, the Aster and Look laboratories reported the first activating

NOTCH1 mutations in human T-ALL, occurring in approximately 50% of all cases (Weng

et al., 2004).
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The majority of these mutations encompass single amino acid substitutions, insertions and

deletions located in exons 26 and 27 of the genetic locus, which encode the N-terminal and

C-terminal components of the hetero-dimerization domain respectively. These mutations

lead to lower protection of S2 cleavage of Notch, resulting in either ligand independent

activation or hypersensitivity of the pathway to ligands. Another rare group of mutations, the

Juxtamembrane Expansion Mutants (JME) also augments NOTCH1 activation at the cell

membrane (Sulis et al., 2008) (Figure 1). Finally, PEST domain mutants encompass another

category of NOTCH1 mutations in 20–25% of T-ALLs. PEST domain alterations lead to

truncation or loss of the domain due to frame-shift or nonsense nucleotide substitutions,

which impair proteasomal degradation mediated by the ubiquitin ligase FBXW7 and lead to

higher ICN1 cellular concentrations (Weng et al., 2004). The importance of ICN1

degradation in physiology becomes more evident by the fact that 15 % of T-ALL cases

harbor mutations or deletions in FBXW7 (Asnafi et al., 2009; O'Neil et al., 2007; Thompson

et al., 2007). These changes are localized in three arginine residues critical for its interaction

with ICN1. Mutations in the PEST domain and FBXW7 do not occur concurrently which

implies that they play the same role to increase stability of ICN1 (Asnafi et al., 2009; O'Neil

et al., 2007).

The fact that FBXW7 mutations directly affect cells with leukemia-initiating (LIC)

properties though the stabilization and overexpression of MYC, another well-characterized

substrate of this ubiquitin ligase, further demonstrates that NOTCH and MYC actions are

intertwined in cancer cells (King et al., 2013). Interestingly, NOTCH1 mutations in T-ALL

were shown to have a favorable prognosis and better outcome post-treatment in a number of

studies including the ALL-Berlin-Frankfurt-Munster 2000 study (Breit et al., 2006), a study

by the Japan Association of Childhood Leukemia Study that examined NOTCH1 and

FBXW7 mutational status in T-ALL and T-cell lymphoblastic lymphoma patients (Park et

al., 2009), and the Lymphoblastic Acute Leukemia in Adults (LALA)-94 and the

GRAALL-2003 trials (Asnafi et al., 2009). Finally, another report on 134 pediatric patients

from the EORTC-CLG 58881 and 58951 protocols concluded that NOTCH1 and FBXW7

mutations associate with improved early chemotherapeutic response and lower minimal

residual disease (MRD) levels (Clappier et al., 2010). It remains to be seen whether Notch

pathway inhibition will be used successfully to target T-ALL, especially in relapsed disease

that is refractory to conventional chemotherapy-based treatments.

Chronic lymphocytic leukemia (CLL)

CLL is the most common leukemia in adults. Recently, it was demonstrated using next

generation sequencing-based approaches that 10–12% of CLL cases exhibit activating

mutations of NOTCH1, underlining the significance of such mutations as a prognostic

marker. The vast majority of these mutations are in the PEST domain, leading to truncated

protein variants with a longer half-life (Figure 1). Interestingly, there seems to be a

mutational hotspot in this disease, with P2515Rfs being the most prevalent mutation (Fabbri

et al., 2011; Puente et al., 2011; Rossi et al., 2012a). Mutations of NOTCH1 are mutually

exclusive with TP53 abnormalities and survival outcomes are poor in both cases (Rossi et

al., 2012a; Wickremasinghe et al., 2011). NOTCH1 and SF3B1 (a splicing factor) mutations

were associated with decreased overall survival, and both retained independent prognostic
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significance for survival outcomes (Oscier et al., 2013). Mutational activation of NOTCH1

was observed at significantly higher frequency during disease progression towards the high-

risk Richter transformation (30%) and chemo-refractory CLL (20%) (Fabbri et al., 2011).

This later study and a very recent large-scale clinical analysis of CLL patients (Weissmann

et al., 2013) confirmed that NOTCH1 mutations are an adverse prognostic parameter in this

disease.

Lymphoma

Non-Hodgkin lymphoma (NHL) is a heterotypic mix of diseases, the most prevalent

amongst them consist of Burkitt lymphoma, Follicular lymphoma (FL, the most indolent

amongst NHL cases) (Pasqualucci et al., 2014), (Roulland et al., 2011), and diffuse large B

cell lymphoma (DLBCL). Burkitt lymphoma, mainly characterized by the upregulation of

MYC due to its translocation to the immunoglobulin locus, display recurrent gain-of-

function NOTCH1 mutations in 8–9% of patients (Love et al., 2012). FL and DLBCL are

malignancies of B cell origin and together comprise 60% of new NHL diagnoses in North

America. FL and the germinal center B-cell (GCB) DLBCL subtype are derived from

germinal center B cells, whereas the more aggressive activated B-cell (ABC) DLBCL

subtype is most likely derived from cells that have exited the germinal center. NOTCH2 is

mutated in ~8% of DLBCL cases (Lee et al., 2009). These are mainly gain-of-function

mutations affecting the PEST domain (and thus the stability of the protein) as well as copy

number alterations (Morin et al., 2011). Interestingly, NOTCH2 is required for B-cell

development in the spleen marginal zone environment and has been implicated in splenic

marginal zone lymphoma (SMZL) (Kiel et al., 2012; Rossi et al., 2012b), as 20% of SMZL

cases exhibit gain-of-function NOTCH2 mutations accompanied by mutations of NOTCH1,

SPEN and DTX1 (Rossi et al., 2012b). It was suggested that these genetic changes are

associated with adverse prognosis (Kiel et al., 2012). Finally, Jundt and colleagues have

characterized an activating role for NOTCH1 in classic Hodgkin lymphoma (Schwarzer et

al., 2012; Schwarzer and Jundt, 2011). These authors suggested that NOTCH1 is activated

through the upregulation of its ligands within the tumor niche and suppresses genes

important for B cell identity, such as E12/E47 and the early B cell factor (EBF) (Jundt et al.,

2008). Additional studies are required to better define Notch receptor and ligand expression,

targeted signaling pathways in the distinct subtypes of lymphoma.

Acute myeloid leukemia and myelo-monocytic neoplasms

Several years ago, emerging evidence indicated that the Notch pathway could have tumor

suppressive roles in various types of tumors, in stark contrast to its oncogenic role in the

aforementioned hematopoietic malignancies (Nicolas et al., 2003; Rangarajan et al., 2001).

In contrast to the tumorigenic role of NOTCH1 in T-ALL, our laboratory and others have

recently characterized a tumor suppressive role of the Notch pathway in myeloid

malignancies. We have shown that deletion of nicastrin (Ncstn), an essential component of

the γ-secretase complex, leads to the induction of chronic myelomonocytic leukemia

(CMML) (Klinakis et al., 2011), a disease characterized by increased extramedullary

hematopoiesis, monocytosis, myeloproliferation, and frequent progression to acute myeloid

leukemia (AML). This is a Notch-mediated effect, as compound deletion of Notch1/2 in vivo
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led to similar effects. This was further attested when analysis of the conditional model for

the deletion of FX (the homologue of human GDP-L-fucose synthase) or O-

fucosyltransferase 1 (Pofut1) showed myeloid hyperplasia (Yao et al., 2011), underlining the

importance of Notch receptor fucosylation for ligand binding and pathway activation.

Ablation of MAML1 can lead to similar phenotypes (Chen et al., 2008). Mechanistically, the

tumor suppressor role of NOTCH in this disease is mediated by direct repression of the PU.

1 and CEBPα promoters by HES1. Subsequent screening of primary CMML samples for

Notch pathway mutations showed that NCSTN, Mastermind-like 1 (MAML1), APH1A, and

NOTCH2 are mutated and genetically inactivated in about 12% of CMML patients. These

mutations are unique to CMML and not found in other myeloproliferative disorders such as

polycythemia vera (PV) and myelofibrosis (MF). Notch inactivating mutations co-occurred

with other described myeloid mutations in genes such as TET2, FLT3, and ASXL1 (Klinakis

et al., 2011). Based on these findings we were able to show that combination of Notch

pathway and TET2 inactivation leads to acute myeloid leukemia (AML). AML cells

specifically express NOTCH2 on their surface but show no signs of pathway activity.

Interestingly, re-activation of the Notch pathway in established AML leads to complete

disease remission (Kannan et al., 2013; Lobry et al., 2013). This observation provides a

rationale for the use of specific NOTCH2 activating antibodies or specific agonists as a

viable therapeutic strategy in this type of leukemia. Mechanistically, there might be several

ways to suppress Notch pathway activity in AML. Initially, AML cells might reside in

microenvironments that lack Notch ligands. Another putative mechanism is epigenetic

silencing, achieved by DNA and histone methylation of target gene promoters/

transcriptional start sites. In agreement with this possibility, we found that Notch target

genes are characterized by H3K27me3 marks (Lobry et al., 2013) and mice carrying the

R132H mutation of isocitrate dehydrogenase 1 (IDH1) (Figueroa et al., 2010; Gross et al.,

2010; Xu et al., 2011) develop a myeloproliferative disease characterized by marked DNA

hyper-methylation of Notch pathway genes such as Lfng, Maml3, and Hes5 (Sasaki et al.,

2012).

Acute B cell leukemia (B-ALL)

Interestingly, Notch signaling also appears to act as a tumor suppressor in B cell ALL (B-

ALL) (Zweidler-McKay et al., 2005). In agreement with the AML findings, Notch pathway

re-activation leads to growth inhibition and induces apoptosis in human B-ALL cells. In a

recent follow-up publication, it was shown that several Notch pathway targets in B-ALL are

suppressed by DNA cytosine hyper-methylation on their promoters followed by histone

H3K27 and H3K9 trimethylation (Kuang et al., 2013). The parallel between AML and B-

ALL is intriguing and can potentially be explained by a recent Notch activity mapping effort

(Oh et al., 2013) that demonstrated activity of the pathway in T cell progenitors and pre-

erythrocytes and a lack of pathway activation in the B cell and myelo-monocytic lineages.

These findings provide support for a key role for NOTCH as a developmental regulator that

can determine the fate of progenitors in the hematopoietic system. In this model, NOTCH

action needs the addition of other oncogenic stimuli to transform cells. In agreement with

this idea, we found that Notch pathway inactivation can lead to increased frequency of
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granulocyte-monocyte progenitors (GMP), cells that can initiate diseases like CMML and

AML upon further alterations (Klinakis et al., 2011).

Notch signaling in solid tumors

A number of recent reviews have thoroughly summarized our knowledge on Notch signaling

in solid tumors (Nowell and Radtke, 2013; Ranganathan et al., 2011; South et al., 2012) (see

also Table 1). Recent genomic data, including resources from The Cancer Genome Atlas

(TCGA), underscore the prevalence and the complexity of Notch pathway alterations in

human cancers, although they do not currently provide detailed functional interpretations for

these alterations. Our goal in the section below is not to provide an exhaustive list of the

solid tumor types in which Notch signaling is altered and the possible consequences of these

alterations. Rather we aim to highlight some key observations in a few prominent tumor

types and draw some points of discussion from these studies, including the plethora of

partners used by Notch (Figure 4) and the distinct roles of the four Notch receptors.

Breast cancer

Breast cancer is a very prevalent form of cancer in which the Notch pathway may act as a

tumor suppressor or an oncogene depending on the subtype. One of the first indications that

Notch signaling may play a role in solid tumors actually came from experiments with mouse

mammary tumor viruses (MMTV). Integration of the MMTV genome next to the “Int-3”

locus resulted in an activating mutation of Notch4, leading to the constitutive activation of

the receptor and breast cancer development (Gallahan and Callahan, 1997; Jhappan et al.,

1992; Robbins et al., 1992). Since this seminal discovery, a number of studies have

confirmed that activation of Notch signaling plays an oncogenic role in breast cancer

(Colaluca et al., 2008; Pece et al., 2004; Robinson et al., 2011; Xu et al., 2012). In breast

cancer cells, Notch signaling can be activated by functional interactions with other signaling

pathways, including the Ras and the Wnt pathways (Ayyanan et al., 2006; Fitzgerald et al.,

2000; Izrailit et al., 2013; Meurette et al., 2009; Weijzen et al., 2002). Recent observations

indicate that Notch4 may play a more specific role compared to other Notch receptors in

breast cancer stem cells (Harrison et al., 2010). In contrast, a recent study indicates that

hyperactivation of NOTCH3 may actually be detrimental to breast cancer cells by inducing

senescence (Cui et al., 2013). Interestingly, mammary epithelial cells respond differently to

different levels of activation of the Notch pathway (Mazzone et al., 2010). Thus, while

accumulating evidence indicates that Notch is pro-tumorigenic in breast cancer, in certain

contexts, specific (high) levels of activation may be tumor suppressive; alternatively,

different Notch receptors may have unique signaling outputs in mammary epithelial cells or

in different subtypes of breast cancer. Once more, the notion of a “differentiation switch”

could explain the many faces of Notch signaling in this type of tumor.

Lung cancer

Lung adenocarcinoma (LAC) is a major subtype of lung cancer. Initial observations

suggested that Notch signaling promotes the expansion of LAC cells in culture (Dang et al.,

2003; Eliasz et al., 2010; Haruki et al., 2005). More recent in vivo studies demonstrate that

Notch signaling is a key promoter of LAC development and maintenance (Allen et al., 2011;
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Licciulli et al., 2013; Maraver et al., 2012) and that NOTCH3 plays a unique role in the self-

renewal of LAC tumor-propagating cells (Zheng et al., 2013). Expression of JAG2 at the

surface of lung adenocarcinoma cells leads to homotypic interactions with Notch receptors

and promotes the metastatic potential of these LAC stem cells (Yang et al., 2011). Thus,

while mutations and other alterations may not be frequent in LAC (Westhoff et al., 2009),

Notch pathway activity correlates significantly with worse survival in lung cancer patients

(Hassan et al., 2013; Zheng et al., 2013) and activation of Notch may be important for the

sustained growth of LAC. Targeting NOTCH3 and/or JAG2 may benefit a very large

number of lung cancer patients worldwide.

Squamous cell lung carcinoma (SqCC) is the second major type of non-small cell lung

cancer. In stark contrast to LAC, Notch signaling is thought to be a tumor suppressor of

SqCC development, as evidenced by the identification of loss-of-function mutations in

human tumors (Wang et al., 2011b). These mutations mainly cluster in the EGF-like repeat

region of NOTCH1 and thus have the potential to disrupt ligand binding or to produce

truncated receptors (Figure 1). While functional validation for these observations is still

missing owing to the current lack of appropriate mouse models, numerous observations

indicate that inactivation of Notch signaling promotes the development of squamous cell

carcinoma in other tissues, including in cutaneous and head-and-neck tumors (Agrawal et

al., 2012; Pickering et al., 2013; Proweller et al., 2006; Rothenberg and Ellisen, 2012; Wang

et al., 2011b). These observations suggest that loss of Notch pathway activity may be critical

for the growth of tumor cells with squamous differentiation characteristics.

Small cell lung carcinoma (SCLC) is a neuroendocrine subtype of lung cancer, representing

a smaller fraction of lung cancer cases (~12–15%) but with the highest mortality rate.

Genomic studies have failed to identify recurrent mutations in the Notch pathway in SCLC

(Peifer et al., 2012; Rudin et al., 2012). However, early observations indicated that

hyperactivation of Notch signaling blocks the cell cycle of SCLC cells (Sriuranpong et al.,

2001; Sriuranpong et al., 2002). A tumor suppressive role for Notch in SCLC is supported

by evidence that Notch may play a similar role in other neuroendocrine tumors such as

medullary thyroid carcinoma (Cook et al., 2010). Thus far, however, no functional evidence

has been obtained in vivo that activation of Notch may block SCLC development or

maintenance, and it is still possible that subpopulations of cells in SCLC tumors may display

some Notch activity and contribute to SCLC growth (Kluk et al., 2013; Salcido et al., 2010).

Thus, three different subtypes of lung cancer display strikingly different roles for Notch

signaling in cancer development, from an active oncogenic role with rare genetic alterations

in LAC to tumor suppressor with inactivating mutations in SqCC and then possibly tumor

suppressive with no sign of mutations in SCLC. It is possible that these differences are

related to the role of Notch in cell fate decisions during lung embryonic development.

Liver cancer

Genome sequencing analyses did not reveal recurrent mutations in Notch pathway genes in

hepatocellular carcinoma (HCC), a leading cause of cancer-related deaths worldwide

(Fujimoto et al., 2012; Guichard et al., 2012). Nevertheless, Notch signaling has been of
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interest to liver cancer biologists because of the prominent role of Notch signaling in liver

development, including mutations in NOTCH2 or JAG1 in patients with Alagille syndrome

(syndromic bile duct paucity) (McDaniell et al., 2006; Oda et al., 1997). Haploinsufficient

mutations in a specific ligand and a specific receptor in the Notch pathway would suggest

that Notch signaling could play very context-dependent and level-dependent roles in liver

tumors. Initial observations suggested that low levels of Notch correlates with high activity

of the Wnt pathway, a major oncogenic pathway in HCC (Wang et al., 2009). Also, high

levels of active Notch1 may inhibit the expansion of HCC cells (Qi et al., 2003), and

deletion of Notch1 in the liver of mice results in hyperproliferative hepatocytes, suggesting a

tumor suppressive role for Notch in HCC (Croquelois et al., 2005). Similarly, Notch

signaling has a tumor suppressive effect in HCC initiated by inactivation of the RB pathway

(Viatour et al., 2011). However, other reports have more recently provided evidence that

Notch signaling is active and oncogenic in HCC (Dill et al., 2013; Tschaharganeh et al.,

2013; Villanueva et al., 2012), and possibly important for the development of tumors

following hepatitis B virus infection (Jeliazkova et al., 2013). These observations suggest

that the role of Notch signaling in HCC may be different in the distinct molecular subgroups

of this cancer type and underscore the need to further explore the molecular contexts

associated with tumor suppressive or oncogenic roles of Notch in the liver.

In contrast to the complex roles of Notch signaling in HCC, accumulating evidence supports

a pro-tumorigenic role for Notch signaling in cholangiocarcinoma (CCC). Mutations of the

Notch repressor FBXW7 are found in a subset of human tumors (Akhoondi et al., 2007).

Similar to the disruption of bile ducts in Alagille patients, activation of Notch2 in liver

progenitors and adult hepatocytes promotes biliary tubulogenesis (Jeliazkova et al., 2013).

Finally, constitutive activation of NOTCH1 is sufficient to initiate CCC development in

mice (Zender et al., 2013).

It is likely that the sometimes contradictory consequences of Notch activation in liver cells

are due to a combination of the strength of the downstream signal, the timing of the

activation, the cell type in which this activation occurs, and the receptor involved (Ortica et

al., 2013). There seems to be a consensus that higher Notch levels in liver progenitors favors

bile duct differentiation versus hepatocytic differentiation. Possibly activation of Notch (e.g.

NOTCH2) in these progenitors promotes CCC while suppressing HCC (Guest et al., 2013).

It is also possible that Notch switches from a suppressive role in the early stages of HCC

development to a more oncogenic role. Although it was proposed that Notch signaling plays

a role in liver cancer invasion and metastasis (Lim et al., 2011; Zhou et al., 2013), more

work is required to further support this notion.

Colorectal cancer

The intestinal epithelium possesses an unprecedented self-renewal rate that appears to be

linked to a high susceptibility to malignant transformation. Notch signaling has been known

for many years now to be involved in both the control of homeostatic self-renewal in stem

cell populations and the development of colorectal cancer (CRC) (Fre et al., 2005; Radtke

and Clevers, 2005; van Es et al., 2005). While mutations in NOTCH genes are rare, Notch

signaling is overexpressed or constitutively activated in CRC in part because of mutations in
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regulators of Notch signaling, including in FBXW7 (although FBXW7 clearly controls other

cellular pathways beyond Notch) (Akhoondi et al., 2007; Babaei-Jadidi et al., 2011; Camps

et al., 2013; Miyaki et al., 2009; Sancho et al., 2010; Zhu et al., 2013). In addition, Notch

activation has been linked to activation of Wnt signaling and Hippo/YAP signaling in CRC

cells, although the various levels of crosstalk between these pathways are still not fully

understood (Camargo et al., 2007; Fre et al., 2009; Kim et al., 2012; Kwon et al., 2011;

Peignon et al., 2011; Rodilla et al., 2009; Tschaharganeh et al., 2013). In particular, Jagged1,

expressed on tumor cells themselves or produced from endothelial cells, is thought to be a

key ligand for Notch activation in CRC cells (Lu et al., 2013; Rodilla et al., 2009;

Tschaharganeh et al., 2013). Another Notch ligand, DLL4, plays a non-cell autonomous role

in CRC development in large part by controlling the development of blood vessels necessary

for tumor growth (Fischer et al., 2011; Ridgway et al., 2006). Expression of miR-34a in

CRC stem cells may help control Notch output and generate a bimodal Notch response (Bu

et al., 2013). Finally, Notch signaling may play a crucial role not only in the early stages of

CRC development by controlling the fate of stem cells and cancer stem cells but also at the

later stages of tumor invasion and metastasis (Sonoshita et al., 2011).

Pancreatic cancer

The major and most lethal type of pancreatic cancer is pancreatic ductal adenocarcinoma

(PDAC). An early study detected evidence of Notch pathway activation in PDAC and

showed that Notch lies downstream of TGFβ during ductal metaplasia, an early stage of

PDAC development (Miyamoto et al., 2003). Mouse genetics studies have demonstrated that

activation of Notch signaling cooperates with oncogenic K-Ras to promote both initiation

and dysplastic progression from acinar cells by inducing their rapid reprogramming to a

duct-like phenotype (De La et al., 2008). Indeed, pharmacological inhibition of Notch

signaling slows the progression of the disease in mutant mice and prevents the expansion of

some human PDAC cell lines (Cook et al., 2012; Mizuma et al., 2012; Plentz et al., 2009),

possibly in part because of an inhibition of PDAC stem cells (Bailey et al., 2013). Genetic

inactivation of Notch2, but not Notch1 (Avila et al., 2012; Mazur et al., 2010), inhibits

PDAC development initiated by oncogenic K-Ras. In fact, loss of Notch1 function may even

promote PDAC development, although the basis of this observation remains unknown

(Hanlon et al., 2010).

Melanoma

The Notch pathway has been found to be active in melanoma (Asnaghi et al., 2012).

NOTCH1 appears to promote disease progression (Rangarajan et al., 2001; Zhang et al.,

2012) and growth of melanocytes under hypoxic conditions (Bedogni et al., 2008). There are

no documented gain-of-function mutations affecting the pathway in this disease (Hodis et

al., 2012), suggesting that the pathway might be affected through transcriptional and

epigenetic control possibly through contrasting actions of BRN2, a possible activator, and

MITF, which acts as a repressor of the Notch pathway (Thurber et al., 2011). Whatever the

mechanism of activation, recent pre-clinical studies have reported that γ-secretase inhibitors

(GSI) can reduce the tumor initiating potential and suggested that GSI combination with
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chemotherapy could be a useful new therapeutic approach in melanoma (Huynh et al.,

2011).

In conclusion, Notch signaling plays distinct roles in different types of tumors, both solid

and liquid (hematopoietic). The presented list is by no means exhaustive but provides us

with an extensive overview of Notch signaling in cancer. Most of these studies are relatively

recent emphasizing the increased interest in the study of Notch signaling in cancer during

the last decade. Mechanistically, more work is required to pinpoint specific molecular

pathways and gene targets in each tumor type, but emerging technologies and most notably

DNA and RNA next generation sequencing-based approaches will continue to help us

further dissect the role of this pathway in tumor initiation and progression.

A perspective on two decades of Notch-centered cancer research:

Remaining intriguing questions

This brief overview of some of the most common and/or lethal human cancers, both

hematopoietic and solid, highlight several key aspects of Notch signaling in cancer

development that hold true in other tumors in which Notch signaling is also altered,

including myeloma, prostate, ovarian, skin, and brain cancers. Obviously, there are several

outstanding questions that have to be addressed to not only help us better understand

pathway function in cancer but also enable more efficient therapeutic targeting (see below).

An initial question is whether Notch pathway mutations are tumor-initiating or tumor-

propagating. Most likely, both types of mutations can be described, depending on the tumor

type. We discussed an intriguing example in myeloid neoplasms where Notch signaling loss

of activity seems to expand the frequency of leukemia-initiating cells (LIC) but requires

secondary mutational events to lead to full-blown disease (Klinakis et al., 2011; Lobry et al.,

2013). A similar scenario might play out in BALL, as it was shown that Notch activity

directs lymphocyte progenitors exclusively to the T cell lineage, at the expense of B cell

differentiation (Pui et al., 1999; Radtke et al., 1999). On the other hand, it is intriguing to ask

whether NOTCH1 activating mutations in T-ALL occur to simply define lineage, by locking

cells in a specific differentiation status (T cell in this case), or to truly transform the cells.

Further studies that can genetically sequence both leukemia and normal stem cell/progenitor

populations, preferably at the single cell level, might address such questions.

One particularly interesting aspect of Notch signaling in cancer progression that has been

emerging in the last few years is its potential impact on metastasis, which may be linked to

the role of Notch in cancer stem cells (see (Giancotti, 2013) for a recent discussion). Early

studies had identified JAG1 expression as a marker of metastatic prostate cancer (Santagata

et al., 2004) and found a role for Notch in the control of epithelial-mesenchymal transitions

(EMT) (Timmerman et al., 2004). Indeed, JAG1 expression on tumor cells may help

promote the spread of breast cancer cells to the bone microenvironment by activating Notch

signaling in bone cells (Sethi et al., 2011). Activation of Notch during EMT and metastasis

may be under the control of the miR-200 microRNA (Brabletz et al., 2011; Yang et al.,

2011). This pro-metastatic function of Notch signaling may be promoted by its crosstalk

with the machinery responding to hypoxic environments (Sahlgren et al., 2008; Yeung et al.,

2011). Furthermore, an increasing number of studies connect Notch signaling to molecules

Ntziachristos et al. Page 11

Cancer Cell. Author manuscript; available in PMC 2015 March 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



and pathways involved in tumor invasion and metastatic growth, including Tenascin C

(Oskarsson et al., 2011) and regulators of polarity (McCaffrey et al., 2012) in breast cancer.

As discussed above, Notch signaling in tumor cells has been involved in various aspects of

angiogenesis in multiple studies, especially via the DLL4 and JAG1 ligands (Benedito et al.,

2009; Li and Harris, 2005; Phng and Gerhardt, 2009; Zeng et al., 2005). In particular, the

Notch ligand DLL4 is upregulated in the angiogenic vasculature in response to VEGF and

blockade of DLL4 was shown to lead to markedly increased non-productive tumor

vascularity, which inhibits tumor growth (Noguera-Troise et al., 2006; Ridgway et al.,

2006). While these observations seemed promising clinically (Hoey et al., 2009), long-term

blockade of DLL4 leads to the development of vascular neoplasms (Yan et al., 2010),

potentially limiting the therapeutic potential of DLL4-blocking strategies. Thus, activation

of Notch signaling may contribute to tumor spread via multiple mechanisms, including by

maintaining the self-renewal of cancer stem cells, by directly contributing to the cellular

processes involved in tumor invasion (e.g. EMT and response to hypoxia) (Wang et al.,

2011c), by controlling neo-vascularization, as well as by playing a key role in the metastatic

niche. Such issues could be more important in solid tumors than leukemia, however, it is

intriguing to define Notch-ligand expressing niches in different types of hematopoietic

tumors and test whether ligand expression is important for leukemia cell homing to different

tissues and response to drug treatments. For example, targeting the expression or function of

a specific ligand could affect NOTCH1-expressing T-ALL homing and metastasis. As most

cancer patients die from metastatic disease, it will be important in the near future to continue

to investigate the molecular and cellular basis of tumor spread in connection with Notch

signaling.

Therapeutic targeting of the Notch pathway in tumors

As proteolytic cleavage of NOTCH receptors by the presenilin/γ-secretase complex is a

prerequisite for the activation of signaling (in the absence of downstream activating

mutations), small molecule GSI efficiently blocks NOTCH1 activity in T-ALL cells and has

been proposed as a molecular targeted therapy for the treatment of this disease (Aster and

Blacklow, 2012; Palomero and Ferrando, 2009). However, animal studies have shown that

systemic inhibition of NOTCH signaling results in “on-target” gastrointestinal toxicity

because of the accumulation of secretory goblet cells in the intestine due to alterations in the

differentiation of intestinal stem cells following Notch inactivation. Phase 1 clinical trials

further confirmed these treatment side effects. As a result, inhibition of the pathway using

GSI alone may not be the most viable therapeutic choice in the future. An alternative to the

use of single GSI treatment is the combinatorial use of glucocorticoids and GSI, where

glucocorticoids ameliorate the GSI-induced gut toxicity by inducing the expression of

Cyclin D2, protecting the animals from developing intestinal goblet cell metaplasia (Real et

al., 2009).

Notch signaling targeting is, however, not restricted to the usage of GSI. Alpha-secretase

inhibitors (ASI) against the ADAM10/17 metalloproteases that mediate receptor S2

cleavage are available (Zhou et al., 2006) and are currently being tested (Purow, 2012).

Furthermore, using phage display technology, pharmaceutical companies have generated
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highly specialized antibodies against NOTCH1 and NOTCH2 that act mainly through

stabilization of the negative regulatory region (NRR) of the receptors, and the protection

from proteolytic cleavage, thus inhibiting the production of ICN1/2 (Wu et al., 2010). These

antibodies lead to lower levels of gastrointestinal toxicity and other side effects emanating

from pan-Notch pathway inhibition achieved by GSI. Selective blocking of NOTCH1

inhibits tumor growth in pre-clinical models through at least two mechanisms: inhibition of

cancer cell growth and deregulation of angiogenesis. Soluble extracellular fractions of Notch

receptors and ligands can also act as decoys and inhibit the pathway in a dominant-negative

manner. A Notch1 decoy decreased tumor cell viability in xenograft models (Funahashi et

al., 2008). However, under different conditions, a DLL1 decoy can play either an activating

or inhibitory role (Hicks et al., 2002). Thus, a better understanding of the dynamics by

which decoys work is needed before they can be considered as a viable therapeutic strategy.

Other types of experimental inhibitors entail synthetic peptides that mimic MAML1 but lack

its active domains. Despite the use of these peptides to serve basic research purposes, their

use for therapeutic purposes is still limited. Moellering et al. generated a synthetic, cell-

permeable, alpha-helical peptide (SAHM1) blocking MAML1 recruitment and NOTCH-

mediated transcription as it binds with high affinity to the interface on the NOTCH-CSL

transactivation complex (Moellering et al., 2009). Treatment of human T-ALL cell lines and

a mouse model of NOTCH1-driven T-ALL with SAHM1 resulted in strong, NOTCH-

specific inhibition of cell proliferation, and leukemia progression (Moellering et al., 2009).

Another intriguing idea for the treatment of tumors that are induced by NOTCH and depend

on pathway activity is to not target the Notch pathway itself but focus on its signaling

targets. Several such efforts are currently underway. Briefly, we have recently demonstrated

in vivo T-ALL remission when we target: a) the NOTCH1-induced IKK kinase complex

with a pivotal role in controlling the NF-kB pathway which-in turn-is strongly related to

NOTCH in leukemia (Figure 4) (Dan et al., 2008; Espinosa et al., 2010; Vilimas et al.,

2007), b) the CyclinD:CDK4/6 kinase complex, hyperactivated in this type of acute

leukemia (Sawai et al., 2012), and c) the bromodomain-containing protein BRD4 (King et

al., 2013). BRD proteins can be transcriptional co-activators and share common binding

patterns with T-ALL oncogenes NOTCH1 and MYC in promoters and enhancers of key

genes for the induction and progression of the disease. Bradner and colleagues recently

modified a thienodiazepine molecule so that it inhibits binding of BRD to the acetylated

residues of histone H4 (Filippakopoulos et al., 2010). We were able to show that such drugs

can target both NOTCH1- and MYC-regulated transcription in T-ALL, leading to complete

disease remission in vivo. Such, “epigenetically”-targeted therapies might be particularly

attractive considering the ability of Notch to alter locus accessibility and initiate

transcription. We have recently connected NOTCH1 binding to loss of H3K27me3 on target

promoters and demonstrated an antagonism between NOTCH1 binding and polycomb

complex 2 (PRC2) recruitment and activity (Ntziachristos et al., 2012). Based on these

findings, H3K27me3 demethylation inhibitors might be an attractive therapy option in

NOTCH1-induced T-ALL (or CLL). Finally, recent evidence suggests that it may be

possible to inhibit Notch signaling by interfering with its trafficking in cancer cell secretory

pathways (Ilagan and Kopan, 2013; Kramer et al., 2013).
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While a number of “anti-Notch” strategies are emerging, it may be as important to

specifically activate Notch in tumors where activation of the Notch pathway is tumor

suppressive. As discussed above for AML, in the case where tumor cells express a Notch

receptor (NOTCH2) but do not show signs of pathway activation, providing a ligand for

these receptors, or treating with activating antibodies may be sufficient to activate the

pathway in certain contexts and inhibit tumor growth. Furthermore, in cases where Notch

receptors are not expressed (e.g. they are transcriptionally silenced), or if some of their key

target genes are silenced, approaches to de-repress the expression of these genes may be

useful to slow cancer growth (Stockhausen et al., 2005).

Future directions in the understanding and treatment of Notch-induced

tumors

The NOTCH pathway has been the intense focus of cancer researchers for the last two

decades. Unfortunately, there are still no FDA-approved, Notch-targeted therapies.

Retrospectively, this is not surprising, as we now know that the pathway plays key roles in

several tissues, including adult differentiating and regenerating tissues, explaining the

potential side-effects of general inhibitors of the Notch pathway such as GSI. The critical

question is whether one can successfully target the Notch pathway to significantly inhibit

cancer growth. Another major conundrum comes from possible distinct roles for Notch at

several stages of the tumorigenic process, an idea that was not been thoroughly examined.

Furthermore, it is likely that inhibition of Notch signaling in tumors initiated by Notch

activating mutations will have a therapeutic effect, as tumors are often addicted to early

initiating events. However, in tumors where alterations in Notch pathway members occur

late during tumor evolution, tumors may rapidly invent ways around the targeting of Notch.

We would suggest that specificity should be the key for future attempts to target Notch

activity in cancer cells: one should have a complete map of both Notch receptor and ligand

expression in different cancers and their microenvironments to be able to use antibodies or

other small molecules that specifically inhibit only the relevant molecules. Targeted (Notch-

focused) sequencing of tumors is also important to provide a clear idea of the type of

mutation and its potential impact on pathway activity. Importantly, a large number of tumors

containing Notch activating mutations, like the ICN1 translocation, cannot be treated with

GSI. In contrast, receptor-specific antibody agonists could be of significance clinical value

for tumors in which Notch signaling has a tumor suppressive function. Myeloid neoplasms

are a cancer subtype that could benefit from targeted pathway activation as we have shown

that in such tumors, the pathway is inactive but the NOTCH2 receptor is expressed on the

surface of the cells and can be activated by ligand binding, leading to cell death. Strategies

to activate Notch in some cancer are worth testing, first in pre-clinical models and hopefully

in the near future in patients. Moreover, both Notch agonists and antagonists could also be

used in combination with current treatments, including chemotherapy and more recent

targeted therapies. A recent intriguing example of such treatments is the combination of

anti-DLL4 antibodies with either chemotherapy or Avastin or VEGF traps to target tumor

angiogenesis (Lobov et al., 2011; Noguera-Troise et al., 2006). Another one is the
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combination of Notch receptor inhibition (using GSI or antibodies) and glucocorticoids for

the treatment of T-ALL (Real et al., 2009).

As with other signaling pathways involved in cancer, identification and targeting of Notch-

interacting partners and targets could be pivotal for the development of anti-tumor therapy

protocols. Some attempts have been made to identify such genes/proteins using whole

proteome (mass spectrometry) (Yatim et al., 2012) and genome/transcriptome (RNA-seq,

gene array, ChIP-seq for NOTCH1 and HES1) (Ntziachristos et al., 2012; Wang et al.,

2011a) approaches. These studies suggest that, apart from a small fraction of “universal”

targets, including members of the HES and HEY families, Notch pathway activity controls

the expression of a large number of tissue and cell-type specific gene targets. Indeed, we

have previously shown that NOTCH2-HES1 signaling can regulate the expression of

CEBPA and PU1, two key regulators of myeloid differentiation, but these genes are not

affected by Notch pathway regulation in T-ALL. Thus, potential targeting of the function of

tissue-specific Notch pathway targets could offer more targeted therapies with fewer side

effects. In a similar fashion, it will be intriguing to define the biochemical composition of

the nuclear Notch complex in different tissues to see whether there is specificity that can

guide small molecule inhibition efforts.

Overall, it is fair to say that it took the scientific community almost a century to reach to the

point that the basic molecular tenets of Notch signaling are well understood. Similarly,

although we know for the last two decades that Notch signaling is involved in cancer, only

recently we developed the means (small molecules, antibodies) to effectively target pathway

activation in this disease. There is still a significant need for further research efforts that will

better define the pathway and propose drugs or drug combinations that can affect Notch

signaling specifically in cancer, avoiding harmful side-effects and improving both survival

and quality of life for patients with Notch-induced tumors.
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Figure 1. Protein structure and mutations of a typical Notch receptor
The structure of the NOTCH1 receptor and genetic alterations of the protein in

representative types of cancer are depicted. ADAM metalloproteases and the γ-secretase

complex cleave the receptor and free the ICN domain. Major mutations are clustered

according to their effects on protein activity. Both gain-and loss-of-function mutations are

shown. The majority of the T-ALL mutations are clustered in the heterodimerization (HD)

and PEST domains controlling processing of the receptors by proteases and the stability of

the protein correspondingly. Different characteristic cases of hematopoietic disorders

(affecting NOTCH2 as well) are shown. In CLL tumors there is an apparent mutational

hotspot at the PEST domain of NOTCH1. In the case of SqCC mutations, they are mainly

clustered in the EGF repeat region potentially affecting interaction with the ligands. T-ALL:

T-cell acute lymphoblastic leukemia, SMZL: splenic marginal zone lymphoma, CLL:

chronic lymphocytic leukemia, DLBCL: diffuse large B cell lymphoma, SqCC: squamous

cell carcinoma. Percentages are approximations based on current literature.
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Figure 2. Overview of the Notch signaling pathway
A visual description of the signaling cascade is shown for the signal-receiving cell (i.e. the

cell expressing the Notch receptor). Pathway inhibitors used include antibodies against

NOTCH receptors and DLL ligands, γ-secretase complex inhibitors (GSI), and small

peptides inhibiting formation of the transcriptional complex. Antibody-based treatments are

shown in purple, GSI compounds in pink, peptide-based drugs in red. Potential epigenetic

inhibitors (in green) can include BRD inhibitors like JQ1. HDAC: histone deacetylase,

ICN1: intracellular part of NOTCH1, LSD1: lysine specific demethylase 1, SMRT:
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Silencing-Mediator for Retinoid/Thyroid hormone receptors, GSK3β: glycogen synthase

kinase 3 beta, DNMAML1: dominant negative MAML1.
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Figure 3. In vivo mapping of Notch pathway activity using a Hes1GFP reporter
(A) Targeting strategy for the generation of transgenic animals expressing Emerald GFP

(emGFP) from the endogenous Hes1 locus. (B) Immuno-fluorescence staining for thymus of

the Hes1GFP mice. DAPI stains DNA (nucleus), VE-cadherin is a vascular endothelial

marker and K14 is a marker of thymic medullary cells. (C) Increased levels of Notch

pathway help differentiation of thymic T cell progenitors through the DN2/3 CD4−8−

differentiation stage and the pathway activity is decreased immediately at the DP stage. (D)

Activity of the Notch pathway in the mouse bone marrow is detected at the HSC level and is

decreased as cells differentiate. Subsequently it is reactivated at the level of a

megakaryocytic-erythrocytic progenitor (MEP). HSC: hematopoietic stem cells, MPP:

multipotent progenitors, CMP: common myeloid progenitors, CLP: common lymphoid

progenitors, MEP: megakaryocyte-erythrocyte progenitor, GMP: granulocyte-macrophage

progenitor, DN: double negative (CD4−CD8−), DP: double positive (CD4+CD8+), SP: single

positive.
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Figure 4. Simplified scheme of Notch interactions with other signaling pathways in cancer
The TGFβ, PI3K, NFκB, and WNT pathways are some of the most important pathways

interacting with NOTCH. Notably, Jagged 1 is activated by TGFβ pathway and in turn

activates NOTCH receptors in neighboring cells. Phosphorylation of NOTCH from the

WNT-induced GSK3β leads to ubiquitination through FBXW7 and final degradation. Also,

a classical NOTCH target, HES1, represses PTEN, a competitor of another pathway with

oncogenic roles, PI3K, which in turn activates NFκB, a pathway important for leukemia

progression. Important parameters of the interactions, such as regulation of NFκB pathway

by NOTCH through HES1 action, or the interaction of NOTCH with the WNT member

DVL (Dishevelled) protein that inhibits both WNT and NOTCH pathways are not shown in

this figure. ICJ1: intracellular part of JAG1, ECJ1: extracellular part of JAG1.
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Table 1

Oncogenic and tumor suppressive roles of Notch signaling in human cancers *

Tumor Type Oncogene or
Tumor
Suppressor

Mutations (%) or noteworthy observations * References *

T-Cell Acute Lymphoblastic
Leukemia (T-ALL)

Oncogene 50–60% NOTCH1, 30% FBXW7 Role in cancer
initiation and maintenance

(Malyukova et al., 2007;
Weng et al., 2004)

Chronic Lymphocytic Leukemia
(CLL)

Oncogene 5–12% NOTCH1 Role in cancer initiation and
survival

(Fabbri et al., 2011;
Puente et al., 2011)

Melanoma Oncogenic ~50% NOTCH1 overexpression in human
samples Possible role in metastasis

(Balint et al., 2005;
Bedogni et al., 2008)

Cholangiocarcinoma (CCC) Oncogenic 35% FBXW7 Notch1 promotes tumor initiation
and maintenance

(Akhoondi et al., 2007;
Zender et al., 2013)

Colorectal cancer Oncogenic 8–9% FBXW7 Crosstalk with Wnt and Hippo
signaling

(Miyaki et al., 2009)
(Akhoondi et al., 2007)

Lung adenocarcinoma Oncogenic 10% NOTCH1 Role in initiation and
maintenance (Notch1), and metastasis
(Jagged2) Specific role for Notch3 in tumor
propagation

(Licciulli et al., 2013;
Westhoff et al., 2009;
Zheng et al., 2013)

Glioblastoma Oncogenic Role in tumor propagation and radioresistance (Chu et al., 2013) (Wang
et al., 2010)

Renal Cell Carcinoma Oncogenic Role in progression and maintenance (Sjolund et al., 2008)

Ovarian cancer Oncogenic Role in maintenance and therapy response (2011; Cancer Genome
Atlas Research, 2011;
McAuliffe et al., 2012)

Prostate Oncogenic Activation of the pathway associated with
tumor progression, metastasis, and recurrence

(Marignol et al., 2013;
Santagata et al., 2004)

Breast cancer Mostly Oncogenic NOTCH1 and NOTCH4 fusions Potential
NOTCH2 dominant-negative truncated mutant
Other alterations activating Notch signaling But
hyperactive Notch signaling may inhibit cancer
growth

(Fu et al., 2010; Imatani
and Callahan, 2000;
Jhappan et al., 1992)

Pancreatic Ductal Adenocarcinoma
(PDAC)

Mostly Oncogenic Notch2 loss inhibits progression and
maintenance Overexpression of ligands –
Jagged2 (90%), Dll4 (50%) But Notch1 loss
may promote tumor initiation

(Hanlon et al., 2010;
Mazur et al., 2010;
Mullendore et al., 2009)

Cervical cancer Mostly Oncogenic Pathway activation in human tumors, but dose-
dependent effects Possible role in tumor-
propagating cells

(Bajaj et al., 2011;
Maliekal et al., 2008;
Zagouras et al., 1995)

Head and neck squamous cell
carcinomas (HNSCC)

Mostly oncogenic Possible bimodal pattern of Notch pathway
alterations with a small subset of tumors with
inactivating NOTCH1 mutations but a larger
group with pathway activation

(Sun et al., 2013)

Hepatocellular carcinoma (HCC) Oncogenic and
Tumor Suppressive

Context-dependent effects that may be related
to various molecular subtypes

(Qi et al., 2003;
Villanueva et al., 2012)

Medulloblastoma Oncogenic and tumor
suppressive

Opposite roles for Notch1 and Notch2 (Fan et al., 2004)

B-Cell Acute Lymphoblastic
Leukemia (B-ALL)

Tumor Suppressive No mutations Role in maintenance (activation
induces growth arrest and death)

(Zweidler-McKay et al.,
2005)

Acute Myeloid Leukemia (AML) Tumor Suppressive Notch1 and 2 expressed but the pathway is not
active Role in cancer initiation and
maintenance

(Kannan et al., 2013;
Lobry et al., 2013)

Small Cell Lung Carcinoma (SCLC) Tumor Suppressive No mutations Inhibits tumor maintenance
(possible similar role in other neuroendocrine
tumor types)

(Sriuranpong et al.,
2001)
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Tumor Type Oncogene or
Tumor
Suppressor

Mutations (%) or noteworthy observations * References *

Lung Squamous Cell Carcinoma
(SqCC)

Tumor Suppressor 5–12.5% NOTCH1, NOTCH2 (2012; Cancer Genome
Atlas Research, 2012;
Wang et al., 2011b)

Cutaneous Squamous Cell
Carcinoma (SqCC)

Tumor Suppressor 60–75% NOTCH1, NOTCH2 (Wang et al., 2011b)

Chronic myelo-monocytic leukemia
(CMML)

Tumor Suppressor 12% various pathway genes (NCSTN, APH1,
MAML1, NOTCH2) Role in cancer initiation

(Klinakis et al., 2011)

*
Cancers indicated in this table have been selected for historical reasons (first examples of mutations in the Notch pathway), because they affect

large populations of cancer patients, or because of the particular insight of some studies to the role of Notch signaling in cancer. Among the
selected tumor types, selected observations and references are shown, see text for additional references and details. In particular, data from large
cancer genomes efforts indicate that many alterations in the extended Notch pathway exist in human tumors, most of these alterations are awaiting
additional analyses and functional validation.
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