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Abstract

Although many clinicians and researchers work to understand cancer, there has been limited

success to effectively combine forces and collaborate over time, distance, data and budget

constraints. Here we present a workflow template for multidisciplinary cancer therapy that was

developed during the 2nd Annual Workshop on Cancer Systems Biology sponsored by Tufts

University, Boston, MA in July 2012. The template was applied to the development of a

metronomic therapy backbone for neuroblastoma. Three primary groups were identified:

clinicians, biologists, and scientists (mathematicians, computer scientists, physicists and
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engineers). The workflow described their integrative interactions; parallel or sequential processes;

data sources and computational tools at different stages as well as the iterative nature of

therapeutic development from clinical observations to in vitro, in vivo, and clinical trials. We

found that theoreticians in dialog with experimentalists could develop calibrated and

parameterized predictive models that inform and formalize sets of testable hypotheses, thus

speeding up discovery and validation while reducing laboratory resources and costs. The

developed template outlines an interdisciplinary collaboration workflow designed to

systematically investigate the mechanistic underpinnings of a new therapy and validate that

therapy to advance development and clinical acceptance.

Introduction

Although numerous dedicated clinicians, biologists, mathematicians, engineers and

computational scientists are working towards understanding cancer biology with the goal of

improving therapies, there has been no overarching process template to organize how these

disciplines may collaborate over time, distance, data and budget constraints. The challenges

are many. Cancer biology is considered a complex system and the specialized knowledge

needed to understand and treat the disease often resides in non-integrated, isolated research,

development and clinical silos.

In July 2012, the Center of Cancer Systems Biology held its 2nd Annual Workshop on

Cancer Systems Biology at Tufts University, Boston (1). Researchers with different

scientific backgrounds explored the topic of how to advance metronomic drug therapy for

cancer from its experimental successes to general clinical acceptance for specific

pathologies. Herein we present our approach to the chain of therapeutic research,

development, and clinical implementation: a framework for a research process that involves

collaborators across disciplines such as biology, medicine, mathematics, engineering, and

computer science. This manuscript is a first step towards accelerating the development of

optimal metronomic treatment protocols for cancer patients through planned integrative,

multi-disciplinary and multi-center research projects that follow a clearly defined iterative

workflow from in vitro to in vivo work to clinical trials and back again as new study data

and models accumulate.

Background

There is a growing trend for scientists to work together as interdisciplinary teams where

each member brings different knowledge and perspectives to address complex challenges.

The intent is to deal with the challenges in a new way, and to accelerate implementation of

validated solutions. Translational clinical research requires a broad knowledge base from

bench to bedside, and, although initially carried out by physician-scientists, it is now moving

to collaborative practice (2). There are now tools to support design of translational clinical

studies (3) and clinical trial simulation softwares are becoming widely used in drug

development (4).
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Current interdisciplinary work in cancer therapy development

Interdisciplinary work has been underway in cancer research for some time. For example,

cancer control research has evolved during the past 20 years through collaborations between

basic science and behavioral researchers (5). The National Cancer Institute has spearheaded

the integration of experimentalists and theoreticians through its ‘Integrative Cancer Biology’

and ‘Physical Sciences in Oncology’ programs. The American Association for Cancer

Research offers workshops on collaborative translational cancer research as well as an

interdisciplinary Team Science Award. Stand Up To Cancer, an initiative of the

Entertainment Industry Foundation (EIF) since 2009, funds eight scientific SU2C Dream

Teams who must collaborate across specialties, institutions and disciplines to quickly

develop innovative therapies.

The need

Although there is a need for interdisciplinary research, there are numerous barriers to

overcome including resistance to novelty, communication difficulties across disciplines, and

career development outside a single discipline (6). And, interdisciplinary development may

raise a number of legal issues from sharing of intellectual property rights to dealing with

therapeutic risks (7). Nevertheless, the benefits of early interdisciplinary work have been

adapted to collaborations across diagnostic and pharmaceutical industries, where drug

research and co-development is now aiming at stratified, or personalized, medicine due to

the ever-increasing regulatory demands for drug safety and efficacy (8).

Despite numerous initiatives promoting team science, such as the toolkit offered by the

National Cancer Institute, the focus seems to be on multidisciplinary collaborations within

each silo of research, development, or clinical practice. There is a need for a systematic

interdisciplinary approach that generates not only “educated” research questions, but

facilitates commercial development, satisfies regulatory requirements, and speeds up the

adoption of new therapies into clinical practice – with feedback into new experimental and

preclinical research.

We propose that this systematic interdisciplinary approach to novel therapeutic discovery

can be designed in advance – at least at a conceptual level – and detailed as the work

progresses. Communication, sharing of responsibilities, sequence order of deliverables as

well as timing for synchronization of process phases are key. Although carried out by

different entities, the therapeutic discovery process must be a continuum from lab to patient

and back in an ongoing cycle of refinement. Here we present a template for such an

interactive/integrative workflow applied to metronomic drug delivery and dosing therapy for

high-risk neuroblastoma (NB) as a concrete example of our solution.

Example

Metronomic treatment embraces continuous administration of low-dose chemotherapy vis-à-

vis often-practiced maximum tolerable dose (MTD) delivery. The benefits of metronomic

chemotherapy have been demonstrated in numerous pre-clinical and clinical studies for

breast cancer and pediatric cancers including dynamic treatment of pediatric acute

lymphoblastic leukemia (9). In pilot studies of metronomic therapy for pediatric cancers, not
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only was disease stabilized in some patients but the majority of children experienced less

pain and pain medication could be discontinued (10).

High-risk neuroblastoma (NB) is a leading cause of cancer-related deaths in children and

patients are treated with a combination of surgery, radiation, induction chemotherapy

followed by maintenance therapy and immunotherapy. However, despite very aggressive

therapy, only 40% of high-risk NB patients survive, thus prompting the need for more

educated, effective therapeutic options.

Why this therapy and this disease?

Despite experimental successes in clinical salvage and maintenance, metronomic therapy is

not widely used. There are questions about the best clinical settings for this therapy –

induction, maintenance or relapse – and concerns about interactions with other therapeutic

agents. How do we validate this therapy for specific uses? How do we optimize the

discovery pipeline and “pre-qualify” protocols to improve our chances of success? And how

can this be done cost-effectively in laboratory and preclinical research? We suggest that

close collaborations among clinicians, biologists and quantitative scientists (including

mathematicians, computer scientists, and engineers) throughout the research, development,

and implementation process will dramatically increase the chances of success. This process

requires an ongoing dialog between theoreticians and experimentalists, and an agreed-upon

workflow that outlines responsibilities and deliverables from discovery to clinical trials.

Results: A Template for A Therapeutic Development Pipeline

We constructed a flowchart template to formally coordinate the development pipeline and

integration of quantitative and life science approaches (Figure 1). Herein we discuss the

specific research steps and their respective integration in the overall protocol.

Start: Process Management Plan

A process management plan must be established prior to initiating the pipeline. This is a

formal approved document, under constant revision, that guides management of the projects

included in the workflow process, their execution and control. It is agreed upon in advance

by the groups involved. This plan is essential to ensure compliance, define responsibilities of

the different participants, facilitate communication and troubleshooting, harmonize

experimental procedures and ultimately make decisions. Key milestones against which the

progress of the project can be measured are defined in the plan, together with actions to take

in case of delay in completion of one particular step of the workflow. One aspect of the plan

is also risk management: identifying the strengths, weaknesses, opportunities of, and threats

to, the project (“SWOT Analysis”). Threats, such as barriers to overcome, may be internal/

external, controllable/uncontrollable; if identified in advance, plans may be made to

minimize any negative effects on the scientific discovery process. The plan can for instance

define upfront the process to follow in case the different groups cannot agree on the best

protocol or model to use. In the absence of clear consensus, a vote can be organized among

all the participants and, in case of ties, the people responsible for the next step would have

the final say (e.g. biologists when moving on to in vivo work, clinicians when moving to
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clinical trials…). Vote and tie-breaking rules can thus be pre-established as part of the

Process Management Plan so as to avoid bottlenecks. Details on project management tools

are beyond the scope of this report but more information can be found in several

manuscripts specifically for the life sciences (11, 12) as well as the standard Project

Management Body of Knowledge (PMBOK Guide) (13).

Study Data

Study Data initiates the pipeline and all research eventually translates back into the clinic

with treatment guidelines. At the beginning of novel cancer therapy discovery, there is a

wealth of clinical data available in the literature combined with the empirical observations

from clinicians and physician-scientists. This growing amount of data has to be mined,

integrated and interpreted within the close dialog of clinicians, biologists and computational

biologists; working hypotheses and data specifications need to be clearly and ethically

communicated (14). Available information includes clinical processes, such as current

protocols and guidelines, positive and negative results from completed clinical trials, PK/PD

data as well as biological pathway data from molecular analyses of patient and

pharmacology data (15). In addition, for rare and/or incurable cancers as well as

experimental therapeutics for which clinical data may not be available, strong pre-clinical

evidence may also serve as a starting point.

The study data collected from pre-clinical and clinical studies can then be analyzed or

modeled using a variety of qualitative and quantitative approaches. In particular, quantitative

modeling is a powerful technique to test novel hypotheses, confirm in vitro, in vivo and ex

vivo experiments, and simulate the dynamics of complex systems without a priori biases in a

relatively fast time without the enormous costs of laboratory experiments and the

corresponding biological and technical variation. Quantitative models can be calibrated

using experimental or clinical data, and different hypotheses of tumor progression can be

evaluated and treatment options thoroughly analyzed before launching costly clinical trials.

Techniques for quantitative modeling are plentiful, and an increasing number of theoretical

approaches are successfully applied to cancer biology. Molecular data from a patient’s

tissues and biofluids can be used to compute the most likely biological network pathways

based on existing published molecular interactions and disease associations (16). The

evoked pathways can then be compared and contrasted over time, disease, therapy and other

stratifications using biomedical analytics methods (17). Such computations can narrow

down the set of hypotheses to those most likely to be successfully explored by the biologists.

For example, clinical data for NB can include protein concentrations in biofluids and gene

expression in tissue biopsies, and can be used to generate a personalized molecular profile of

the patient. Brown’s study of glioblastoma multiforme (GBM), based on archived tissues,

provided proof of concept that the adaptive hypoxia pathway in GBM was related to

Fardin’s outcome-predicting hypoxia gene signature in NB (18), and that the proposed drug

therapy for GBM would modulate the pathway network evoked from the tissue data (15).
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In Vitro testing and simulation

Interdisciplinary discussions about the disease’s pathophysiology, related clinical

information, current approved drugs as well as other investigational drugs, the drugs’ PK/PD

profiles, toxicities and possible mechanisms of action can reveal the most promising ways to

approach the research question via in vitro experiments and their corresponding simulation.

At this point, work reverts to the biologists and quantitative modelers with consultation by

clinicians. The various roles modeling plays in cancer research may be integrated with a

laboratory research program at all stages. Research on plate cultures may be coupled with

models that identify necessary growth and treatment parameters. Hypotheses made by

laboratory researchers can be embedded in these models and the results compared with data

to provide stronger evidence for the hypothesis or, alternatively to rule it out. A quantitative

model of the experimental setup will help to systematically explore the hypothesis and

contribution of participating mechanisms as well as alternative mechanisms (19–21).

For our NB application, the in vitro testing would include all the drugs that are currently

used in the clinic for the treatment of high-risk NB (i.e. Cyclophosphamide, Doxorubicin,

Cisplatin/Carboplatin, Vincristine, Topotecan/Irinotecan, Etoposide, Melphalan,

Temozolomide and Retinoic Acid) alongside emerging repositioned drugs such as Cox

inhibitors (22), nifurtimox (23), metformin (24), statins (25) and β-blockers (26).

In vitro confirmation of drug mechanisms of action and macroscopic cell- and population-

level response serves as input for quantitative model design. Calibrated mathematical and

computational models are developed. Once they reliably reproduce experimental findings,

the models are used to systematically study combinations and scheduling of different drugs

at various doses with total cell number, cell proliferation, cell cycle arrest, apoptosis and

angiogenesis inhibition as observable endpoints. The potential of the best drug

combination(s) is then confirmed by in vitro experiments, which in turns help refine the

computational models.

Prioritization of Potential Protocols

The simulation results of different drug combinations, protocols and schedules are

prioritized with respect to desired endpoint and pre-defined selection criteria. These include

treatment efficacy, anti-angiogenic activity and selectivity towards cancer cells as

determined by in vitro experiments, as well as drug availability and safety in pediatric

populations. Computational modeling can also help in protocol prioritization. The goal of

the numerical modeling aspect is indeed to create a fairly complete and well-tested

simulation of in vivo processes that allows the experimenter to extend his reach beyond the

experimental animals used in the lab. With modeling, hypotheses generated in the lab may

be tested on an arbitrarily large collection of statistically varying virtual animals, quickly

and inexpensively. Those that look promising can be followed up in in vivo experiments.

The expert opinion of clinicians can also be solicited, and feasibility – as well as resources

and budget constraints – determines which protocols proceed to in vivo testing.

McGuire et al. Page 6

Cancer Res. Author manuscript; available in PMC 2014 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In Vivo testing and simulation

In vivo experiments rely on state-of-the-art and clinically relevant models of high-risk NB.

These include a combination of cell line- and patient-derived tumor xenografts implanted in

a subcutaneous or orthotopic manner (27) (28), implantation of tumor-initiating cells (Tic)

(29) and models of spontaneous tumor formation such as the TH-MYCN transgenic mouse

model of NB (30). Prioritized prospective treatment protocols will be tested for toxicity and

efficacy with focus on the effects on tumor growth, angiogenesis and immune response.

Unbiased genomic/proteomic analyses can also be performed on specimens from the tumor,

its surrounding tissue and circulating blood to understand changes in the tumor and the

microenvironment over time, location, and therapeutic protocol.

Quantitative models of tumor growth that extend the basic cell cycle model to include

population interaction with the host and drug response and reflect the higher complexity of

in vivo experiments will be developed in parallel. In vivo results will be used to calibrate,

validate and predict drug PKs/PDs, toxicity, tumor cell death and cell cycle arrest. The

parameterized model of untreated tumor growth coupled with PK/PD profiles enables

simulation of population-level treatment effects on the tumor as well as angiogenesis and

immune response.

The model parameters calibrated to fit in vivo data can then be adjusted to match human

response to simulate treatment in silico (31, 32). The in vitro, in vivo, and in silico results are

discussed with clinicians. The best-fit models and protocols can then be used to simulate

combination therapies and different treatment modalities. The generated data has to be

thoroughly analyzed and meaningful conclusions have to be drawn to advance the most

promising protocol(s) for clinical trial. At this point it becomes essential to define the target

population including patient-specific parameters of age, gender or ethnicity.

Clinical Trials: Simulated and Real

Clinical Trial Simulations (CTS) are becoming more widely used by the pharmaceutical

industry as a tool to help guide clinical trial design (4). Some of the early approaches to the

iterative learn and confirm process, used to help in the design and evaluation of clinical

trials and CTS, were proposed by L.B. Sheiner (33). Since then CTS have been used: i) to

help in study design by identifying design inefficiencies, ii) to help determine the power of

proposed clinical trials, and iii) to help determine effective doses and schedules, particularly

in pediatric studies (4, 34). CTS have been used in all phases of drug development form

early in the process to phase 2, phase 3, and regulatory reviews (35) (4, 34, 36). In addition,

CTS are encouraged by regulatory agencies such as the FDA to complement other data to

expedite drug approval and label claims (37, 38). CTS are still being evaluated to determine

the most effective way to use them and there are various criticisms of these approaches

including the need for more detailed model building and validation approaches (39, 40). We

propose to use CTS in our workflow to help in study design optimization. Given the data

generated by the in vitro and in vivo experimental and modeling studies, along with existing

clinical data, the CTS can help determine metronomic dosing levels and schedules that will

have a better chance of success. An example of how this can work is shown in a study of
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topotecan dose and schedule in pediatric neuroblastoma (41). In this study, models of

neutropenia, tumor growth, and topotecan pharmacokinetics – based on existing pre-clinical

and clinical data – were collaboratively developed by modelers, translational and clinical

researchers to simulate how different schedules of topotecan affected both the toxicity and

efficacy of treatment. Simulations such as these can then help guide the dose and schedule

for the future studies. In this process the simulations can also help suggest which proposed

study designs have the highest probability of success. This, as with all the steps in our

workflow, is an iterative process---the simulations may suggest additional in vitro or in vivo

experiments to clarify very sensitive parameters that are not currently well defined.

Results from the simulated clinical trials will be published for peer review and scientific

discussion together with the in vitro and in vivo data prior to moving to clinical trials. The

clinical trial finishes the interdisciplinary development pipeline, and trial results initiate

subsequent iterations thereof until an optimal metronomic backbone for the treatment of NB

is identified and validated.

Discussion

A cross-disciplinary research pipeline promises to optimize and advance the clinical

adoption of metronomic therapy for specific diseases and conditions (cancer type, drug,

treatment schedule, dose, patient demographics, and maintenance). In fact, the use of

mathematical modeling has been identified as essential to progress in cancer (42).

Mathematical modeling has been widely applied in different areas of cancer research

including cell cycle, drug resistance, PK/PD, angiogenesis and anti-angiogenic therapy,

single cell level models, circadian rhythms, and modeling cancer in three dimensions (43–

45). Unfortunately, many of these models are purely theoretical and thus difficult to translate

to or penetrate experimental research. However, successful collaboration and integration of

quantitative approaches is possible, if not necessary. We developed a template flowchart of

the integrated dialog, highlighting what has to be done, when, and by whom, to facilitate

collaboration across disciplines, sharing of resources, and the use of cost-effective

computational research methods where appropriate, with the ultimate goal to improve cancer

therapies. Ideally, the process template is discussed in advance, to jointly schedule

prospective research rather than rely on retrospective studies that may have design

deficiencies for their particular usage.

As is well known in the development of computer systems, interfaces must be clearly

defined for a successful project. Here, the interfaces are not between components but

between processes carried out by researchers from different disciplines who use different

tools, different scientific vocabulary and with different goals. Valuable insights gained

during research may be lost because they are not visible to other scientists with a very

different and possibly useful perspective. Opportunities to collect auxiliary data may be

missed because the researcher does not recognize its importance, whereas a different pair of

eyes might see its value. An interdisciplinary team is therefore likely to get more

information out of the same experiment than a specialist.
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We believe that our integrative, multi-disciplinary approach to cancer treatment

development would positively impact on clinical practice on two levels: 1) by speeding up

the development of optimal treatment protocols and 2) by decreasing the rate of clinical trial

failure. Promising results were recently reported for a metronomic chemotherapy protocol in

the treatment of recurrent embryonal brain tumors (46). It took more than ten years to

empirically and incrementally develop the sophisticated 8-drug combination regimen based

on the results of previous pre-clinical and clinical studies (47–49). By involving clinicians,

biologists and modelers throughout the entire process, our workflow has the potential to

significantly reduce the time required to develop optimal metronomic protocols.

Furthermore, it is increasingly recognized that a major factor responsible for the high rate of

clinical trial failure is the lack of robustness of pre-clinical studies. Lowenstein and Castro

thus recently proposed that pre-clinical experimentations should combine the most advanced

mathematical and biological models to account for the heterogeneity of patient populations

and the complexity of tumors (50). Our integrative workflow represents a significant effort

in this direction.

Conclusions

A defined research/development/clinical process framework facilitates interdisciplinary

collaboration by clarifying up front what has to be done, when and by whom. An initial

framework, such as that developed during a workshop meeting, can be as simple as a

flowchart graph that can later be extended into an overall action plan. As this paper

demonstrates, an orderly progression of experiments and simulations, developed together

with shared insights and proceeding from simple to complex, has the potential to streamline

the therapeutic pipeline. A defined framework can reduce the number of options that must

be tested by expensive in vivo methods and accelerate the impact on clinical practice and

outcome.
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Figure 1.
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