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Abstract

We present an approach to performing rapid calculations of temperature within tissue by

interleaving, at regular time intervals, 1) an analytical solution to the Pennes (or other desired)

bioheat equation excluding the term for thermal conduction and 2) application of a spatial filter to

approximate the effects of thermal conduction. Here, the basic approach is presented with

attention to filter design. The method is applied to a few different cases relevant to magnetic

resonance imaging, and results are compared to those from a full finite-difference (FD)

implementation of the Pennes bio-heat equation. It is seen that results of the proposed method are

in reasonable agreement with those of the FD approach, with about 15% difference in the

calculated maximum temperature increase, but are calculated in a fraction of the time, requiring

less than 2% of the calculation time for the FD approach in the cases evaluated.
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I. Introduction

In a number of biomedical applications, a change in the energy deposition throughout the

body can lead to a change in the temperature distribution. In many cases, it is advantageous

to predict the temperature change from estimates of the energy distribution in order to

assure, depending on the particular application, that a desired temperature distribution is

achieved [1]–[3] or that no tissues will be heated excessively [4]–[6].

Currently in magnetic resonance imaging (MRI), there is great interest in performing case-

specific safety evaluations very rapidly. This is in part due to the development of transmit

arrays in MRI [7], facilitating an infinite variety of possible desired radiofrequency (RF)

magnetic field patterns and associated RF heating patterns in each individual patient. One

major challenge to real-time case-specific safety predictions is accurate prediction of the

heating pattern, or specific energy absorption rate (SAR) distribution in the subject. While

there are a variety of approaches to calculating [8], [9] or measuring [10], [11] this pattern

with increasing speed, another obstacle is the interpretation of the SAR distribution for

purposes of ensuring safety. Although exposure to increased temperature over time is more

easily correlated with potential damage to tissue [12], due in part to complexities and time

requirements for calculating temperature, a spatially averaged SAR value, often averaged

over 10 g regions (SAR10g ), is used much more commonly in safety evaluations.

Recently, methods to rapidly compute temperature increase for biomedical applications have

been included [13]–[15]: a hybrid alternating-direction implicit (ADI) approach to solving

the heat equation for a heterogeneous numerical model [13], a method of superposition from

separate sources combined with model simplification [14], and a semianalytical Fourier-

based solution for simple 3-D geometry [15]. Here, we present a new accelerated approach

to solving the Pennes (or other) bioheat equation. Recognizing that thermal conduction—the

most computationally intensive portion of models for heat transfer in biological samples—

has the effect of smoothing or blurring the temperature distribution in space, we

approximate the effects of thermal conduction with a low-pass spatial filter applied to the

temperature distribution at regular time intervals. The method produces reasonably accurate

results much more quickly than the more commonly used finite-difference (FD) approach to

calculating temperature, and even more quickly than calculation of complete SAR10g

distribution. It is hoped that this approach will be useful in rapid production of meaningful

evaluations of heat induced during MRI and other applications in the future.

II. Method

A. Temperature Computation

The relationship between temperature T and the applied energy distribution is often

described with Pennes’ bioheat equation [16]

(1)
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where ch is the heat capacity, W is the blood perfusion rate, k is the thermal conductivity, ρ

is the tissue mass density, the subscript bl indicates values for blood, Q is the heat generated

by metabolism, and SAR is the specific energy absorption rate (W per kg of tissue) resulting

from some heating source. For example, in the case of RF electromagnetic field with rms

electric field E

(2)

where σ is the electrical conductivity.

While Pennes’ bioheat equation has its limitations, it is often used as a good first-order

approximation for temperature in tissue. The largest computational challenge to applying (1)

is the time required to accurately calculate the thermal conduction of heat, represented by

the first term on the right-hand side of the equation.

Separating T in (1) into an initial equilibrium temperature T0 when SAR is zero and a time-

dependent increased temperature Ti after perturbation with a nonzero SAR such that T = T0

+ Ti, we can write

(3)

and

(4)

Subtracting (4) from (3) produces

(5)

where Q = Q0 + ΔQ and Tbl = Tbl0 + ΔTbl and where, for the linearity of (5), ΔQ and ΔTbl

can be considered as an additional heat sources (or sinks, depending on the sign of these

terms) like SAR.

If absolute temperature (rather than just temperature change) is desired, T0 needs to be

calculated only once for a given biological sample with any desired method, such as a full

FD implementation of (1) [4]. Conceivably, experimentally measured data could also be

used to provide the initial equilibrium temperature distribution. Depending on the

application, it may be necessary to calculate only the temperature increase above T0 (i.e., Ti )

in which case only (5) is needed. Using a similar approach, we can also consider the

increase in temperature in multiple stages or intervals n such that Tn + 1 = Tn + ΔTn where

ΔTn is the temperature increase during the nth time interval.
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With our proposed approach, Ti over time is calculated by applying a spatial filter at regular

intervals tint to approximate effects of thermal conduction (the first term on the right-hand

side of (5)) and calculating the effects of the remaining terms in (5) over the same intervals

analytically. If the thermal conduction term is removed from (5), what remains is a first-

order linear ordinary differential equation

(6)

and can be solved directly. Importantly, all paramaters in this equation (especially ΔQ, ΔTbl,

and W) can be considered functions of time or local temperature and updated according to

additional considerations, such as thermoregulation [6].

To design an effective spatial filter for accurately approximating the effects of thermal

conduction, we selected an approach considering the poles of a 3-D low-pass filter

(7)

where λx, λy, and λz are the spatial variables in the Fourier domain corresponding to x, y, and

z directions, respectively; px1, py 1, and pz 1 are the first (low) cutoff frequencies for the

spatial variables λx, λy, λz ; and px2, py2, and pz2 the second (high) cutoff frequencies in the

Fourier directions. Two cutoff frequencies in each direction have been chosen, due to the

spatial second derivative dependence of heat conductivity in (5). In addition, αx1, αy1, and

αz1 are the orders of the first cutoff frequencies, and αx2, αy2, and αz2 the orders of the

second cutoff frequencies. The parameters α and p change according to the user-selected

time interval tint.

Using the properties of the Fast Fourier Transform (FFT), the cutoff frequencies in (7) can

be scaled appropriately for the size of the meshgrid (dimensions of the sample space in grid

cells) and meshgrid dimensions (size of a single cell in meters). In fact, the cutoff frequency

is proportional to the size of the meshgrid and to the meshgrid dimensions. For example, if

we indicate with Mm ×n ×p the size of the meshgrid containing the sample, and with a, b, and

c the dimensions of the grid in the x, y, and z directions

(8)

where px1s, px2s, py1s, py2s, pz1s, and pz2s are the computed optimum cutoff frequencies for

starting matrix Ms of dimensions ms × ns × ps (Msms,ns,ps
) with meshgrid resolution as × bs

× cs.
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In this study, the optimal values for all cutoff frequencies p and orders α were determined

for three different time intervals tint (30, 60, and 120, s) using a conjugate gradient method

to minimize the sum of the square of the difference in temperature between the result

applying the filter and that calculated using an FD solution of (1) [8] for a box-shaped

sample of water at 2 mm × 2 mm × 2 mm resolution and an SAR distribution determined

numerically using commercial software (XFDTD, Remcom Inc., State College, PA) for the

sample in a birdcage coil for MRI at 125 MHz. Details of the model and validation of the

full FD heating pattern with comparison to experiment have been published previously [17].

In the determination of SAR, the sample was assigned an electrical conductivity of 1.895

S/m, and a relative electric permittivity of 78.

After the optimal parameters were determined, the ability to scale them according to mesh

spatial resolution as in (8) was tested with a variety of applications in comparison to a full

FD representation of (1). These included a human head in a quadrature surface coil for MRI

at 300 MHz [8] and a human head with a 5 mm focal heating source in brain, as might more

be pertinent in a model for ablation.

Starting from the temperature distribution Tn = T0, the procedure to apply the method can be

summarized as the application of following.

Step 1: the solution given in (6) of the analytical equation (5) without the heat

conductivity term.

Step 2: computation of the FFT of the temperature distribution Tn + 1.

Step 3: application of the filter in (7).

Step 4: computation of the inverse FFT.

The procedure is repeated until the total heating time is computed, defining Tn as the

solution of the inverse FFT (Step 4) at the end of each repetition.

B. SAR10g Computation

To compare temperature distributions to the corresponding SAR10g distributions, we utilized

a previously presented method for calculating SAR10g [20], [21]. The algorithm sequentially

increases the radius of a spherical mask centered on the voxel of interest. The mass and the

summed SAR of all the voxels in both the most external layer and the interior volume are

calculated. When the total mass (external layer plus inner ones) exceeds 10 g, the SAR of

the external layer is weighted to reach the desired 10 g mass. Indicating with ms and mi the

mass in grams of the surface and interior portions, respectively, SARs and SARi the sum of

the SAR values in the external and internal layers respectively, and ns and ni the number of

pixels in the external and internal layers, the SAR10g is calculated as

(9)
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III. Results

Table I provides the empirically determined optimal values for the filter parameters on a

matrix of 250 cells in each dimension (Ms250, 250, 250) with a resolution of 2 mm in each

dimension (as = bs = cs = 2 mm) and for a variety of time intervals. As discussed previously,

cutoff frequencies p for (7) can easily be determined for other sample sizes and grid

resolutions (8) and the orders α for (7) are independent of these parameters, but the optimal

values must be determined for each time interval independently.

Fig. 1 presents the results for the case of a gelatinous phantom exposed to an SAR

distribution as induced by a birdcage-type MRI coil [17] designed for imaging of the human

head. Figs. 2 and 3 similarly present the geometry and results for the case of a human head

exposed to an SAR distribution induced by a quadrature surface coil for MRI [8], and a

point source of heat deep within brain tissue (more relevant for local ablation than MRI),

respectively. The material properties used for the cases of the head model are reported in

Table II. In each of these three figures, the unaveraged SAR, SAR10g, temperature increases

as calculated with the full FD and proposed methods, and the differences between these last

two are presented. For each case shown here, the time required to calculate temperature with

the proposed method was tens of seconds depending on the meshgrid resolution, matrix size,

and total heating time for a 3 GHz central processing unit (CPU) with 4 GB of random

access memory (RAM). The computation time is less than 2% of that required to calculate

temperature with the full FD method and less than 10% of that required to calculate SAR10g

(see Figs. 1–3).

IV. Discussion

The distribution of temperature increase resulting from the application of heat in vivo is a

function of many factors that can be considered dependent on temperature and/or

environment, including rates of blood perfusion and metabolism throughout the body and

rates of perspiration and radiation at the surface of the body [5], [6]. Additionally, the

directionality of blood flow through a heat field adds significant complexity, especially near

blood vessels [18], [19].

Any accurate prediction of temperature in vivo must consider effects of thermal conduction.

In the Pennes bioheat equation (a well-known, relatively simple formula for calculating

temperature), the term for heat conduction is the most complex and difficult to calculate.

Here, we have shown that approximating the effects of this term with a spatial filter can

greatly accelerate the calculation of temperature increase while still producing reasonable

results when compared to a full FD approach. Success of this approach stems, in part, from

the fact that thermal conductivity in human tissues, in comparison to perfusion rates and

rates of metabolism, are relatively homogeneous [8]. While the application of the spatial

filter approximation used here was to the Pennes bioheat equation, in principle it could be

integrated into more sophisticated representations to accelerate the estimation of thermal

conduction effects.

In the applications presented here, two are related to assessing the amount of RF heating

occurring during an MRI exam (see Figs. 1 and 2) and one is more closely related to
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localized ablation (see Fig. 3). In the case of a nonperfused imaging phantom within an MRI

coil (see Fig. 1), the proposed method gives results within about 0.15 °C of the full FD

calculation, or within about 8% of the maximum temperature increase. In the case of a

perfused human head within an MRI coil (see Fig. 2), the proposed method gives results

within about 0.075 °C of the full FD calculation, or within about 15% of the maximum

temperature increase. In both of these cases, the proposed method overestimates the

maximum temperature increase, which would provide a more conservative estimate for

safety assurance. In the case of a perfused human head with a local heat source deep in the

brain (see Fig. 3), the proposed method gives results within about 0.05 °C of the full FD

calculation, or within about 3% of the maximum temperature increase. In this case, the

proposed method underestimates and overestimates temperature increase by nearly equal

amounts and in nearly equal volumes throughout space. The amount of relative error in the

case of the local source deep in brain is lowest because here the greatest amount of heating

occurs at a location surrounded by tissue with fairly homogeneous thermal conductivity. The

case of the human head in the MRI coil has the largest relative error because the location of

greatest temperature increase occurs near a boundary between tissues of dissimilar thermal

conductivities. Therefore, the use of the method is not suggested in applications where the

volumes of interest is very small and in contact with the air, such as small extremities of

small animals. On the contrary, the speed of the method and its accuracy when used with

human body tissues may suggest its use as part of a real-time MRI scan protocol.

While there are some minor differences between the results produced with the fast spatial

filter approximation and those from the full FD approach, it is clear that the results provide

information much more directly relevant to safety and tissue damage than does SAR10 g
[12]. Because the proposed method also requires less time than is required to calculate the

SAR10 g throughout the sample, it is hoped that the obstacles to calculating temperature

distribution for evaluation of safety will seem significantly reduced so that temperature will

be calculated more often.

V. Conclusion

We have presented a new method for fast calculation of temperature in tissue samples by

replacing the term for thermal conduction with a spatial filter. The approach produces results

in good general agreement with full FD calculations of temperature, but requires much less

computation time.
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Fig. 1.
For a box of water-based gel, plots of (a) geometry of the problem with the box in a birdcage

coil operating at 125 MHz, (b) the unaveraged SAR distribution, (c) 10 g average SAR

distribution(1 min computation time), (d) temperature increase calculated with a rigorous

FD algorithm (15 min heating time, 6 min computation time), (e) temperature increase

calculated with the proposed rapid algorithm (15 min heating time, 5 s computation time),

and (f) difference between the full FD method and the proposed method. The chosen time

interval is tint = 30 s, the meshgrid resolution is 2 mm × 2 mm × 2 mm, and the matrix size

is 80 × 80 × 80 cells.
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Fig. 2.
For a human head model, plots of (a) geometry of the problem with the head in a quadrature

surface coil operating at 125 MHz, (b) unaveraged SAR distribution, (c) 10 g average SAR

distribution(4 min computation time), (d) temperature increase calculated with a rigorous

FD algorithm (15 min heating time, 23 min computation time), (e) temperature increase

calculated with the proposed rapid algorithm (15 min heating time, 25 s computation time),

and (f) the difference between the full FD method and the proposed method. The chosen

time interval is tint = 30 s, the meshgrid resolution is 2 mm × 2 mm × 2 mm, and the matrix

size is 150 × 140 × 120 cells.
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Fig. 3.
For a human head model, plots of (a) geometry of the problem showing the heat source

(white box) within the head (the 3-D geometry and the cross section are the same as Fig. 2),

(b) unaveraged SAR distribution, (c) 10 g average SAR distribution(4 min computation

time), (d) temperature increase calculated with a rigorous FD algorithm (15 min heating

time, 23 min computation time), (e) temperature increase calculated with the proposed rapid

digital filter algorithm (15 min heating time, 25 s computation time), and (f) difference maps

between the full FD method and the proposed method. The chosen time interval is tint = 30

s, the meshgrid resolution is 2 mm × 2 mm × 2 mm, and the matrix size is 150 × 140 × 120

cells.
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Carluccio et al. Page 15

TABLE I

Optimum Filter Parameters

Parameters tint = 30s tint = 60s tint = 120s

px1s, py1s, pz1s 20.56 15.12 6.32

px2s, py2s, pz2s 52.01 28.53 23.26

αx1s, αy1s, αz1s 0.37 0.18 0.08

αx2s, αy2s, αz2s 0.67 1.05 1.27

Optimum filter parameter values for a sample matrix Ms250, 250, 250 with a meshgrid resolution of 2 mm × 2 mm × 2 mm.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 June 02.
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