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According to recent theories, perception relies on summary repre-
sentations that encode statistical information about the sensory
environment. Here, we used perceptual priming to characterize the
representations that mediate categorization of a complex visual
array. Observers judged the average shape or color of a target visual
array that was preceded by an irrelevant prime array. Manipulating
the variability of task-relevant and task-irrelevant feature informa-
tion in the prime and target orthogonally, we found that observers
were faster to respondwhen the variability of feature information in
the prime and target arrays matched. Critically, this effect occurred
irrespective of whether the element-by-element features in the
prime and target array overlapped or not, and was even present
when prime and target features were drawn from opposing
categories. This “priming by variance” phenomenon occurred with
prime–target intervals as short as 100 ms. Further experiments
showed that this effect did not depend on resource allocation, and
occurred even when prime and target did not share the same spatial
location. These results suggest that human observers adapt to the
variability of visual information, and provide evidence for the exis-
tence of a low-level mechanism by which the range or dispersion of
visual information is rapidly extracted. This information may in turn
help to set the gain of neuronal processing during perceptual choice.

decision making | cognitive control

What information do sensory systems represent, and how do
their computations allow us to make judgments about the

external world? Canonical theories in perception and cognition
suggest that visual neurons code exhaustively for the features or
objects that populate natural scenes, from primitive colors and
shapes to complex high-dimensional items, such as faces (1, 2).
However, any theory of visual representation must account for
two striking findings. First, visual judgments can be remarkably
blind to local detail: for example, when observers fail to notice
the removal of an object from a cluttered natural image, at least
when it is outside of the focus of attention (3, 4). Second, both
humans and monkeys are extremely good at extracting high-level
information (e.g., the presence of an animal or a navigable path)
from a scene in a single, rapid glance, despite the almost endless
variability in natural images (5–10). One alternative theory that
can account for both of these findings argues that the visual
system rapidly computes “summary” statistical information about
a scene (e.g., the average size of all of the round objects) as
opposed to specific features (e.g., the presence of a large round
object) (11–13). Encoding summary statistics might offer a crude
but efficient representation of the visual world (14) that would
facilitate rapid, accurate decisions that are critical for survival
(e.g., whether to flee in the face of impending predation, and which
route to take), but at the cost of discarding visual detail outside
of the focus of attention. However, our understanding of the
nature and limits of these summary representations is rudimen-
tary, and the very notion that observers extract summary statistics
from a scene continues to be hotly debated (15–17).
To date, a great deal of research has focused on demonstrating

that observers encode the central tendency of sensory data:
humans can accurately estimate mean feature information from
arrays of simple features (11, 13, 18–21), complex shapes or
letters (22), or human faces (23, 24), even when discrimination
of individual array elements is at chance. However, limited

consideration has been given to whether the visual system rep-
resents the dispersion (variability) of available visual information.
(but see ref. 25) The variability of visual information is a key
descriptor of the visual world, pertaining to the range,
uniqueness, and spacing of feature information, and is likely to
be useful for a range of ecologically pertinent visual functions,
such as discriminating among textures (e.g., bark or leaf shape)
or detecting objects in camouflage (26).
Human judgments about complex natural scenes are resource-

limited, and the brain has evolved to capitalize on autocorrela-
tion in sensory signals to interpret the visual world, for example
by adapting information processing to the context provided by
the recent stimulation history. This mechanism is visible in well-
established behavioral phenomena, such as priming, in which
judgments about a stimulus that shares perceptual or conceptual
features with its predecessor are faster or more accurate (27).
However, variability in visual features is also autocorrelated
across time; for example, crossing a desert might lead to sus-
tained periods of relatively low variance in feature information,
whereas trekking through the rainforest will lead to prolonged
experience of high visual variability. If the visual system encodes
variability information about when presented with stimulation,
then we should observe “priming by variance,” the facilitation of
responses to visual arrays that are preceded by a prime array with
similar levels of feature variance. Here, we describe three experi-
ments in which we tested and confirmed this prediction. We ob-
served that classification performance was facilitated when the
variability of a prime and target array matched, independent of the
similarity of individual elements and of whether the feature in-
formation in the two arrays belonged to the same category or
different categories. This priming effect was visible with prime–
target intervals as short as 100 ms. The existence of this phe-
nomenon not only provides compelling new evidence for sta-
tistical representations in human visual perception, but hints at
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the existence of a mechanism by which the gain of visual processing
is calibrated to account for the likely dispersion of information in
a natural scene.

Results
On each trial, observers viewed two successive arrays each
composed of eight colored shapes (“squircles”) arranged in
a ring around fixation (Fig. 1). The task was to categorize the
later (“target”) array on the basis of its average color or shape,
ignoring the earlier 100-ms duration (“prime”) array that pre-
ceded it by 100, 200, or 500 ms. Each of the eight elements in
both target and prime arrays took on a color value (red to blue)
and shape value (square to circle) continuously parameterized
in the range −1 to +1, and on each trial these feature values were
drawn pseudorandomly from a Gaussian normal distribution
with mean μ or −μ and variance σ2. One dimension (color or
shape, manipulated between subjects) was designated task-rele-
vant and the other was task-irrelevant. Observers judged whether
the mean feature value for the task-relevant dimension was
greater or less than zero (e.g., red vs. blue, square vs. circle).

Experiment 1. In Exp. 1 (n = 40), we manipulated the variance
(high vs. low) of both task-relevant and task-irrelevant dimen-
sions for both prime and target arrays independently (Fig. 1).
This process allowed us to assess how variability of the prime and
target distributions, and (critically) the congruence between their
variances, influenced response times (RTs) independently for
task-relevant and task-irrelevant feature dimensions. In what
follows, all analyses were conducted on log-transformed RTs
greater than 300 ms from correct trials only.
As expected, participants responded faster on trials where the

prime and target features were drawn from distributions with the
same mean value (i.e., from the same category) [F(1, 39) = 23.0,
P < 0.001]. Moreover, increased prime and target variance both
slowed response times [prime: F(1, 39) = 5.24, P < 0.028; tar-
get: F(1, 39) = 76.9, P < 0.001] (Table S1, Exp. 1). Critically
however, the congruity of the variance of the prime and target
arrays influenced behavior, with faster responses for trials where
the prime and target arrays had the same variance (either high or
low), relative to trials where their variance was different (Fig. 2A).

This result was reflected in a significant prime × target vari-
ance interaction on RT [F(1,39) = 27.5, P < 0.001]. There was
no prime × target interaction on accuracy [F(1, 39) = 0.775, P =
0.384], suggesting that this effect is a facilitation in processing,
rather than a because of a change in speed-accuracy trade-off. The
variance of the prime did not impair accuracy, whereas the target
variance did [F(1, 39) = 16.0, P < 0.001], as previously reported (18).
To test whether these findings could be explained by the

overlap in individual features between the prime and target
arrays, we turned to multiple regression. The prime array vari-
ance, target array variance, and their interaction were entered as
rival predictors of RT alongside additional regressors encoding
the absolute prime–target feature difference for each of the eight
elements in the array (Fig. 2B), and t tests were used to assess the
deviance of the resulting parameter estimates from zero. Pa-
rameter estimates associated with prime array variance and
target array variance were both positive [prime: t(39) = 4.24, P <
0.001; target: t(39) = 6.54, P < 0.001], consistent with the pre-
viously described detrimental impact of high-variance arrays on
decision latencies (18), whereas those associated with interaction
between prime and target variance were negative [t(39) = 4.79,
P < 0.001], consistent with the abovementioned observation that
similar variance in the prime and the target facilitated re-
sponding. Crucially, these effects persisted even when the eight
element-specific differences had been partialled out, indicating
that it is a summary statistical representation—not feature in-
formation—that is driving priming by the variance.
One alternative explanation not ruled out by these analyses is

that RT might be faster when the prime and target offer com-
patible information about which response to make, but that this
response compatibility effect is dampened under high variance.
To test this hypothesis, we constructed two further nuisance
regressors that encoded (i) the compatibility between prime (P)
and target (T) (i.e., the absolute of the difference between their
task-relevant features jΣP1–8–T1–8j), and (ii) the interaction be-
tween this quantity and target variance. Repeating the regression
analyses described above yielded a weak trend toward a main
effect of response compatibility [t(39) = 1.40, P < 0.09], but no
reliable interaction between compatibility and variance (P <
0.25). Critically, the interaction between prime and target vari-
ance remained strongly significant [t(39) = 5.10, P < 0.001]. Very
similar results were obtained using a measure of the absolute
activation provided by both prime and target (i.e., jΣP1–8+T1–8j).
These analyses, which are described in Fig. S1, suggest that our
effects are not driven by response compatibility.
To better characterize the processing stage at which priming

by variance occurs, we included both task-relevant and irrelevant
target variance, prime variance, and their interaction in a further
analysis. Although weaker than for the task-relevant dimension,
the congruity of prime–target variance for the task-irrelevant
feature values also facilitated behavior [t(39) = 1.72, P < 0.05],
consistent with an early, automatic phenomenon (Fig. 2B). In-
terestingly, however, there was no cross-over variance priming
between task-relevant and task-irrelevant dimensions for these
trials; that is, the variance of the task-relevant features for the
prime did not interact with the variance of the task-irrelevant
features for the target [t(39) = 0.02, P = 0.510] or vice versa
[t(39) = 0.52 P = 0.300]. In other words, variance priming does
not depend on feature-based attention, but does seem to occur
within feature-specific channels. Moreover, the existence of in-
dependent priming effects for relevant and irrelevant dimensions is
hard to reconcile with any explanation based on response com-
patibility, because no meaningful response mappings were assigned
to the irrelevant dimension.

Experiment 2. One outstanding possibility is that facilitatory
effects of congruent prime–target array variance could be sec-
ondary to nonspecific aspects of the task, such as the relative
level of cognitive resources required to judge high- and low-

A

B

Fig. 1. Task description. (A) Trial sequence. Observers were asked to classify
a target array based on either the average color (red vs. blue) or shape (square
vs. circle). Only one dimension was relevant for the duration of the session.
Preceding the target array was an irrelevant prime array, which could appear
with a PTI of 100, 200, or 500 ms. Auditory feedback was given immediately
following the response. (B) Examples of prime (P) and target (T) arrays with
high and low variance on the color dimensions. Response time facilitation was
observed when the variance matched (Upper Left, Lower Right).
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variance arrays. For example, high-variance prime arrays might
engage attentional or control processes that confer dispropor-
tionate benefit on processing of the high-variance target array,
an explanation that has been invoked to account for adaptation
to conflict between sequential trials (28, 29). To test this possi-
bility, we capitalized on the previous observation that the abso-
lute mean feature value of the array jμj (i.e., proximity of the
mean to the category boundary, at x = 0) impacts decisions and
their latencies in a similar fashion to array variability σ2, with no
interaction between the two factors (18). In a second experiment,
we again manipulated array variance (high vs. low) but varied
array mean μ at four symmetric levels around zero (μ2, μ1, −μ1, −μ2,
where μ2 > μ1). This process allowed us to compare how (i)
the congruity of variance (high and low) and (ii) congruity of
absolute mean (μ2 and μ1) influenced performance. If the vari-
ance priming observed in Exp. 1 is because of nonspecific effects,
we would expect to additionally see priming by the absolute
mean of array information. If it is specific to the range or dis-
persion of the information in the prime, then we would expect to
replicate Exp. 1 in the absence of any priming by absolute mean.
In Exp. 2, we replicated the phenomenon of variance priming

reported above, with faster RTs for trials on which the prime–
target array variance was consistent [F(1, 38) = 5.03, P < 0.04].
Additionally, we observed the anticipated facilitatory influence
of category congruity between prime and target [F(1, 38) = 20.9,
P < 0.001]. As expected, absolute target array mean had a main
effect on response times [low jμj > high jμj, F(1, 38) = 63.6, P <
0.001] along with target array variance [high σ > low σ, F(1, 38) =
37.8, P < 0.001]. Critically however, congruity in absolute mean
(and thus, degree of response conflict) had no facilitatory effect
on decision latencies [F(1, 38) = 0.195, P = 0.661] (Fig. 2 C and D
and Table S1, Exp. 2, Variance and Mean). This result occurred
despite this equivalence between the way that target array jμj and
σ influenced responding: the main effect of mean on RTs (low
mean RT = 698 ms; high mean RT = 679 ms, difference = 19 ms)
was comparable with the main effect of variance (low variance
RT = 678 ms; high variance RT = 698 ms, difference = 20 ms).

It is thus unlikely that the manipulation of mean was simply too
weak to observe similar priming effects to the variance. As for
Exp. 1, these results cannot be accounted for by a speed accuracy
trade-off, with no significant prime × target interaction on
accuracy for either variance [F(1, 38) = 0.015, P = 0.902] or
absolute mean [F(1, 38) = 1.49, P = 0.230]. Together, these
analyses seem to rule out nonspecific explanations based on re-
source recruitment or adaptation to conflict.

The Influence of Prime–Target Interval. If summary statistical in-
formation is to benefit rapid object perception, it must be
encoded within just a few hundred milliseconds (5, 6). To assess
the latency with which perceptual variance influences behavior,
we collapsed across data from Exps. 1 and 2, and compared
variance priming at the three levels of prime–target interval
(PTI) used (100, 200, 500 ms). The prime–target variance in-
teraction was significant when considering only those trials with
PTI of 100 ms [F(1, 78) = 18.4, P < 0.001] and 200 ms [F(1, 78) =
8.74, P < 0.004]; and although the interaction failed to achieve
significance for the 500-ms trials [F(1, 78) = 2.73, P = 0.102], there
was no three-way interaction between prime variance, target
variance, and PTI [F(2, 147) = 1.97, P = 0.146] (Table S2). This
finding suggests that the effect begins very early and persists for
several hundred milliseconds (Fig. 3).

Experiment 3. If the encoding of array variability contributes to
rapid detection and recognition, then one would not expect its
influence to be tied to a specific spatial location. To test the
spatial specificity of variance priming, we conducted a third ex-
periment in which the radius of the prime and target arrays were
manipulated, such that either they were overlapping or one fell
concentrically within the other. A facilitatory effect of variance
congruity on RT was again observed when the arrays were spa-
tially overlapping, replicating the findings of the previous two
experiments [F(1, 13) = 15.4, P < 0.002]. The effect was again
observed at both 100 ms [F(1, 13) = 24.7, P < 0.001] and 200 ms
[F(1, 13) = 4.90, P < 0.046] PTI (there were no 500-ms PTI trials

A B

C D

Fig. 2. Variance priming. (A) Mean RTs
for both levels of prime variance (x axis;
high or low) and both levels of target
variance (lines; high vs. low). Error bars
are SEM. (B) Regression weights are
plotted for element-specific differences
(jprime–targetj), variance of the target
(Target), prime (Prime) and their in-
teraction (T × P) for the irrelevant and
the relevant dimension. *P < 0.05, **P <
0.01, or ***P < 0.001. (C) Mean RTs from
Exp. 2 for both levels of prime mean
distance to category boundary (x axis)
and both levels of target mean distance
to category boundary (lines). Error bars
as for A. (D) Mean RTs from Exp. 2 for
both levels of prime variance (x axis) and
both levels of target variance (lines).
Error bars as for A.
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in Exp. 3). To explore the data further, we created a summary
measure of variance priming by subtracting the RT difference for
each combination of congruent and incongruent different trials
(high/high – high/low) – (low/high – low/low). Variance priming
was significant when the prime array was large, irrespective of
whether the target array was large [t(1, 13) = 4.24, P < 0.001] or
small [t(1, 13) = 2.87, P < 0.01]. It was also significant when the
target and prime array were both small [t(1, 13) = 2.13, P < 0.03].
Only when the prime array was small and the target was large did
the effect evaporate (P = 0.28) (Fig. 4). However, neither the
main effect of prime array size (P = 0.20), target array size (P =
0.70), or their interaction (P = 0.20) on variance priming were
significant. Thus, variance priming does not depend on spatial
overlap between prime and target.

Variance Priming Across the Category Boundary. Finally, the stron-
gest demonstration of priming by variability would be that the
congruity of prime–target variance can still facilitate responding
even when prime and target are drawn from different categories
(trials; e.g., red mean prime, blue mean target). We assessed this
by pooling across data from all three experiments and repeating
the regression analyses described above, including independent
predictors for switch (prime and target from different category)
and stay (same category) trials. For this analysis, we excluded
data from the 500-ms condition for which variance priming was
not significant (see Tables S3 and S4 for further results including
all conditions). Critically, although variance priming was stron-
ger for stay trials [prime variance × target variance × same/dif-
ferent category interaction, F(1, 92) = 18.0, P < 0.001], it was
independently significant for both stay [t(92) = 7.31, P < 0.001]
and switch [t(92) = 1.73, P < 0.05] trials (Fig. 5). Individually, the
effect was significant on switch trials for Exp. 1 [t(39) = 1.79, P <
0.05] and Exp. 3 [t(13) = 2.24, P < 0.03], but not Exp. 2 [t(38) =
0.69, P = 0.751] (see Table S5 for full ANOVA results on RTs).
Together, these results imply that priming by the variance of
a visual array can occur entirely independently of the mean
feature values of the prime and target arrays.
Finally, we assessed the strength of the priming by variance

account in the data collapsed across all experiments as described
above. When all subjects were included in a single analysis, the
prime variance × target variance interaction was highly sig-
nificant [F(1, 92) = 40.8, P < 0.001]. It was also significant in-
dependently for judgments about color [F(1, 52) = 33.9, P <
0.001] and shape [F(1, 39) = 9.21, P < 0.004] in roughly equal
measure. Of note, the difference in RT between low/low and
high/low conditions [t(92) = 5.96, P < 0.001] and high/high and
low/high conditions [t(92) = 3.02, P < 0.004] were both inde-
pendently significant. This latter finding rules out a ceiling
effect on a response compatibility effect as an explanation for
our findings.

Discussion
Priming is one of the most basic and well-established phenomena
in the psychological literature, and has classically been used to
probe the nature of the representations underlying perception
and cognition (27). Most demonstrations of priming occur when
judgment of a target stimulus is facilitated by the prior pre-
sentation of an irrelevant prime with which it shares perceptual,
semantic, or conceptual features (30, 31). Here, we describe an
instance in which a facilitatory relationship between prime and
target is observed even though they share no overlapping features.
Rather, we observed that judgments about a target visual array
were facilitated when the feature variance of a target visual array
matched that of a preceding prime array, irrespective of whether
the mean feature information overlapped or not. This observation
provides evidence for a new sort of priming that does not relate to
the perceptual or the semantic features of the stimulus, but rather
to its statistics: priming by the variance of visual information.
Importantly, this variance priming effect could not be explained
uniquely by priming at the level of individual elements. We dem-
onstrate this with two classes of analysis. First, the effect remained
robust even after accounting for any residual variability associated
with the divergence between each individual element of the prime
and target arrays. Second, the effect was significant even for switch
trials (i.e., those for which the prime and target were drawn from
different categories). These statistical representations might be
useful for the rapid extraction of summary information (or “gist”)
from a visual scene.
A number of strands of evidence in our data suggest that vari-

ance priming is a fast and automatic process. First, variance
priming occurred even for PTIs of as short as 100 ms (i.e., with
a latency that could contribute to very rapid categorization of
information in a visual scene) (6). Second, variance priming oc-
curred for both task-relevant and task-irrelevant array dimensions;
it did not depend on the feature that was currently being attended.
Interestingly, however, we observed no priming across the task-
relevant and task-irrelevant dimensions. One interpretation of this
finding is that this priming occurs within tightly constrained chan-
nels that process only a single visual dimension, such as shape or
color. In other words, representations of variability are tied to
specific features and do not simply encode the general level of
order or disorder in a visual scene; this also points to variance
priming being an early, automatic process.
Another interesting feature of the effect is that it occurred

even when prime and target occupied different spatial locations,
as inner and outer concentric rings around fixation. Interestingly,
this effect was only observed when the prime array encompassed
the target array spatially, and not vice versa. One possibility is
that the spatial extent of the prime sets the range over which
summary statistical extraction might occur. However, the four-
way interaction between prime variance, target variance, prime
size, and array size failed to achieve significance, so this effect
merits further investigation.

Fig. 3. Variance priming across the three PTIs. The extent of the variance priming effect is plotted for trials grouped by the three levels of PTI, from Left to
Right: 100, 200, and 500 ms. Axes are as for Fig. 2A.
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Variance priming is somewhat reminiscent of the phenomenon
of conflict adaptation, whereby responses made in the face of
conflicting information are facilitated if information on the pre-
vious trial was also incompatible (28, 29). Conflict adaptation,
like the variance priming effect we report here, will transfer across
specific features within a task, for example when a response to the
word “green” presented in red ink facilitates subsequent responding
to “yellow” in blue ink (32). However, the findings reported here
cannot merely be explained by conflict adaptation. In Exp. 2, we
deliberately varied the degree of response conflict engendered by
prime and target, by varying the proximity of array mean to the
category boundary, but no compatibility effects were observed for
response conflict, presumably because the prime was task-irrelevant.
In other words, the locus of variance adaptation appeared to
be much earlier than that for conflict adaptation, a view that is
supported by the current finding that prime–target compatibility,
even between the variance of task-irrelevant features, had an impact
of decision latencies.
Conversely, however, it is possible that conflict adaptation may

be partly accounted for by variance adaptation. Conflict adap-
tation partly reflects the biasing of resources to a given task, as
evidence by neural amplification of task-relevant sensory regions
in response to previous trial conflict (33) and the failure of
conflict adaptation to transfer between tasks on switch trials (34,
35). However, there is evidence that it is influenced by more
automatic mechanisms. First, conflict adaptation is strongest at
short interstimulus intervals (∼500 ms) and declines thereafter
(36). Here, variance adaptation was observed to occur very
rapidly, with maximal effects at prime–target intervals of < 200 ms,
and some loss of statistical power by 500 ms. Second, simply cueing
participants that a trial will be congruent has an additional facili-
tatory effect (37). In other words, it is possible that some of the
sequential congruency advantage on paradigms, such as the Stroop
task, may reflect adaptation to the dispersion in visual features
between successive trials. However, the relationship between vari-
ance priming and conflict adaptation could be better assessed by
comparing sequential judgments of arrays with differing variance in
a task with no intervening prime.
Another possible account for our findings is that the in-

teraction between prime and target variance occurs because
any facilitatory effects of prime–target response compatibility
are dampened when the prime array is highly variable. We
conducted three analyses that argue strongly against this view.
First, when we included regressors for response compatibility
and its interaction with variance in our regression analysis, the
variance priming effect persisted. Second, we note that the
effect was present for the irrelevant dimension, for which no
responses were assigned. Third, we show that not only are low/low
variance trials faster than low/high variance trials, but high/high
variance trials are faster than high/low variance trials. In other

words, the interaction crosses over and our effects cannot be
explained by a ceiling on compatibility.
One likely function for adaptation to variance is that it helps

rapidly adjust the gain range of visual processing to suit the
current environment. Gain control is a major computational
challenge for the visual system, as the number of possible objects
and features that could be observed at any one time is virtually
limitless, and efficiency will be maximized if the visual system is
most sensitive to those that are likely to occur. Indeed, neural
responses adapt to the variability of low-level sensory input
across time, both in the visual (38) and auditory (39) domains.
Similarly, extracting the gist of a scene—coarse information
about the statistics of the information—could help calibrate vi-
sual processing so that likely features are processed with maximal
gain (40). Representations of feature variability may also con-
tribute to texture perception or contribute to the detection of
objects in camouflage (26) or visual search (41). One outstanding
question is whether adaptation to variability in our experiment is
driven by an adaptation to the range of information available.
Unfortunately these two quantities were too highly correlated to
be disentangled in our paradigm.
An obvious further question pertains to the neural structures

that are sensitive to variance adaptation. Two likely candidates
present themselves. First, variance adaptation may depend on
high-level representations in the ventral stream that have extracted
abstract, correlated structure throughout visual development, and
come to represent the variance in a fashion untied to the specific
input (42). Second, variance adaptation may depend on dorsal
stream structures that are conjectured to support gist-based retrieval
(43) and are involved in controlling covert attention and saccadic
exploration of a scene (44). We hope that future research will ar-
bitrate among these possibilities.

Methods
Participants. A total of 94 right-handed volunteers (reporting normal or
corrected-normal vision and no history of neurological problems) partici-
pated in the three experiments (Exp. 1, n = 40; Exp. 2, n = 40; Exp. 3, n = 14).
One participant was excluded from Exp. 2 because of data loss in one con-
dition. The subjects provided informed consent and received £10/h. The
study was approved by the Oxford University Medical Sciences Division Ethics
Committee (approval no. MSD/IDREC/C1/2009/1).

Stimuli. Stimuli were created and displayed using PsychToolBox (www.
psychtoolbox.org) for MATLAB (Mathworks). Stimuli were presented on
an equiluminant gray background, of a 17-inch LCD monitor with a resolu-
tion of 1,280 × 1,024 pixels, viewed from a distance of ∼80 cm. Every stimulus

A B

Fig. 4. Variance priming for spatially nonoverlapping prime–target pairs.
Mean RTs plotted for each combination of prime variance (high vs. low) and
target variance (high vs. low). Data are from Exp. 3 (A) trials in which the
prime array appeared within the spatial boundary of the target array, and
(small-large) (B) for the reverse spatial organization (large-small).

Fig. 5. Regression weights for variance priming on category congruent
(stay) and incongruent trials (switch). Regression weights are plotted for the
variance of the target, prime, and their interaction. Data included from the
100- and 200-ms PTI conditions across all experiments. Trials are split by
whether the prime and target belong to the same category (light gray bars,
“stay”) or whether the categories differ (dark gray bars, “switch”). *P < 0.05,
**P < 0.01, or ***P < 0.001.
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was an array of eight elements. On each trial, participants viewed two se-
quentially presented arrays of eight elements (colored shapes). In Exps. 1 and
2, elements were arranged in a circular formation with a radius of ∼3° visual
angle around a central fixation point (Fig. 1A). In Exp. 3, an additional ring
with a radius of ∼5° visual angle was used. Within each array, elements were
equally spaced, equiluminant, and covered an equal area on the screen. In-
dividual elements were defined by a shape parameter (S) a color parameter
(C) taking values between −1 (most blue/round) and +1 (most red/square) (for
full details, see Supporting Information). For each array, the eight values of
the S (or C) parameter were drawn from a normal distribution, the mean μ
and variance σ2 of which were controlled by design. Feature values were
resampled until sample statistics fell within 0.1% of μ and σ2.

Task. For Exps. 1 and 2, which dimension was task-relevant (color or shape)
was counterbalanced across subjects. For Exp. 3, participants judged only
color, which had given slightly more robust effects in the previous experi-
ments. Only one dimension (shape or color) was the decision-relevant di-
mension within a single session, and participants were instructed to ignore
the other dimension.

Thresholding. To equalize difficulty across participants and task type (shape or
color), we used an adaptive procedure in which participants made judgments
about a target array preceded by a prime array, as in the main task. Each
thresholding run was 144 trials long. For Exp. 1, the task-relevant mean μ was
titrated until performance reached 80% correct on each dimension (shape and
color). For Exp. 2, performance was titrated to 75% (μ1) and 85% (μ2) for the
relevant dimension (either color or shape). For all experiments, the task-relevant
variance σ2 could take one of two values (0.15, 0.3); in Exp. 1, the task-irrelevant
variance could also take on these values; in Exps. 2 and 3, σ2 was fixed at 0.15.

Design. For Exp. 1, we manipulated five orthogonal factors: the variance of
the prime and the target on the task-relevant and task-irrelevant dimen-
sions, and the congruity of the prime category and the target category on
the task-relevant dimension. For Exp. 2, we varied orthogonally five factors:
the absolute level of mean (μ1 and μ2) of the prime and target arrays for
each category, and the task-relevant variance of prime and target arrays,
but fixed the task-irrelevant variance and the prime–target congruency
with respect to the task-relevant mean.

For Exp. 3, we once again fixed the mean to just μ or −μ, but we crossed
prime and target array variance with a new factor that encoded the location
of the circular prime and target arrays (inner vs. outer ring). The design was
thus: target array task-relevant variance (high, low) × prime array task-rel-
evant variance (high, low) × target array location (inner, outer) × prime
array location (inner, outer).

Task and Procedure. On each trial, a white fixation point (5-pixel radius)
appeared in the center of the screen, followed after 500 ms by the prime
array. The prime duration was 100 ms. The target array appeared after
a variable PTI (100, 200, or 500 ms). Participants had up to 1.5 s to respond to
the target using the computer mouse. The target array remained on screen
until the response. Response mapping were fully counterbalanced across
participants. After a response was made, auditory feedback was given im-
mediately. A high tone (1,200 Hz) indicated a correct response whereas a low
tone (400 Hz) indicated an incorrect response. Twenty practice trials were
given before continuing to themain experiment, which consisted of 768 trials
(512 trials for Exp. 3), with short breaks approximately every 80 trials.

Analysis. We log-transformed reaction times for correct trials and analyzed
the relative influence of the different factors using ANOVAs and multiple
regression. An α of P < 0.05 was used for all statistical reporting.
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