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Enhancer mapping has been greatly facilitated by various genomic
marks associated with it. However, little is available in our tool-
box to link enhancers with their target promoters, hampering
mechanistic understanding of enhancer–promoter (EP) interac-
tion. We develop and characterize multiple genomic features for
distinguishing true EP pairs from noninteracting pairs. We inte-
grate these features into a probabilistic predictor for EP interac-
tions. Multiple validation experiments demonstrate a significant
improvement over state-of-the-art approaches. Systematic analy-
ses of EP interactions across 12 cell types reveal several global
features of EP interactions: (i) a larger fraction of EP interactions
are cell type specific than enhancers; (ii) promoters controlled by
multiple enhancers have higher tissue specificity, but the regulat-
ing enhancers are less conserved; (iii) cohesin plays a role in me-
diating tissue-specific EP interactions via chromatin looping in
a CTCF-independent manner. Our approach presents a systematic
and effective strategy to decipher the mechanisms underlying
EP communication.
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Transcriptional enhancers represent the primary basis for differ-
ential gene expression. These elements regulate cell type spec-

ificity, development, and metazoan evolution, with many human
diseases resulting from altered enhancer action (1, 2).
A key gap in our knowledge is an understanding of how en-

hancers select specific promoters for activation. Linkage of en-
hancers and target promoters is challenged by enhancer properties.
First, increasing evidence suggests that enhancers are not located
adjacent to their target promoters. Instead, they are positioned tens
of kilobases away and contact their targets via long-range interactions
(3-6). Second, enhancers are position independent, i.e., they may be
located either upstream or downstream of the regulated promoter.
Experimental approaches to identifying enhancer targets have

largely relied on chromosome conformation capture (3C) (7) and
its variants such as circularized chromosome conformation cap-
ture (4C) and genome-wide chromosome conformation capture
(Hi-C) (8), all of which determine the relative frequency of direct
physical contact between linearly separated DNA sequences.
Unlike 3C and 4C, Hi-C is a truly genome-wide technology, but
its current resolution (1 Mbp) in general is not high enough to
distinguish individual enhancer–promoter (EP) interactions (9).
Newer methods such as ChIP-loop (10) and chromatin interaction
analysis with paired-end tag sequencing (ChIA-PET) (11) com-
bine the principles of 3C and ChIP to identify chromatin interactions
mediated by protein factors. However, the assays are technically
challenging and currently have a high false-negative rate (5, 12).
Therefore, computational work, if successful, can complement ex-
perimental protocols and allow prioritization of future experiments
much more effectively.
The most common computational approach is assigning the

nearest promoter of an enhancer as its target. Improvements to
this basic approach have been introduced by using insulator sites
as an additional constraint (13), by correlating histone modifi-
cation patterns at enhancers and their nearest promoters (14) or
transcript levels of promoters within a given genomic domain

(15), and by correlating Dnase I hypersensitivity signals at en-
hancers and promoters (16). The latter four approaches dem-
onstrate that signals pertaining to EP interactions could be
extracted from various types of genomic data to make predictions.
However, current methods either still focus on the nearest pro-
moter (13, 14) or only use limited types of genomic feature (15,
16). Furthermore, no rigorous characterization of the performance
of these methods was reported.
Here, we introduce an integrated method for predicting en-

hancer targets (IM-PET). Leveraging abundant omics data, we
develop multiple features and integrate them probabilistically to
make robust predictions of EP pairs. The selected features are
based on our current understanding of enhancer structure, func-
tion, and evolution. Using both computational and experimental
validations, we show IM-PET significantly outperforms state-
of-the-art methods. By analyzing global EP interactome across
multiple cell types, we gain better insights into the mechanisms
of enhancer and promoter communication.

Results
A Set of Discriminative Features for Identifying EP Pairs.We devised
and tested the following features for their abilities to discriminate
a set of ∼2,000 real and noninteracting EP pairs that are selected
based on published ChIA-PET data for K562 and MCF-7 cells
(5). These pairs were selected using stringent ChIA-PET thresh-
old and evidence of active enhancers and promoters (Materials
and Methods and SI Appendix, Fig. S1).
Feature 1: Enhancer and target promoter activity profile correlation (EPC).
Recently, Ernst et al. (14) have shown that correlation between
enhancer and promoter histone modification patterns can be
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used to infer their interactions. We extended this approach and
asked whether there is a correlation in the activities of enhancers
and promoters across multiple cell types. We estimated enhancer
activity using the score computed by our previously developed
CSI-ANN algorithm for predicting enhancers using histone modi-
fication signature (17). For promoters, we used fragments per
kilobase of exon sequence per million reads (FPKM) values from
RNA-Seq data to represent their activities. As shown in Fig. 1A,
the average correlation between real EP pairs is significantly
higher than that of noninteracting pairs (P = 1.1E-53, t test).
Feature 2: Transcription factor and target promoter correlation (TPC).
Transcriptional regulation requires both regulatory DNA sequences
and transcription factors (TFs). EPC score described above
reflects correlation between regulatory DNA sequences only. We
next examined the correlation between the expression of TFs
that bind to an enhancer and the activity of the target promoter.
We found that real EP pairs have significantly higher TPC scores
than noninteracting pairs (P = 1.1E-16, t test) (Fig. 1B).
Feature 3: Coevolution of enhancer and target promoter (COEV). We
asked whether true EP pairs tend to coevolve, whereas non-
interacting pairs do not. The evolutionary constraint between
interacting EP pairs can be quantified by two complementary
measures: sequence similarity and conserved synteny. Because
TF binding sites within enhancers and promoters may have high
turnover rate (18), the latter measure becomes important in such
cases for capturing coevolution between promoters and en-
hancers (19, 20). Therefore, we integrated both measures to
compute a COEV score. As shown in Fig. 1C, the COEV scores
of real EP pairs are significantly higher than those of non-
interacting pairs (P = 2.5E-11, t test).

Feature 4: Distance constraint between enhancer and target promoter
(DIS). Although enhancer location relative to its target promoter
is not strictly constrained, empirical data do show a trend toward
shorter distance. The median distance for real EP pairs in our
training set is 14,792 and 16,682 bp for K562 and MCF-7 cell,
respectively, and there is a monotonic decline in the frequency of
EP pairs with increasing distance (SI Appendix, Fig. S3). How-
ever, the distance distribution of real EP pairs is significantly
different from that of nearest pairs (P = 1.3E-67, t test) and that
of nonspecific interactions that arise due to random collision of
chromatin fiber (P = 3.2E-44, t test) (Fig. 1D).

Performance Assessment of the IM-PET Algorithm. Using the four
features described above, we trained a random-forest (RF)
classifier (21) for predicting EP pairs (SI Appendix, Fig. S1). To
assess the prediction accuracy, we performed a fivefold cross-
validation and used receiver operating characteristic (ROC)
curve to quantify the performance. We compared IM-PET to four
state-of-the-art methods: nearest-promoter, PreSTIGE (15), and
the methods by Ernst et al. (14) and by Thurman et al. (16) (SI
Appendix, Experimental Procedures). PreSTIGE predicts EP pairs
by pairing cell type-specific H3K4me1 signals with genes that are
specifically expressed in each cell type across a panel of diverse
cell types. The method by Ernst et al. predicts EP pairs using
histone modification profile correlation between nearest candi-
date pairs with 125-kbp distance. The method by Thurman et al.
predicts EP pairs using DNase I hypersensitive site (DHS) cor-
relation of all candidate pairs within 500-kbp distance. By in-
tegrating multiple features, our method has an area under curve
(AUC) value of 94%, 27% higher than the Ernst et al. approach
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Fig. 1. Discriminative features and performance evaluation by cross-validation. (A) Enhancer and target promoter activity profile correlation (EPC); (B) TF and
target promoter expression correlation (TPC); (C) coevolution of enhancer and target promoter (COEV); (D) distance constraint between enhancer and target
promoter (DIS); “real pairs,” pairs selected using K562 and MCF-7 ChIA-PET data; “non-pairs,” noninteracting pairs according to ChIA-PET data; “all pairs,” EP
pairs formed by extracting all promoters within 2 Mbp of an enhancer. “nearest pair,” EP pair in which the promoter is closest to the enhancer among all
promoters in the genome. P values are based on one-sided Student t test. n = 2,234 for all tests. (E) ROC curve. Numbers next to circles indicate thresholds for
predicting EP pairs using the Thurman et al. method. PreSTIGE made two sets of predictions: high- and low-confidence sets.

E2192 | www.pnas.org/cgi/doi/10.1073/pnas.1320308111 He et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1320308111/-/DCSupplemental/pnas.1320308111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1320308111/-/DCSupplemental/pnas.1320308111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1320308111/-/DCSupplemental/pnas.1320308111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1320308111/-/DCSupplemental/pnas.1320308111.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1320308111


(AUC = 67%) and much higher than that of PreSTIGE, nearest-
promoter, and Thurman et al. methods (Fig. 1E).
To determine whether our model was overfitted, we con-

ducted cross-validation experiments using a range of RF model
parameters and cross-validation schemes. Our results suggest the
model is not overfitted (SI Appendix, Experimental Procedures,
Table S2, and Fig. S4). We also trained models using two alter-
native statistical classifiers, support vector machine and logistic
regression. In both cases, we found that integrating four features
gave the best performance (SI Appendix, Fig. S5). Among the
three classifiers, the RF classifier had the largest AUC value. We
therefore chose to use RF classifier in our implementation of the
IM-PET algorithm.
We also tested whether IM-PET performs well in other eukaryotic

species. For this purpose, we obtained 831 EP pairs in Drosophila
melanogaster from the RedFly database that are validated by in
vivo transgenic reporter gene assays (3). Similar to our result using
human data, the four selected features are able to discriminate
true EP pairs from random ones. Cross-validation experiment
shows that IM-PET achieved higher prediction accuracy than
the nearest-promoter approach and the approach by Ernst et al.
(SI Appendix, Fig. S6). These results suggest that the IM-PET
algorithm is generally applicable to a range of species. A software
package implementing the IM-PET algorithm is available at www.
healthcare.uiowa.edu/labs/tan/IM-PET_Package.tgz.

Genome-Wide Prediction of EP Pairs in 12 Human Cell Types. Chro-
matin signatures and cofactor ChIP-Seq data have enabled ge-
nome-wide identification of enhancers (13, 22–25). However,

without linking target promoters to enhancers, it is difficult to
understand the regulatory output of enhancers and draw con-
nections in a regulatory network. Here, by applying the IM-PET
algorithm, we assigned targets for a genome-wide compendium
of enhancers across 12 cell types in human (Fig. 2A). Using CSI-
ANN, we predicted 208,342 enhancers in total, averaging 17,362
enhancers per cell type. This set of predictions has high quality as
84% of them overlap with at least one of three other genomic
marks for enhancers (distal DHS, sequence conservation, and
p300 site; SI Appendix, Table S1). We also identified 161,999 active
promoters in these cell types using RNA-Seq data and GENCODE
annotation of transcripts (26). At a false-discovery rate (FDR) of
0.01 (SI Appendix, Experimental Procedures), we predicted 441,879
unique EP pairs across the 12 cell types, averaging 36,823 in-
teractions per cell type (Table 1). The list of predicted EP pairs
and relevant information can be downloaded from www.healthcare.
uiowa.edu/labs/tan/EP_predictions.xlsx.
To corroborate our predictions, we conducted a series of com-

putational analyses as well as experimental validations. For com-
putational validations, we use three types of orthogonal datasets
to corroborate predictions made by the various methods, including
ChIA-PET, high-resolution Hi-C, and expression quantitative trait
locus (eQTL)–gene pairs.
First, we evaluated the predictions using additional ChIA-PET

interactions from K562, MCF7, and CD4+ T cells (5, 6) that are not
used during training the classifier. ROC curve analysis demon-
strates that our set of predictions (1% FDR) had the highest
balanced true- and false-positive rates (Fig. 2B). The data point
representing our method is closest to the upper left corner that
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Fig. 2. Genome-wide prediction and quality assessment of EP pairs in 12 cell types. (A) Schematic diagram for making genome-wide EP predictions using the
IM-PET method. ROC curve and F1 score using additional ChIA-PET EP pairs (B), Hi-C EP pairs (C), and eQTL-gene pairs (D) as the gold-standard sets, re-
spectively. F1 score is the harmonic mean of precision and recall. Numbers next to circles indicate thresholds for predicting EP pairs using the Thurman et al.
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He et al. PNAS | Published online May 12, 2014 | E2193

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1320308111/-/DCSupplemental/pnas.1320308111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1320308111/-/DCSupplemental/pnas.1320308111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1320308111/-/DCSupplemental/pnas.1320308111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1320308111/-/DCSupplemental/pnas.1320308111.sapp.pdf
http://www.healthcare.uiowa.edu/labs/tan/IM-PET_Package.tgz
http://www.healthcare.uiowa.edu/labs/tan/IM-PET_Package.tgz
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1320308111/-/DCSupplemental/pnas.1320308111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1320308111/-/DCSupplemental/pnas.1320308111.sapp.pdf
http://www.healthcare.uiowa.edu/labs/tan/EP_predictions.xlsx
http://www.healthcare.uiowa.edu/labs/tan/EP_predictions.xlsx


represents the performance of an ideal classifier. Our method
also has the highest F1 score, which is the harmonic mean of
precision and recall and quantifies the balanced performance. In
addition to our predictions using 1% FDR cutoff, we constructed
ROC curve across a range of prediction thresholds. Our method had
a higher AUC value compared with the method by Ernst et al.,
suggesting further improvement at lowered prediction stringency.
Recently, Jin et al. used high-resolution Hi-C to identify a set

of promoter–enhancer interactions in IMR90 cells (27). We fur-
ther evaluated the predicted EP pairs using IMR90 Hi-C inter-
actions. Both ROC curve analysis and F1 score demonstrate that
our method had the highest balanced performance (Fig. 2C).
eQTLs are genetic variants associated with the expression of

a gene. As another test of our EP predictions, we asked whether
predicted pairs significantly overlap with reported eQTL–gene
pairs. For GM12878 and HepG2 cells for which eQTL data are
available, consistent with above results using genome-wide chro-
matin interaction data, our method (Fig. 2D) achieved the highest
performance, further supporting our conclusion.

Validation Using Chromosome Conformation Capture Coupled with
Quantitative PCR. We performed chromosome conformation cap-
ture coupled with quantitative PCR (3C-qPCR) on nine ran-
domly selected predictions. Of those, four pairs were predicted
only in GM12878 cells and three pairs were predicted only in K562
pairs and one pair was predicted in both cell types. For most pairs,
we conducted 3C-qPCR in both cell types and performed 16 ex-
periments in total. For GM12878-specific pairs, the 3C-qPCR
experiments done with K562 cells are additional negative con-
trols that assess the prediction specificity, vice versa for K562
specific pairs. We achieved an 81% (13 of 16) validation rate. A
recent carbon-copy chromosome conformation capture (5C) study
estimated the false-positive rate of a single 5C experiment to be
20–47% (4), which suggests that our method has a similar accu-
racy as 5C. Of note, none of the test pairs was the nearest pair
and detected by published 5C or ChIA-PET studies. In partic-
ular, two EP pairs separated by very long distances were validated
by 3C. However, they were not detected by the previous 5C
or ChIA-PET studies (4, 5). An example validation experiment
involving a K562-specific interaction is shown in Fig. 2E. All
validation results are shown in SI Appendix, Figs. S7–S12 and
Tables S3 and S4.
Taken together, both computational and experimental vali-

dations confirmed the high quality of our predictions. We next
used these predictions to investigate mechanisms governing
EP interactions.

EP Interactions Have Higher Cell Type Specificity than Enhancers.
Although enhancers are known to function in a tissue-specific
manner (1), quantitatively, it is not known how and to what ex-
tent they contribute to the cell-specific gene expression program
in a cell. Consistent with recent large-scale chromatin interaction
studies (4, 27, 28), we observed that each enhancer on average
targets 2.92 promoters (Fig. 3A). About 32% of all enhancers are
unique to a single cell type. However, we found that 49% of the
EP interactions are unique to a single cell type. This trend holds
true across the entire specificity spectrum (i.e., occurrence in 1–
12 cell types). Fig. 3B plots the cumulative distributions of
enhancers and EP pairs that are observed in at least 1, 2, and up
to 12 cell types. Here, enhancers were predicted using 5% FDR
cutoff and EP pairs were predicted using varied FDR cutoffs. As
can be seen, the higher specificity of EP pairs is not an artifact of
different thresholds used for enhancer and EP pair predictions
because the trend is observed across a range of FDR thresholds
(Fig. 3B and SI Appendix, Fig. S13).
Our results suggest that cell type-specific EP interaction is

more prevalent than cell type-specific activity of enhancers. In
other words, nonspecific enhancers may be involved in specific
promoter interactions in different cell types. Thus, besides their
cell type-specific presence or absence, cell type-specific target
selection may contribute a large part to cell type-specific gene
expression. Fig. 3C shows an example enhancer that is consti-
tutively active in four cell types. However, its target promoter(s)
varies across the cell types. Importantly, the expression speci-
ficity of the predicted targets is consistent with the predicted
EP specificity.

Promoters with High Expression Specificity Are Regulated by Multiple
Enhancers That Have Lower Conservation Levels. Previously, multi-
ple enhancers controlling the same promoter have been identi-
fied in fly and termed “shadow enhancers.” It is suggested that
they are important for ensuring the robust expression of genes
with a critical role in development (29, 30). More recent 5C and
ChIA-PET have revealed additional examples of promoters
contacted by multiple enhancers (4, 5). To better characterize
this phenomenon, we first calculated promoter degree, which is
defined as the number of enhancers that interact with a given
promoter using the set of predicted EP pairs. The degree dis-
tribution of promoters in EP pairs is shown in Fig. 4A. Consistent
with a previous 5C study (4), we found that ∼40% of promoters
interact with two or more enhancers.
To better understand shadow enhancers and their target

promoters, we investigated several features, including promoter
expression specificity and Gene Ontology (GO) term enrich-

Table 1. Summary statistics of predicted enhancers and promoter pairs in 12 human cell lines

Cell type
No. predicted
enhancers

No. cell-specific
enhancers

No.
promoters

No. cell-specific
promoters

No. predicted
EP pairs

Median
distance, kbp

No. unique
EP pairs

GM 12878 12,696 3,358 20,085 9,500 29,334 67 12,955
H1 13,906 6,882 24,332 13,275 44,340 123 29,077
HepG2 19,648 8,149 25,424 11,993 38,797 61 19,137
HMEC 18,689 2,852 20,759 8,511 27,313 60 6,847
HSMM 14,049 3,416 14,228 6,234 17,483 77 6,069
HUVEC 19,945 4,694 22,984 10,843 32,759 58 11,085
IMR90 16,825 4,907 19,326 9,083 25,693 77 12,333
K562 15,987 4,907 24,791 11,735 39,944 61 19,852
MCF7 16,940 9,999 21,939 9,974 39,726 66 25,900
NHEK 19,111 2,932 25,853 10,003 36,154 59 11,653
NHLF 15,650 3,251 25,263 11,180 38,800 89 19,880
CD4+ T 21,796 10,198 29,480 18,870 71,536 111 41,409

Cell type-specific enhancers and EP pairs are defined as those occurring in only one cell type. Cell type-specific promoters are defined as those with an
expression specificity rank in the top 25%.
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ment, enhancer sequence conservation, and genomic location
bias. We computed an expression specificity rank for each pro-
moter using the compendium of RNA-Seq data in 12 cell types.
It is a value between 0 and 1, with 1 being the least specific (SI
Appendix, Experimental Procedures).
First, we observed a significant positive correlation between

the degree of a promoter and the expression specificity of the
promoter (P = 3 × 10−94, correlation test) (Fig. 4B). Second, GO
term analysis indicates that promoters controlled by three or
more enhancers are more enriched in cell type-specific terms (SI
Appendix, Table S5). Third, we observed a significant negative
correlation between enhancer sequence conservation and the
target promoter degree (P = 7.2 × 10−88, correlation test) (Fig.
4C), suggesting that shadow enhancers are less conserved. Fi-
nally, shadow enhancers tend to be more enriched in intergenic
region compared with intron and UTRs (P = 5.8 × 10−109, pro-
portion test) (Fig. 4D).
In summary, we found that promoters with high expression

specificity are more likely to be regulated by multiple shadow
enhancers. Furthermore, shadow enhancers are less conserved
and more enriched in the intergenic region. Our result expands
on the observation of shadow enhancers and suggests that there
exists a genetic backup mechanism for EP communication to
ensure accurate and robust cell type-specific gene expression.

Cohesin Mediates Chromatin Loop Formation and Regulates Cell
Type-Specific Gene Expression in the Absence of CTCF. Mechanisms
of long-range EP interactions have remained poorly defined so
far. Chromatin looping is an attractive mechanism for mediating
EP interaction (7, 31, 32). CTCF, the most characterized mam-
malian insulator-binding protein, has been suggested to mediate
chromatin loop formation between distal regulatory elements
and promoters (33). In addition, the cohesin complex has been
shown to colocalize with CTCF and facilitate the CTCF-mediated
chromatin looping (34). However, cohesin alone has recently been
implicated in tissue-specific transcriptional regulation in a CTCF-
independent manner (35, 36).
To better define the role of cohesin in EP interaction, we per-

formed an analysis of CTCF, cohesin, enhancers, and their target
gene expression, taking advantage of our genome-wide collection
of EP pairs. To identify looping interactions involving CTCF and
cohesin, we used ChIP-Seq data to find pairs of CTCF and cohesin
binding sites that overlap with our predicted EP pairs, i.e., oc-
curring at both enhancers and promoters. We call those mirrored
sites. We defined two kinds of mirrored cohesin sites: those that
do not contain CTCF sites, which we call cohesin-not-CTCF (CNC)
sites, and those that colocalize with CTCF sites, which we call
cohesin-and-CTCF (CAC) sites (SI Appendix, Table S6). We found
that mirrored CNC but not CAC sites significantly overlap with
predicted EP pairs (Fisher’s exact test, Fig. 5A). Furthermore,
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for EP pairs that overlap with CNC sites, we found that the in-
volved enhancers have higher cell type specificity than enhancers
overlapping with CAC sites [P = 9.3 × 10−67, Kolmogorov–
Smirnov (KS) test]. Similarly, the involved promoters have sig-
nificantly higher cell type specificity than promoters overlapping
with CAC sites (P = 3.4 × 10−14, t test) (Fig. 5B). Fig. 5C shows
three example transcripts (LY9, SULT2A1, ADAMTS14) with
high cell type-specific expression whose promoters are con-
trolled by CNC but not CAC in GM12787, HepG2, and K562
cells, respectively.
Previous studies have reported a large overlap between master

regulators and cohesin without CTCF (36, 37). In addition,
proteomic analysis showed direct interaction of cohesin subunits
with OCT4 and NANOG in ES cells (38, 39). These results sug-
gest that cell-specific TFs may be responsible for distinguishing
CNC and CAC sites. We thereby investigated the TFs whose
binding sites overlap with mirrored CNC and CAC sites. We
found that TFs overlapping CNC sites show significantly higher
expression specificity than those overlapping CAC sites (SI Ap-
pendix, Fig. S15, P = 8.3 × 10−28, t test).
Taken together, our result suggests that cohesin can mediate

chromatin looping without the involvement of CTCF. Such chro-
matin loops, compared with those mediated by both CTCF
and cohesin, appear to specialize in regulating cell type-specific
EP interactions and gene expression. Interactions between cell-
specific TFs and cohesin may provide the specificity of CNC-
mediated chromatin loops.

Discussion
Our method requires genome sequence, three histone modifi-
cation ChIP-Seq, and RNA-Seq/microarray data. The latter two
types of data are becoming widely available to hundreds of cell/
tissue types in various organisms thanks to the wide adoption of
next-gen sequencing technology and concerted effort to map the
epigenome. As an alternative to histone modification data, DHS
and transcriptional coactivator (e.g., p300) ChIP-Seq data can
also be used in constructing the EPC feature. Thus, our method
is generally applicable.

Among the four features used in the IM-PET method, distance
constraint (DIS) is the most frequently used feature in previous
approaches. However, selecting the nearest promoter or using
a hard-set distance cutoff is not appropriate, as evidenced by recent
3C-based studies (4–6) as well as our comprehensive analysis
presented here. A more principled way to use distance constraint
is to express the probability of EP interaction as a function of dis-
tance. Here, we took advantage of the recently developed ChIA-
PET technology (5) and used stringent criteria to extract a set of
high confident EP pairs. We observed that the relation between
distance and EP contact frequency could be modeled by a geo-
metric distribution (SI Appendix, Fig. S3). Combining with the
distance distribution of nonspecific interactions due to random
collision of chromatin fiber, we introduced a probabilistic model
of the DIS feature.
Besides DIS, we introduced three new features, EPC, TPC,

and COEV. By combining features with different predictive power,
we were able to achieve a significant improvement, demonstrating
the value of an integrative approach. We analyzed the relative im-
portance of the four features by assessing the impact of removing
a feature on the model performance. We found that DIS and EPC
are the most important features but all features contribute to the
overall performance of the model (SI Appendix, Fig. S16). We ex-
pect that the performance of our method can be improved by in-
corporating additional features, such as the preference of enhancers
for certain classes of promoters (40, 41) and the existence of
tethering elements in promoters that capture enhancers (42).
Through the development and application of IM-PET, we pro-

duced a comprehensive catalog of enhancer targets in 12 human
cell types. Our predictions are supported by a set of corrobo-
rating evidence. We expect that our work will have a significant
impact on multiple aspects of enhancer biology, such as the basic
mode of action and their involvement in disease etiology.

Materials and Methods
Definition of Promoters and Enhancers Used. In this study, promoters are
defined as 2 kbp upstream and 0.5 kbp downstream of a transcription start
site annotated in GENCODE (26), a manually curated, high-quality set of
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transcripts in human genome. Enhancers in each cell type are predicted by
CSI-ANN using cell type-specific histone modification data. We used 5% FDR
as the cutoff, which yielded numbers of enhancers per cell that are consis-
tent with published literature. Each predicted enhancer sequence is 2 kbp
long. Judged by overlapping with various types of enhancer marks, the set
of predicted enhancers also has high quality (SI Appendix, Table S1).

Preparation of Training Set EP Pairs. Positive training set.We selected the set of
EP pairs based on a recently published ChIA-PET dataset. Using an anti-RNA
polymerase II antibody, Li et al. (5) identified chromatin interactions in-
volving promoters in human K562 and MCF-7 cells. Not all of these inter-
actions are between promoters and enhancers. Thus, we first identified
enhancers in these two cell types using the CSI-ANN algorithm (17) and three
histone modifications that together uniquely mark active enhancers (H3K4me1,
H3K4me3, and H3K27ac) (43). Next, we used the following stringent criteria
to select enhancers that overlap with reported ChIA-PET interactions: (i) cis
interactions with ≥ 5 PET counts (more stringent than the 3 counts used by
the authors); (ii) one interacting site contains p300 site (enhancer marker)
but not promoter, and the other interacting site contains promoter but not
p300 site; (iii) promoters need to be expressed based on matching RNA-Seq

data (i.e., FPKM value > 0). Using this set of stringent criteria, we extracted
1,124 and 1,110 enhancer and promoter pairs for K562 and MCF-7 cells,
respectively. The selected enhancers have higher levels of histone marks and
the selected target promoters have higher expression levels in the corre-
sponding cell types (SI Appendix, Fig. S2), further supporting the quality of
these interactions.
Negative training set. A naïve approach to selecting negative training pairs is
to randomly select a promoter for a given enhancer. However, the contact
frequency between two noninteracting genomic loci in a chromatin fiber
does not follow a uniform distribution. Instead, it is a function of the site
separation distance in the following form (7):

fðsÞ= k× s−3=2 × e−1,400=s
2
,

where s denotes the sites separation distance, and the proportionality
constant k reflects the efficiency of the cross-linking reaction. In our analysis,
to generate a set of noninteracting EP pairs, for each enhancer, we first
randomly selected a site based on the contact frequency distribution de-
scribed above. Then we selected the closest promoter to that site as the
candidate target. We also ensured that the selected promoter was not
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detected by ChIA-PET. Otherwise, we would use the next closest promoter to
the site until it met our criteria. As a result, we selected a noninteracting
promoter for each of all 2,234 enhancers in the positive training set.

Calculation of Feature Values. EPC. We first used the CSI-ANN algorithm to
predict enhancers using histone modification ChIP-Seq datasets for each cell
type. Next, for a given enhancer, its CSI-ANN scores across 11 cell types were
used to construct an enhancer activity profile. For each promoter, its tran-
script expression levels across 11 cell lines were estimated from RNA-Seq data
using FPKM. FPKM values were then used to construct a promoter activity
profile. Pearson correlations were computed for all pairs of enhancer and
promoter activity profiles and used as the EPC scores.
TPC.We collected DNA binding motifs of 350 TFs from TRANSFAC (44), Jaspar
(45), and Uniprobe (46). For a given enhancer and a TF, we calculated the
binding probability of the TFs to the enhancer.

Given a sequence A of an enhancer and a position-specific scoring matrix
(PSSM) M representing a TF binding motif, the binding probability can be
approximated as follows (47):

PðboundjA,MÞ= c
Xl

j=1

esj
,Xg

j=1

esj ,

where l is the length of A and g is the length of the background sequence, Sj
is the score of the sequence word starting at position j according to the
PSSM, and c represents the concentration of the TF in the cell. In our analysis,
we used the sequence of the entire chromosome 1 as the background, and
the mRNA expression level of the TF as an estimate of c.

We selected top five TFs for each enhancer based on the binding prob-
abilities. For each of the five TFs, we calculated the Pearson correlation
coefficients between the TF and the target gene expression. The mean
correlation of the five was used as the final TPC score.
COEV.Weused the genome sequences of the following 15mammalian species
to calculate the COEV score: human, chimp, gorilla, orangutan, gibbon,
rhesus, baboon, marmoset, tarsier, mouse lemur, tree shrew, mouse, rat,
rabbit, and guinea pig.

It is known that regulatory DNA sequences may exhibit low conservation
at the sequence level but higher level of synteny. Therefore, we considered
both scenarios of evolutionary conservation: conserved sequence and
conserved synteny.

To compute sequence conservation of a human enhancer or promoter, we
extracted all of its homologous sequences in 14 mammal species, and com-
puted the sequence similarity scores between the human sequence and its 14
homologous sequences separately. We used the alignment free algorithm
ALF (version 1.0) to compute sequence similarity scores (48) as it is known that
the order of TF binding sites in enhancers and promoters may not be con-
served (18). We then scaled sequence similarities scores by their rank to
between 0 and 1 so that the element with the highest similarity score was
assigned a score of 1. We denote the normalized similarity scores as ASe,s and
ASp,s for enhancer and promoter, respectively.

It is suggested that a real EP pair is more likely to be maintained in a
conserved synteny block among different species (19, 20). Based on this idea,
we defined a synteny score, δs, for each EP pair in species s. It equals to 1 if the
distance between an enhancer and a promoter is less than 2 Mbp in species s,
otherwise 0. We used the Liftover tool to find the syntenic regions covering
every enhancer and promoter, and computed synteny scores for each EP pair
in the training set based on 14 mammal species that are close to human.

Next, we combined sequence and synteny conservation information and
compute a final coevolution score for each candidate pair as follows:

COEV =
X14
s=1

δs ×ASe,s ×ASp,s:

DIS. The genomic distance between a transcription start site and the center of
an enhancer region (2 kbp) was used for this feature.

Predictive Model and Performance Assessment. Using the four features, we
built a classifier using RF algorithm (21). The general idea of RF is to in-
troduce some random perturbation in the process that generates single
decision trees to get an ensemble of different trees. In the forest, each single
tree is built based on a subset of randomly selected samples and a subset of
randomly selected features; therefore, it is a weak classifier. However, the
combination of all trees in a forest is a strong classifier. Our RF model con-
sisted of 1,000 decision trees and each decision tree was built using 2/3 of
randomly selected training data and 2 randomly selected features. We cal-
culated the linkage score of an EP pair as the fraction of trees that classified
the promoter as the enhancer target.

To evaluate the prediction accuracy of the model, we conducted a fivefold
cross-validation. We partitioned the enhancers in the training set into five
subsets. In each itinerary, we predicted targets for one-fifth of the enhancers.
For each test enhancer, we extracted all promoters within the 2-Mbpwindow
centered at the enhancer and computed a linkage score for each promoter
using the RFmodel. This distance was chosen to cover 99.3% of training set of
EP pairs. In total, we had 652,800 candidate EP pairs within all test windows, in
which only 2,219 are true pairs according to the training set. We calculated
the true- and false-positive rates of prediction sets using different decision
thresholds. We averaged the true- and false-positive rates of fivefold cross
validation to generate the ROC curve. Genome-wide predictions were also
evaluated using ROC curves using additional external datasets (see SI Ap-
pendix for details).

3C-qPCR. 3C-qPCR was performed as previously described (11, 49). A total of
1 × 107 cells were cross-linked with 1% formaldehyde for 10 min at room
temperature. The reaction was quenched by the addition of 0.125 M glycine
for 5 min at room temperature. After cell lysis, chromatin was digested using
400 units of HindIII (NEB) at 37 °C overnight. Digested DNA fragments were
ligated using T4 DNA ligase (NEB) for 4 h at 16 °C. Samples were reverse
cross-linked at 65 °C overnight and purified using QIAquick spin columns.
DNA concentrations were measured using Nanodrop.

A control template containing all possible ligation products in equimolar
amounts was used to check the amplification efficiency of each PCR primer
set. Bacterial artificial chromosome (BAC) clones were used as control tem-
plate to cover the genomic region under study. BAC DNA was digested using
1,000 units of HindIII (NEB) at 37 °C overnight. After DNA purification,
digested DNA fragments were ligated using T4 DNA ligase (NEB) at 16 °C
overnight. DNA was purified using QIAquick spin columns, and concen-
trations were measured using Nanodrop.

Genome regions for 3C-qPCR were chosen based on predicted EP inter-
actions. All primers were designed to be within 25–100 bp from the nearest
restriction enzyme digestion site. Quantitative real-time PCR was performed
using SYBR Green chemistry on an ABI PRISM 7900. The linear range of
amplification for BAC template and 3C template were determined by serial
dilution. The template DNA was mixed with genomic DNA to obtain a final
working concentration of total DNA (40 ng/μL). This amount of DNA tem-
plate was used in subsequent experiments.

To quantify specific chromatin interactions, normalized relative amount of
3C product was calculated using the following formula:

2−ΔΔCt = 2
�
ðCt3Cinteraction−Ct3CcontrolÞ−ðCtBACinteraction−Ct

BAC
controlÞ

�
,

where Ct3Cinteraction and CtBACinteraction quantify PCR products at the test locus in
the 3C and BAC template, respectively, and Ct3Ccontrol and CtBACcontrol quantify PCR
product at internal control locus in the 3C and BAC template, respectively.
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