L T

/

D\

CrossMark
& click for updates

Flight—crash events in turbulence

Haitao Xu®®, Alain Pumir®®<, Gregory Falkovich®®<, Eberhard Bodenschatz**%9-!, Michael Shats", Hua Xia",

Nicolas Francois", and Guido Boffetta®

®International Collaboration for Turbulence Research, D-37077 Géttingen, Germany; ®Max Planck Institute for Dynamics and Self-Organization, D-37077
Gottingen, Germany; “Laboratoire de Physique, Ecole Normale Supérieure de Lyon, Université de Lyon 1 and Centre National de la Recherche Scientifique,
F-69007 Lyon, France; dPhysics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel; Institute for Information Transmission
Problems, Moscow 127994, Russia; fnstitute for Nonlinear Dynamics, University of Gottingen, D-37077 Géttingen, Germany; SLaboratory of Atomic and Solid
State Physics and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853; hResearch School of Physics and Engineering,
The Australian National University, Canberra, ACT 0200, Australia; and 'Department of Physics and Istituto Nazionale di Fisica Nucleare, University of Torino,

1-10125 Turin, Italy

Edited by Harry L. Swinney, University of Texas at Austin, Austin, TX, and approved March 24, 2014 (received for review November 20, 2013)

The statistical properties of turbulence differ in an essential way from
those of systems in or near thermal equilibrium because of the flux of
energy between vastly different scales at which energy is supplied
and at which it is dissipated. We elucidate this difference by studying
experimentally and numerically the fluctuations of the energy of
a small fluid particle moving in a turbulent fluid. We demonstrate
how the fundamental property of detailed balance is broken, so that
the probabilities of forward and backward transitions are not equal
for turbulence. In physical terms, we found that in a large set of flow
configurations, fluid elements decelerate faster than accelerate,
a feature known all too well from driving in dense traffic. The
statistical signature of rare “flight-crash” events, associated with fast
particle deceleration, provides a way to quantify irreversibility in a tur-
bulent flow. Namely, we find that the third moment of the power
fluctuations along a trajectory, nondimensionalized by the energy
flux, displays a remarkable power law as a function of the Reynolds
number, both in two and in three spatial dimensions. This establishes
a relation between the irreversibility of the system and the range of
active scales. We speculate that the breakdown of the detailed bal-
ance characterized here is a general feature of other systems very far
from equilibrium, displaying a wide range of spatial scales.
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In systems at thermal equilibrium, the probabilities of forward
and backward transitions between any two states are equal,
a property known as “detailed balance.” This fundamental prop-
erty expresses time reversibility of equilibrium statistics (1). In
the important class of nonequilibrium problems, where the dy-
namics of the system is coupled with a heat bath, the notion of
detailed balance can be extended and fluctuation theorems
successfully describe the behavior (2, 3). This class contains many
experimental situations (4) where quantitative information on
irreversibility was obtained (3). When a system driven by thermal
noise is characterized by a probability current, the fluctuation—
dissipation theorem and detailed balance was found to apply in
a comoving reference frame (5).

In comparison, very little is known concerning the statistical
properties of a small part embedded in a fluctuating, turbulent
background. The fundamental notion of detailed balance is not
expected to apply in such systems. Here we ask, what does the
time irreversibility inherent to the large system imply for the
statistical properties of small parts in the system and how do we
measure the degree of irreversibility (6, 7) (or equivalently, how
far is the system away from equilibrium) by monitoring a small
part in the system? We focus here on fluid turbulence, a para-
digm for ultimate far-from-equilibrium states, where irrevers-
ibility of fluctuations is a fundamental property (8, 9). We show
that the simplest and most fundamental scalar quantity, namely,
the kinetic energy of a fluid particle, enables a clear identifica-
tion and quantification of the irreversibility of the turbulent flow.
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The characteristic properties of turbulence rest on the vastly
different scales: from the scale /5, where the flow is forced and in-
ertia dominates, to the scale /p, where dissipation takes over. For
a balance between forcing and dissipation in a statistically steady
flow, energy is transferred through scales at an average rate e,
a phenomenon called “energy cascade.” In 3D flows, where I > Ip
(9, 10), energy cascades from large to small scales. In contrast, en-
ergy transfers from small to large scales in 2D flows, where Ir < Ip
(11, 12). The energy flux is ultimately the source of statistical irre-
versibility. It is important to understand that the fluctuations in
turbulence are fundamentally different from those about thermal
equilibrium (8). The energy flux through scales, €, however, cannot
in itself be a measure of irreversibility in the system because ¢ is
a dimensional quantity, so it can be made arbitrarily large by
changing the units even if the system is very close to equilibrium.
Moreover, it can be expressed as a moment of velocity differences at
a single time (10, 13) without any reference to the evolution of
the flow.

As we demonstrate below, the irreversibility induced by the
energy flux through spatial scales can be revealed and quantified
by following the change of the kinetic energy of small fluid ele-
ments (particles). The kinetic energy per unit mass of the fluid
is simply E(¢) = (1/2)V2(¢), where V(¢) is the velocity of a given
fluid element. It should be stressed that detecting irreversibility
from the motion of a single particle requires going beyond ve-
locity structure functions, defined as the moments of velocity
differences along trajectories, V(f) — V(0), whose statistical prop-
erties are invariant under the ¢t - —¢ transformation (14).
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Irreversibility is a fundamental aspect of the evolution of nat-
ural systems, and quantifying its manifestations is a challenge
in any attempt to describe nonequilibrium systems. In the case
of fluid turbulence, an emblematic example of a system very
far from equilibrium, we show that the motion of a single fluid
particle provides a clear manifestation of time irreversibility.
Namely, we observe that fluid particles tend to lose kinetic
energy faster than they gain it. This is best seen by the pres-
ence of rare “flight-crash” events, where fast moving particles
suddenly decelerate into a region where fluid motion is slow.
Remarkably, the statistical signature of these events estab-
lishes a quantitative relation between the degree of irrevers-
ibility and turbulence intensity.
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The recent advances in our ability to reliably measure the
trajectories of small tracer particles in well-controlled laboratory
flows (15-18), as well as to simulate accurately the motion of
particle tracers using the Navier—Stokes equation (16) allow us to
investigate these fundamental issues. In this work, we restrict
ourselves to statistically stationary and homogeneous flows. The
results shown here were obtained from a variety of flow config-
urations in 2D and 3D, including both laboratory experiments
and direct numerical simulations of the Navier-Stokes equa-
tions. The datasets contain a large number of trajectories, with at
least 10% data points in total, both in 2D and 3D (see Materials
and Methods and SI Text for details).

Results

“Flight-Crash” Events. The phenomenon discussed here is illus-
trated in Fig. 1 4 and B, which show the evolution of E(¢) along the
trajectory of a fluid particle in a 3D laboratory water flow (17, 18).
It illustrates that to build up large kinetic energy requires a longer
time than to dissipate the same amount. This points to the oc-
currence of flight—crash like events, whereby a particle flies with
alarge velocity, before suddenly losing energy. This feature, which
we also observed in numerical simulation of turbulent flows, is
reminiscent of what occurs in very different systems, such as cars
in traffic (19) or even fluctuations of stock values (20).

Statistics of Energy Difference. The statistics of the energy incre-
ments, W(z)=E(t+1)—E(t), are sensitive to the flight-crash
events. We stress that the moments of W (z) cannot be expressed
in terms of Lagrangian velocity structure functions, and notice
that the kinetic energy E(¢) is not Galilean invariant, which we
further discuss in S Text. The asymmetry revealed by Fig. 1 implies
that the distribution of W (z) is skewed: Odd moments are expected
to be negative for z > 0. For stationary, homogeneous flows, the first
moment vanishes, (W (7)) = 0. The first nonvanishing odd moment,
—(W3(z)), measured from both experiments and numerical simu-
lations (18) of 3D turbulence is shown in Fig. 24. In all these flows,
—(W3(z)) grows as 7° at short times, then slower at intermediate
times, and remains positive over the entire range of turbulence dy-
namical time scales. [Negative skewness of 2 (f) — u2(0), where uy is

X
one velocity component of a tracer particle in a 3D turbulence flow,
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Fig. 1. Asymmetry of the statistics of energy differences. (A) The trajectory of
a fluid particle in a 3D laboratory flow at R, =690. The color coding refers to the
instantaneous power p(t)=dE/dt=a(t)-V(t) acting on the fluid particle,
showing that energy builds up slowly and dissipates quickly. The particle enters
the observation volume from above and leaves from below. The scale bar is
expressed in terms of the Kolmogorov scale 7, which is the dissipation scale of
this flow, Ip = =30 pm. (B) The evolution of the kinetic energy E(t) of the same
particle as a function of time, in units of the Kolmogorov time 7, the fastest
time scale of the flow, characterizing the dynamics at scale Ip. B, Upper is for the
entire trajectory, while Lower magnifies the period with strong energy change,
i.e., high power fluctuations (same color coding as in A). The particle experiences
higher values of negative p, compared with positive p, indicating that the par-
ticle loses kinetic energy more rapidly than gaining energy.
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was also reported by Mordant (21).] Fig. 2B shows that the third
moment of W(z) in 2D is similar to those in 3D (Fig. 24), i.e., it is
independent of the difference in the direction of the energy flux in
2D and 3D. This demonstrates again that the energy flux ¢ by itself is
not an appropriate measure of irreversibility and suggests the use of
the dimensionless rate of change of the kinetic energy instead. A
systematic statistical characterization of W (z) can be formulated
from its probability distribution function (PDF). Fig. 2C shows the
PDF of W (z) for several values of 7 in the range tx <7< T, where
7k and T are the characteristic times at the dissipation scale I and
the forcing scale I, respectively. The PDF of W (z), normalized by
its variance, exhibits wide tails, the more so as the value of 7 is
smaller. This feature is possibly related to intermittency, a charac-
teristic phenomenon in turbulent fluids.

Could we understand the skewness of W(r) in the framework
of fluctuation theorems that have been established theoretically
(22, 23), and verified experimentally (4)? For small systems in
contact with thermostats, fluctuation theorems state that the
probabilities of energy gaining and energy loss are related (2) by

P_W)
i { PW)

} W, [1]

which, at a first glance, is also suggested by the shape of the tails
of PDFs in Fig. 2C. Our measurements of In[P(—W)/P(W)] at
different values of time-lag z, shown in Fig. 2D, however, shows
a more complicated dependence on W than the simple linear law 1.
This suggests that fluctuation theorems do not apply directly to
tracer particles in turbulence. This we attribute to the properties
of the forces acting on fluid particles, which are very different from
the forces in usual thermodynamic systems (8).

Statistics of Power Fluctuations: Quantifying Detailed Balance Violations.
As we demonstrate that the results obtained in the general context
of stochastic thermodynamics do not apply to a small fluid element
carried by the fluid, the asymmetry observed for the distribution of
the energy differences along a trajectory (Fig. 2C) points to a more
fundamental aspect, namely the breakdown of time reversibility in
the system. In fact, as we show in the following, the third moment of
W (z) allows us to quantify the irreversibility, and to relate it to the
range of scales in the system.

Let us consider the rate of change of the kinetic energy fol-
lowing a tracer particle, ie., the power p=Ilim._o[W(7)/7]=
dE/dt=V-a, with a=dV/dt being the fluid acceleration. At
thermal equilibrium, time reversibility is equivalent to detailed
balance in the sense that the probability of energy gain (p > 0) is
the same as the probability of energy loss (p <0) for any particle
with any velocity. Asymmetric (skewed) PDFs of p, as shown in
Fig. 3 4 and B, are therefore a signature that detailed balance is
violated. [We note that the statistics of the power p may be af-
fected by specific, nonuniversal aspects of the forcing, especially
in 2D, in which the external forcing acts at small scales and is
fast-changing (SI Text).] This violation can then be quantified by
odd moments of the fluctuations of p, which change sign when
reversing t — —t, thus enabling to detect whether the movie of
turbulence is playing backwards or forwards (9). Similar to W (z),
the first moment of p vanishes for stationary and homogeneous
flows. The third moment, which can be measured reliably, is
sufficient to quantify the violation of detailed balance.

As already explained, a proper measure must be dimension-
less. A natural choice is the dimensionless power p/e, whose
third moment, Ir, defined as

Ir=—(p*)/¢, 2]

allows us to measure irreversibility. Fig. 3 C and D show that Ir
increases with the Reynolds number in both 2D and 3D, hence
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with the separation of scales between forcing and dissipation. In
3D, it grows approximately as Ir R, where R; o (IF /Ip)*? is the
Taylor-scale Reynolds number for 3D turbulence. For 2D turbu-
lence in the energy cascade regime, i.e., [r < Ip, we characterize
the scale s¢ aration by the friction-based Reynolds number
Ry (Ip/lr)* (SI Text). The data from both experiments and
numerics shown in Fig. 3D demonstrate that irreversibility grows
also with this Reynolds number approximately as Ir xR2. The
second moment, (p?)/&?, grows with the Reynolds numbers as
RY3 and R, 4/3 as shown i 1n Fig. 3 E and F. As a consequence, the
skewness of the power fluctuations, defined as s = (p)/ (p2)3/ 2 is

approximately constant over the range of Reynolds numbers in-
vestigated in both 2D and 3D.

Thus, remarkably, the measure of irreversibility, Ir, directly
accessible in laboratory flows, depends on the Reynolds number
to a simple power, independent of the specificity of the forcing,
and even more surprisingly, of the directions of the energy flux.

We note that the dependence of the moments ((p/e)") as
R or R'/3 for n=2 and 3 does not extend to higher values of
n, consistent with the observation that the PDFs of p/e are not
self-similar, and depend on the Reynolds number (S7 Text).

Scaling of Power and Flight-Crash Events

The results documented in Figs. 2 and 3 establish a clear relation
between the moments of the power, hence of the energy differ-
ences, and the Reynolds number. The aim of this section is to
provide simple phenomenological arguments to interpret the
dependence found in Fig. 3, which is observed both in 2D and 3D
and seems universal.

—_DNS, Ry =115
« EXP, Ry = 350
| + EXP, Ry =690
10} o EXP, R) = 815
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Fig. 2.
experiments (EXP) and direct numerical simulations (DNS). The quantity —(

First, let us note that the Lagrangian velocity difference does not
have self-similar statistics, so it is reasonable to assume that there
are events with different scaling exponents y for the velocity change,
8V (r) x'. Different y contribute different velocity moments.
Landau-Obukhov phenomenology (14) suggests 8V (z) ~ (e7)"/%,
which physically corresponds to velocity diffusion under the ac-
tion of random short-correlated forces. If particle acceleration
(energy 1ncrease) would proceed in this way, one would expect
(p?)  (a?) «R;. Our results of (p?) R} on power moments, as
shown in Fig. 3, thus make it reasonable to assume that another
type of events exists, where a fast particle takes flight and then
sharply decelerates (by pressure gradient and/or viscous friction) to
acquire the velocity of its neighbors. During such a flight, the par-
ticle travels a distance ~ }'z and the velocity difference across
such distance can be estimated by the Kolmogorov estimate
5V (z) ~ (eV7)!/3. This estimate rests on the assumption that the
Eulerian field remains essentially frozen during the time 7. Note that
this velocity change is much larger than the one suggested by
Landau-Obukhov, (sVr)m/(sr)l/2 = (T/r)l/ﬁ, thus such events
must be rare. Therefore, it is unlikely that these rare flight-crash
events dominate the Lagrangian structure functions ([sV'(z)]"),
especially for small values of n. As we now demonstrate, however,
the scaling of the power suggests that such events provide the
main contribution to the moments of the energy changes and
power, which are determined by the correlation between V and
6V. The flight and crash picture suggests for times in the in-
ertial interval
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(A) The third moment of energy increments W(z)=E(t+7)—E(t) as a function of z in 3D turbulence for different Reynolds numbers from both
W(r)3) grows like 73 at short times. The curves obtained at different Reynolds

numbers collapse once scaled using [3] (Inset). (B) The third moment of W(r) from 2D turbulence experiments. Features similar to 3D turbulence are observed,

e., (W3(z)) is negative and nearly saturates when z/z; ~ 1, where z¢ ~ (12 /s)"/* is the characteristic time corresponding to scale /¢ (S/ Text). (C) PDFs of W(z) at
different values of 7, in the 7x <7< T range, corresponding to 3D experimental flow at R, =350. The values of W(z) are normalized by their rms values. For
clarity, the PDFs have been shifted by a factor of 10 from each other. The PDF tails can be plausibly represented by exponentials. (D) The logarithm of the
ratios of the probability of —W and W as a function of W (W > 0) at different values of z. The linear prediction of [1], which has been shown to apply in many
systems in presence of several thermostats, does not simply apply for turbulence.
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W(t)aV -8V ~V*3(er)'3. [3]

This scaling for the energy change means that the Lagrangian
quantity proportional to ¢ is the third-order structure function of
the energy difference, (W3(7)) U3, (eUpnst). This suggests that
the smooth scaling (W>(r)) «7° at 7 < 7 turns into (W>(7)) x ez
at 7 > tx. Accordingly, we normalize the third moment of W by
U: .et, as shown in Fig. 24, Inset. The very good collapse of the
data in 3D gives support for the flight-crash picture discussed here.
Using the same scaling in 2D leads to a very good collapse of the
curves for very small z. The difference between Fig. 2.4 and B at
longer times may be a manifestation of the very different physics
occurring in 2D and 3D flows. The finite-time ayerage power
W (z)/z behaves as V6V [z ~ V(Vsr)1/3/f~ s(T/r)Z/S. It increases
when 7 decreases and saturates at 7 ~ 7, since W (z) x 7 for z < 7.
The moments of the instantaneous power can therefore be deduced
from [3] using the saturation value p ~ W (zk) /1K~8(T/1K)2/ 3
which leads to (p*) x&3(T/1x)? x&>R2 and (p?) x&?R}" as ob-
served in Fig. 3. The scaling provided by [3] also explains the
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systematic dependence of (W3(7))/(E)’ as a function of the Rey-
nolds number (SI Text).

Discussion

Turbulence is characterized by large fluctuations. Notoriously,
the local energy dissipation rate shows strong spatial fluctua-
tions, which are known to play a key role in the origin of in-
termittency, or fluctuations of other quantities of the turbulent
flow (10). Much work has been devoted to the modeling of
fluctuations of the local dissipation rate and of its coarse-grained
generalization, especially in relation to devising approximate
numerical schemes (13). Here we are interested in the related
but different question of the exchange between a very small
subsystem, a fluid particle, and the surrounding turbulent flow, in
the spirit of work done for small systems in contact with ther-
mostats (3). The comparison of our results with those described
by stochastic thermodynamics, therefore, reveals the general
features of systems very far from thermal equilibrium.

The main achievement of this work has been to document and
quantify the intrinsic irreversibility of turbulent flows. This led us
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Fig. 3. (A) The PDFs of p/e¢ at three different Reynolds numbers R, = 170, 430, and 690 for 3D turbulence. For comparison, the PDFs of negative power (p <0),
shown by the dashed lines, are reflected around the vertical axis. The characteristic power is much larger than ¢ and increases with the Reynolds number.
Moreover, large negative values of p are more frequent than large positive values, indicating that most of the violent energy exchange events that a fluid
particle experiences are energy-loss events rather than energy gaining. Data at R; = 170 and 430 are from DNSs and data at R, =690 are from experiments. (B)
PDFs of p/e from 2D turbulence simulations at R, =26, 51, and 102. Similar behavior as for 3D turbulence is observed. (C-F) Statistical properties of the
instantaneous power p acting on fluid particles. (C) Variation of —(p?) /&3 vs. R; for 3D turbulence. Its increase is close to RZ. (D) Variation of —(p3) /&3 vs. R, for
2D turbulence, which increases approximately as R2. (E and F) Variation of (p3)/e* for 3D and 2D turbulence, respectively. The variance increases rapidly with
Reynolds numbers, close to Rf/3 or R¥3 for 3D and 2D turbulence. This results in a skewness nearly independent of the Reynolds number: <p3)/<p2)3/2 ~-0.5in

3D and ~-0.20 in 2D.

Xu et al.

PNAS | May 27,2014 | vol. 111 | no.21 | 7561

PHYSICS


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321682111/-/DCSupplemental/pnas.201321682SI.pdf?targetid=nameddest=STXT

to define a quantity Ir, which increases as a power law when the
Reynolds number increases, i.e., when the flow becomes more
turbulent. Remarkably, this way of characterizing turbulent flows
is insensitive to the direction of energy flux through spatial scales.

The observation of asymmetry in the time dependence of the
kinetic energy of particle in a turbulent flows should be con-
trasted with the spatial asymmetry, observed in particular in the
case of a passive scalar with an imposed gradient (24). In this
case, the asymmetric, ramp-and-cliff structure results from a
large scale forcing (the gradient), and persists all the way to very
small scales. A weaker analogy has been documented in shear
flows (25, 26). The phenomenon documented here is very dif-
ferent, as the temporal asymmetry is found both for direct and
inverse cascades. It would be interesting to understand whether
the possible connection between (W?3(z)) and the third-order
Eulerian structure function point to any particular flow struc-
tures (27). We merely notice here that the sizes shown in Fig. 14
make any apparent relation with vortex tubes, observed many
times before (15), unlikely.

Our results stress the main difference between the well-stud-
ied case of systems in contact with thermostats, and those in-
volving a cascade through scales such as turbulence. In this
context, our approach could shed new light on a variety of dif-
ferent problems, such as plasma turbulence (28), quantum tur-
bulence (29), magnetohydrodynamics (30), and more generally, on
any system that is irreversible and has a separation of scales. The
investigation of such systems in the spirit of the present work is
likely to lead to new concepts in the physics of the nonequilibrium.

Materials and Methods

We describe briefly the different turbulent flows that we analyzed in both 3D
and 2D and in both physical experiments and numerical simulations. More
details can be found in S/ Text.

Experimental Setups. The turbulent flows that we generated in laboratory
experiments include the 3D von Karman flows, 2D turbulence driven either
electromagnetically or by surface ripples (Faraday waves).

von Karmén flows in 3D. The 3D experiments were performed in a so-called von
Karman mixer, which generates high-Reynolds-number turbulent water flow
between two counterrotating disks (15, 17). We measured 3D trajectories of
tracer particles seeded in the flow using optical Lagrangian particle tracking
(17, 18). The Reynolds number of the turbulence was in the 350 <R; <690
range. The effects induced by the weak inhomogeneity of the flow at the
center of the apparatus, where the measurements were carried out, can be
shown to be small (S/ Text).

Two-dimensional turbulence experiments. Energy is injected into flows by driving
horizontal vortices whose scale is much smaller than the size of the container.
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In electromagnetically driven turbulence such vortices are driven by the
Lorenz force produced by the spatially varying vertical magnetic field and the
electric current flowing across the fluid cell in electrolyte. In the Farady-wave-
driven turbulence the vorticity is generated at the scale approximately at half
of the wave period (31). The injected energy is then spread by the inverse
energy cascade over a broad range of scales to form the Kolmogorov-
Kraichnan spectrum. The 2D particle trajectories are tracked for a long time,
up to 100 Lagrangian integral times (32).

Direct Numerical Simulations. The numerical work is based on simulating the
Navier-Stokes equations,

du+u-Vu=-VP+1V2u+f-au, [4]

where u(x,t) is the fluid velocity at location x and at time t. The velocity field
is incompressible V-u=0, a constraint which is imposed with the help of the
pressure field P. The flow is forced by using an external field f, which varies
at a characteristic scale /r. The viscous term vV2u acts to dissipate energy. For
2D flows, a linear friction is introduced through the —au term (a=0 in 3D), to
prevent the accumulation of energy at scales larger than Ip =a~3/2¢'/2.

The Lagrangian information is then obtained by integrating in time the
equation of motion of fluid tracers

=it =ux), [5
in which the tracer velocity V(t) is the same as the fluid velocity u at position
X and time t.

In all cases a statistically stationary flow was maintained by balancing the
forcing and the dissipation terms. All the simulations discussed here were
carried out in a periodic domain using standard pseudospectral methods.

In 3D, the simulations reported here used up to 384> modes. The flow was
forced at a scale /r comparable to the size of the domain, while energy was
dissipated at the Kolmogorov scale n, n=1Ip = (y3/£)1/4, which was the smallest
scale resolved in the simulation. The turbulence Reynolds numbers were
R, =115 and 170. Additionally, we used the flow field at R; =430 made
available from the Johns Hopkins University database (33).

The simulations of 2D flows reported here were carried out with up to
8,192 modes. Forcing acted at a small scale /¢ only, and energy was damped
by friction that acts at a scale /p, comparable to the size of the system.
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