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The recognition of cytoplasmic nucleic acid is critical for innate
immune responses against microbial infection and is responsible
for autoimmunity induced by dead cells. Here, we report the iden-
tification of a unique cytosolic nucleic acid cosensor in human airway
epithelial cells and fibroblasts: DEAH (Asp-Glu-Ala-His) box poly-
peptide 29 (DHX29), a member of the DExD/H (Asp-Glu-x-Asp/His)-
box helicase family. Knocking down DHX29 by siRNA attenuated
the ability of cells to mount type I IFN and IL-6 in response to cyto-
solic nucleic acids and various viruses by blocking the activation of
interferon regulatory factor 3 and NF-κB-p65. The cytosolic nucleic
acid sensing by DHX29 in human epithelial cells and fibroblasts is
independent of stimulator of interferon genes but is dependent on
retinoic acid-inducible gene 1 (RIG-I) and mitochondrial antiviral sig-
naling protein (MAVS). DHX29 binds directly to nucleic acids and
interacts with RIG-I and MAVS through its helicase 1 domain, acti-
vating the RIG-I–MAVS-dependent cytosolic nucleic acid response.
These results suggest that DHX29 is a cytosolic nucleic acid cosensor
that triggers RIG-I/MAVS-dependent signaling pathways. This study
will have important implications in drug and vaccine design for
control of viral infections and viral-induced pathology in the airway.

cytosolic sensor | airway infection

Human airway epithelia interface with the outside air envi-
ronment. Viruses, bacteria, and other airborne microorganisms

frequently cause mild to serious infections in humans, which may
cause or exacerbate many human diseases, including pneumonia,
asthma, and chronic obstructive pulmonary disease (1). Recent
studies demonstrated that in addition to providing a physical barrier,
epithelia can sense viral infection. This ability is critical to sub-
sequent activation of antiviral innate and adaptive immunity (2–8).
In the past decade, various cytosolic nucleic acid sensors and

their mechanisms of action have been uncovered. Cytosolic double-
stranded RNA (dsRNA) polyinosinic:polycytidylic acid (poly I:C)
and 5′-ppp-dsRNA, mimicking the virus-derived RNA, are sensed
by RIG-I–like receptors (9–11), which signal through the adaptor
protein mitochondrial antiviral signaling protein (MAVS) (also
known as CARDIF, IPS-1, or VISA) (12–15). For double-stranded
DNA (dsDNA), many sensors have been reported, including DAI,
AIM2, RNA pol III, IFI16, DDX41, Mre11, DNA-PKcs/Ku70/
Ku80, cGAS, LRRFIP1, HMGB1, LSm14A, and NLRP3 (16, 17).
Some of these molecules depend on stimulator of interferon genes
(STING) (also known as ERIS, MITA, or MYPS) as the signaling
adaptor (18–22). Furthermore, in addition to RIG-I–like receptors,
many other DExD/H helicase family members, such as DHX9,
DHX36, DDX1, DDX21, DHX33, DDX3, and DDX60, have
been reported to function in nucleic acid sensing (23–29). These
reports suggest that, depending on the virus species, cell type, types
of ligands, types of responses, and the response phase, cytosolic
nucleic acids are sensed by various sensing molecules that lead to
different downstream signaling (16, 17). Different cytosolic nucleic
acid sensors also have been implicated in the sensing of viral in-
fection in human airway epithelial and subepithelial cells (2–7).
In this study, we systemically analyzed the function of 59

members of the DExD/H (Asp-Glu-x-Asp/His) helicase family
in sensing nucleic acids in human airway-derived epithelial cells
and fibroblasts. We report that in the human airway system,

DHX29 is engaged in cytosolic nucleic acid and virus sensing as a
cosensor of the RIG-I/MAVS pathway, independently of STING.

Results
Human Epithelial Cells and Fibroblasts Sense Cytosolic DNA and RNA.
To obtain general insights in cytosolic RNA and DNA sensing by
airway-derived cells, various known cytosolic nucleic acid ligands
were transfected to various cells originating from epithelial or
subepithelial tissue. Results from normal human bronchial/tracheal
epithelial cells, transformed primary airway epithelial cells (BEAS-
2B), two airway epithelial cell lines (A549 and NCI-H292), airway-
derived primary fibroblast MRC5 cells, and THP-1 cell line-
derived macrophages are shown in Fig. 1. The following interesting
observations were obtained: (i) all epithelial cells and fibroblasts
showed IFN-β responses to poly I:C and poly(deoxyadenylic-
thymidylic):poly(deoxyadenylic-thymidylic) acid (poly dAdT:
dAdT); (ii) only A549 and NCI-H292 cells made robust IFN-β
responses to 5′-ppp-dsRNA (3pRNA), suggesting that although
RIG-I is required for sensing both 3pRNA and short poly I:C and
poly dAdT:dAdT, RIG-I may depend on different components to
sense 3pRNA than to sense short poly I:C and poly dAdT:dAdT;
and (iii) only THP1-derived macrophages but not airway-derived
cells showed significant response to immunostimulatory DNA,
HSV-60mer dsDNA, and VACV-70mer dsDNA, suggesting that
the airway epithelial cells and fibroblasts have a defect in the
STING-dependent sensing pathway (18, 21, 22, 30). These re-
sults support the concept that different cells may use different
cytosolic nucleic acid sensors and the existence of a complex cy-
tosolic nucleic acid-sensing system that cannot be fully explained
by the current knowledge of nucleic acid sensing.

Significance

Different molecules act in sensing cytosolic nucleic acids derived
from viruses, depending on the cell type and the virus. Epithelial
cells and fibroblasts recognize viral invasion through cytosolic
nucleic acid sensors and initiate antiviral immune responses by
secreting cytokines. Retinoic acid-inducible gene 1 (RIG-I), a
member of the DNA/RNA helicase family, plays a significant
role as such a sensor. We identified DEAH (Asp-Glu-Ala-His)
box polypeptide 29 (DHX29), another member of the family, as
a unique cytosolic nucleic acid cosensor in human airway epi-
thelial cells and fibroblasts. DHX29 directly bound nucleic acids,
interactedwith RIG-I, and triggered downstream signaling. DHX29
may be the optimal target for drug and vaccine design to control
viral infections and viral-induced pathology in the airway.
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DHX29 Is Critical for Virus and Cytosolic Nucleic Acid Response in
Human Airway Epithelial Cells and Fibroblasts. RIG-I–like receptors,
including RIG-I, MDA-5, and LGP-2, constitute a small subfamily
of the DExD/H helicase superfamily (23). Previous studies showed
that the DExD/H helicase superfamily, which contains at least
59 members, plays a much broader role in sensing nucleic acids.
DHX9, DHX36, DDX1, DDX21, DDX41, DHX33, DDX3, and
DDX60 were found to play important roles in nucleic acid sensing
in various human and mouse cells (22–29).
To obtain knowledge of nucleic acid sensing in human airway

epithelial cells and fibroblasts, we systemically screened the
function of 59 helicases in MRC5 cells and BEAS-2B cells
in response to poly I:C or poly dAdT:dAdT using siRNA. The
outcome was assessed by production of IFN-β and IL-6. We
found that the knockdown of DHX29 or RIG-I had the most
dramatic and consistent inhibitory effect on the IFN-β and IL-6

production induced by poly I:C or by poly dAdT:dAdT. Sub-
sequently, the knockdown effect of DHX29 was confirmed using
four individual sequence siRNAs for DHX29. Two different
sequence siRNAs with more than 75% knockdown efficiency
were able to reproduce the screening results with their effects
correlating with the knockdown efficiency (Fig. 2 A–C). The
production of IP-10 and IL-8 also was significantly reduced by
the knockdown of DHX29 (Fig. 2 D and E). Similar results were
obtained with airway epithelial cell lines BEAS-2B and A549
(Fig. S1 A–D). Cytokine production induced by the live virus was
measured as well, showing a similarly marked reduction upon the
knockdown of DHX29 (Fig. 2 F and G). Finally, the effect of
knocking down DHX 29 expression was assessed in normal hu-
man bronchial/tracheal epithelial cells. Although the knockdown
efficiency was not as good as in MRC5 cells, siRNA treatment of
DHX29 resulted in a significant decrease in DHX29 expression

Fig. 1. Human airway epithelial cells and fibro-
blasts sense cytosolic DNA and RNA. (A) Normal
human bronchial/tracheal epithelial (NHBE) cells, (B)
BEAS-2B cells, (C) primary airway-derived fibroblast
MRC5 cells, (D and E) two airway epithelial cell lines
(A549 and NCI-H292), and (F) THP1 cell line-derived
macrophages were transfected with 10 μg/mL of
various nucleic acids by using Lipofectamine 2000:
3pRNA, poly A:U (A:U), conventional poly I:C (I:C),
short poly I:C (I:C-s), long poly I:C (I:C-L), immuno-
stimulatory dsDNA (ISD), HSV-60mer dsDNA (HSV60),
VACV 60mer dsDNA (VACV70), poly dGdC:dGdC,
and poly dAdT:dAdT. Culture supernatants were
collected 18 h later to measure IFN-β by ELISA. Val-
ues are mean ± SD of at least three independent
experiments.
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Fig. 2. DHX29 is critical for virus and cytosolic
nucleic acid response in human airway epithelial
cells and fibroblasts. MRC5 cells were treated with
one of three siRNAs [nonsilencing negative control
(NC), DHX29-#1, or DHX29-#2] or none (A–C). Two
siRNAs (NC and DHX29-#2) were used in D–G by
using Lipofectamine RNAiMax. Forty hours later,
cells were either collected and lysed for quantitative
RT-PCR (qPCR) to measure knockdown levels (A) or
stimulated with poly I:C (B and C), poly dAdT:dAdT
(B–E), or Sendai virus (Sendai v.), NS1 region-deleted
influenza virus (deltaFlu), respiratory syncytial virus
type A2 (RSV-A2), or RSV type B (RSV-B) (F and G).
NHBE cells were treated as above with one of two
siRNAs (NC or DHX29-#2) and were collected for
qPCR (H) or stimulated with poly dAdT:dAdT, poly
I:C, Sendai v., or deltaFlu (I and J). Eighteen hours
after stimulation, cytokine concentrations in super-
natants were measured by ELISA. Values are mean ±
SD of at least three independent experiments (*P <
0.05 vs. NC).
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(Fig. 2H) and in reduced production of IFN-β and IL-6 upon
cytosolic nucleic acid and virus stimulation (Fig. 2 I and J). These
results strongly support that DHX29 may represent a critical
molecule in cytosolic nucleic acid sensing of human airway epi-
thelial cells and fibroblasts.

DHX29 Is Specifically Expressed by Epithelial Cells and Fibroblasts in
a Constitutive Fashion. To assess the specificity of DHX29 ex-
pression in different cell types of the airway, DHX29 protein
expression in airway-derived epithelial cells and fibroblasts was
compared with that in peripheral blood-derived mononuclear
cell (PBMC)-derived monocytes, myeloid dendritic cells, plas-
macytoid dendritic cells, B cells, and T cells by Western blotting
(Fig. 3A). The result showed dramatically specific expression of
DHX29 in airway-derived cells but not in other cell subsets.
Thus, DHX29 seems to be the sensing molecule that is specific to
epithelial cells and fibroblasts. As for whether DHX29 expres-
sion is constitutive, DHX29 did not show any difference upon
poly I:C or poly dAdT:dAdT stimulation (Figs. 3B and 4).

Knockdown of DHX29 Results in Impaired Poly I:C- and Poly dAdT:
dAdT-Induced Signaling. To confirm the role of DHX29 in sens-
ing nucleic acids in human epithelial cells and fibroblasts, poly
I:C- or poly dAdT:dAdT-induced cell signaling was analyzed.
MRC5 cells with DHX29 or nontarget control siRNA treatment
were stimulated with cytosolic poly I:C or poly dAdT:dAdT. The
cells then were collected, lysed, and applied to SDS/PAGE for
Western blotting. As shown in Fig. 4, the phosphorylation of NF-
κB-p65 and interferon regulatory factor 3 (IRF3) was reduced
dramatically, and the phosphorylation of MAPK ERK and p38
was down-regulated moderately. The roles of both IRF3 and NF-
κB-p65 in IFN-β production and NF-κB-p65 in IL-6 production
were confirmed by knockdown experiments. On the other hand,
ERK and p38 MAPK did not show any correlation with IFN-β and
IL-6 production (Fig. S2). These results suggest that DHX29 may
represent an upstream element of a nucleic acid-sensing pathway.

DHX29 Directly Binds to Poly I:C and Poly dAdT:dAdT. To investigate
whether DHX29 plays a role as a sensor, binding of DHX29 to
poly I:C and poly dAdT:dAdT was tested. HA-tagged DHX29
(HA-DHX29) overexpressed cell lysates were incubated with

biotinylated nucleic acids. The pull-down of nucleic acids by
using NeutrAvidin beads resulted in coprecipitation of DHX29,
depending on the dose of poly I:C and poly dAdT:dAdT (Fig. 5A).
This was confirmed with highly purified commercial recombinant
Myc/DDK-DHX29 (Fig. 5B) and with HA column-purified HA-
DHX29 (Fig. 5C). To clarify the specificity of these bindings,
competition assays were done using nonlabeled free poly I:C and
poly dAdT:dAdT. The results showed that both nonlabeled nucleic
acids could complete the binding of either nucleic acid (Fig. 5C).
Thus, DHX29 can bind both poly I:C and poly dAdT:dAdT and
may function as a nucleic acid sensor.

DHX29 Interacts with RIG-I and MAVS. To assess which sensing and
adaptor molecules are participating in sensing cytosolic nucleic
acids in human epithelial cells and fibroblasts, the knockdown of
a group of these molecules was carried out. For the sensing mole-
cules, knockdown of RIG-I but not TLR3 resulted in a marked de-
crease in IFN-β and IL-6 responses (Fig. 6 A–C). For the adaptor
molecules, knockdownofMAVSbut notMyD88, TRIF, and STING
resulted in amarked decrease in IFN-β and IL-6 responses (Fig. 6D–
F). These results show that the RIG-I/MAVS pathway mainly was
involved in poly I:C and poly dAdT:dAdT responses in MRC5 cells.
To investigate whether DHX29 interacts with RIG-I and

MAVS, endogenous coimmunoprecipitation (Co-IP) of these
proteins was done. MRC5 cells with or without treatment with
poly I:C or poly dAdT:dAdT were lysed and immunoprecipitated
with anti-DHX29 antibody. Anti-DHX29 antibody could pull
down both RIG-I and MAVS together with DHX29, especially
after stimulation (Fig. 7A, Left). Co-IP with RIG-I resulted in
pull down of DHX29 protein as well, which was not affected by
RNase or DNase treatment (Fig. 7A, Center). The interaction of
DHX29 and RIG-I also was confirmed with Co-IP by using pu-
rified proteins with or without poly I:C (Fig. 7A, Right). Fur-
thermore, Co-IP of overexpressed HA-DHX29 and Myc-RIG-I
in 293T cell lysates was performed using anti-HA agarose beads.
Although full-length RIG-I showed very weak binding with
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Fig. 3. DHX29 is specifically expressed by epithelial cells and fibroblasts in
a constitutive fashion. (A) Normal human bronchial/tracheal epithelial (NHBE)
cells, A549 cells, MRC5 cells, monocytes, myeloid dendritic cells (mDC), plas-
macytoid dendritic cells (pDC), B cells, and T cells were lysed, and 30,000 cell
equivalents were run on an SDS/PAGE gel. Western blot analyses were done
using antibodies against actin and DHX29. (B) A549 cells were stimulated with
poly dAdT:dAdT for 3, 6, or 9 h. They then were lysed and run on an SDS/PAGE
gel. Western blot analyses were done using antibodies against actin, DHX29,
RIG-I, phosphorylated NF-κB-p65 (p-p65), and phosphorylated IRF3 (pIRF3).
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Fig. 4. Knockdown of DHX29 results in impaired poly I:C- and poly
dAdT:dAdT-induced signaling. MRC5 cells were transfected with nonsilencing
negative control siRNA (si-NC) or DHX29 siRNA #2 (si-X29). Forty hours later,
the cells were stimulated with poly I:C or poly dAdT:dAdT. Two or four hours
following stimulation, the cells were collected, lysed, and run on SDS/PAGE gel.
Western blot analyses were done using antibodies against actin, DHX29, and
both the whole and phosphorylated forms of NF-κB-p65, IRF3, ERK, and p38-
MAPK. Data are representative of at least three independent experiments.
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DHX29, the C-terminal deletion mutant representing the active
form of RIG-I (RIG-ΔC) (31) showed clear binding with DHX29
(Fig. 7B, Left). These results imply that although DHX29 can bind
to RIG-I directly, it can bind strongly only when RIG-I goes
through the conformational change induced by nucleic acid binding.
Next, to visualize the localization of DHX29 with RIG-I, A549 cells
were stimulated with poly dAdT:dAdT and observed by confocal
microscopy. The endogenous staining of RIG-I and DHX29 showed
that RIG-I was up-regulated strongly upon stimulation, and it
showed clear colocalization or juxtaposition with DHX29 (Fig.
7E). Taken together, these data strongly suggest that DHX29
acts as a cosensor of cytosolic nucleic acids for RIG-I.
As for MAVS, similar experiments were done using cell lysates

from 293T cells overexpressed with Myc-MAVS with or without
HA-DHX29. Immunoprecipitation with anti-HA beads showed
strong Co-IP of MAVS only in the presence of DHX29 (Fig. 7B,
Right). Then, MAVS domain mapping was done using various
MAVS deletion mutation constructs (Fig. 7C). The Co-IP of
HA-DHX29 (full) and Myc-MAVS (various fragments) defined

a region of MAVS consisting of amino acids 360–510 as the site
of interaction with DHX29. This was confirmed with Co-IP of
both anti-Myc and anti-HA beads (Fig. 7D).

DHX29 Binds to Nucleic Acids, RIG-I, and MAVS via the Helicase 1
Domain. To understand the molecular interaction between DHX29
and nucleic acids, as well as DHX29 with RIG-I and MAVS,
serial deletion and binding experiments with DHX29 were per-
formed (Fig. 8A). First, each of the HA-DHX29 mutants was
overexpressed in 293T cells. The lysates were mixed with bio-
tinylated poly I:C or poly dAdT:dAdT and subsequently pulled
down with NeutrAvidin beads. The results showed the defect of
HA-DHX29 pull-down only when the helicase 1 domain was ab-
sent (Fig. 8B). As for RIG-I andMAVS, each HA-DHX29 mutant
was co-overexpressed with Myc-RIG-I-dC or Myc-MAVS in 293T
cells. Then, the cell lysates were subjected to Co-IP with anti-HA
beads or anti-Myc beads. The Co-IP suggested that the helicase 1
domain of DHX29 was indispensable for binding with RIG-I and
MAVS, and it was confirmed with both kinds of beads (Fig. 8 B
and C). Thus, these results suggest that the helicase 1 domain is
the crucial and indispensable domain for DHX29 to interact and
form complexes with nucleic acids and RIG-I and MAVS.

Discussion
In this study, we made very interesting observations on nucleic
acid sensing by human airway epithelial cells and fibroblasts.
Airway-derived epithelial cells and fibroblasts have a defect in
STING-dependent cytosolic DNA sensing, suggesting that STING-
dependent DNA sensing is not universal in all cell types, and
airway-derived cells and myeloid cells have different cytosolic
nucleic acid sensors. Of the 59 helicases tested, DHX29 and
RIG-I were found to play critical roles in type 1 IFN responses in
airway-derived epithelial cells and fibroblasts following activa-
tion by poly I:C, poly dAdT:dAdT, or RNA virus. DHX29 is not
expressed in other PBMC subsets and does not play a signifi-
cant role in type 1 IFN responses in other cell types, including
HEK293T cells, THP-1 cells, human primary monocytes, and the
mouse dendritic cell line D2SC (22). Further biochemical analyses
showed that DHX29 directly binds poly I:C and poly dAdT:dAdT
as well as RIG-I and MAVS. These data suggest that DHX29 may
function as a RIG-I coreceptor, and RIG-I may pair with different
coreceptors in different cell types or for sensing different ligands,
such as poly I:C, poly dAdT:dAdT, and 5′-ppp-dsRNA.
In terms of the binding of DHX29 to nucleic acids, it did not

show a specificity for the binding site of poly I:C or poly dAdT:
dAdT. Similar findings have been reported for RIG-I (32). These
observations suggest that these helicases recognize the common
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Fig. 5. DHX29 directly binds poly I:C and poly dAdT:dAdT. (A) 293T cells
were overexpressed with HA-tagged DHX29 (HA-DHX29) and lysed. Then,
the cell lysates were mixed with biotinylated poly I:C or poly dAdT:dAdT at
various concentrations. After 2 h of incubation, NeutrAvidin beads were
added to the mixture and incubated further. After another 2 h, the beads
were washed thoroughly, and the proteins bound to the beads were eluted.
The eluates were subjected to SDS/PAGE and Western blot analysis with anti-
HA antibody. (B) Purified recombinant Myc-DDK–tagged DHX29 protein
(100 ng) was mixed with 100 ng of biotinylated poly dAdT:dAdT and was
subjected to the same procedures as in A. (C) HA-DHX29–overexpressed 293T
cell lysates or HA-purified DHX29 were mixed with biotinylated poly I:C or poly
dAdT:dAdT with or without nonbiotinylated free poly I:C or poly dAdT:dAdT,
and were subjected to the same procedure as in A. Data are representative of at
least three independent experiments.

Fig. 6. RIG-I and MAVS are the indispensable mol-
ecules for cytosolic nucleic acid responses in MRC5
cells. Cells were transfected with siRNA as labeled.
Forty hours later, cells were either collected and
lysed for qPCR to check the knockdown (KD) levels
(A and D) or stimulated with poly I:C (B and E) or
with poly dAdT:dAdT (C and F). Eighteen hours fol-
lowing stimulation, culture supernatant IFN-β con-
centrations were measured by ELISA. Values are
mean ± SD of at least three independent experi-
ments (*P < 0.05 vs. NC).
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structure in the two nucleic acids, which is not unusual for
DExD/H helicase family members that do not have molecular
specificity for DNA or RNA (33, 34). As for the binding domain
in DHX29, only a helicase 1 domain defect showed impairment in
forming a complex with other molecules. This may suggest that
DHX29 forms a complex by binding directly and indirectly through
this domain. Another possibility is that, as known for other heli-
case family members, there are multiple interacting domains. This
is the case especially for interactions with nucleic acids (35–39);
thus, only total depletion of such domains (represented as frag-
ment “e”) showed total impairment of complex formation.
In terms of the types of response, the knockdown of DHX29

had more impact on IFN-β production than on IL-6. This may
reflect the fact that MRC5 fibroblasts produce a great amount
of IL-6 spontaneously upon senescence. Another possibility, as
suggested by Choi et al. (32), is the presence of another sensing
mechanism for the NF-κB pathway. This will be a future point
of interest.
In conclusion, we could identify the DHX29–RIG-I–MAVS

pathway as the cytosolic nucleic acid-sensing system in airway
epithelial cells and fibroblasts. Furthermore, this study clearly
shows that the innate immune system has significant diversity in
the cytosolic nucleic acid-sensing system among different cells
and response types, suggesting distinct selective pressure by

various microorganisms. Many reported and unreported molecules,
including helicase family members, might contribute to shaping
each specific sensing pathway. Clarifying the whole picture of
such pathways should enhance our understanding of various
infections and immune pathologies, enabling us to design novel
therapeutic strategies.

Materials and Methods
RNA Interference. Transfections of siRNA were performed using Lipofect-
amine RNAiMAX (Invitrogen) with siRNA (Dharmacon) at a concentration of
5 pmol for 2 × 104 cells in 96-well plates or 25 pmol for 10 × 104 cells in 24-
well plates according to the manufacturer’s instructions. Forty hours later,
cells were used for further experiments.

Quantitative RT-PCR. RPL13A was used as a housekeeping control to nor-
malize the amounts of cDNA between each sample. Differences were calculated
using the threshold cycle (Ct) and comparative Ct methods for relative
quantification. Results were expressed as the relative expression of mRNA
levels detected in control samples.

Plasmids. cDNA plasmids were obtained from Open Biosystems. PCR assays
were performed using Phusion Hot Start High-Fidelity DNA Polymerase (New
England Biolabs) and primers designed to the ORFs of DHX29, DDX58 (RIG-I),
or MAVS with terminal restriction enzyme sites to facilitate directional
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Fig. 7. DHX29 interacts with RIG-I and MAVS. (A, Left) MRC5 cells stimulated with or without poly I:C or poly dAdT:dAdT (dAT) were lysed and mixed with
anti-DHX29 antibody or with an isotype control and then incubated with Protein G agarose. Immunoprecipitated proteins were detected by Western blotting
using anti-DHX29, anti–RIG-I, and anti-MAVS antibodies. (Center) Poly I:C-stimulated MRC5 cell lysates were treated with or without RNase (R) or DNase (D)
before immunoprecipitation with anti–RIG-I antibody or with an isotype control. (Right) Highly purified DHX29 and RIG-I proteins with or without poly I:C
were immunoprecipitated with anti-RIG-I antibody or with an isotype control. (B) Cell lysates from 293T cells overexpressed with Myc-tagged RIG-I (Myc–RIG-I;
full-length or C-terminal deleted form) and HA-tagged DHX29 (Left), or with Myc-tagged MAVS (Myc-MAVS) with or without HA-DHX29 (Right), were in-
cubated with anti-HA agarose beads. After 2 h, the beads were washed thoroughly and their binding proteins were eluted. The inputs and immunopreci-
pitated elutes (IP) were detected by Western blotting analysis using anti-Myc antibody. (C and D) Cell lysates from 293T cells overexpressed with HA-DHX29
together with various deletion mutants of Myc-MAVS (Myc-MAVS-Fs) were incubated with anti-HA or anti-Myc agarose beads. After 2 h, the beads were
subjected to the same procedure as in B and were detected using anti-HA or anti-Myc antibodies. Data are representative of at least three independent
experiments. (E) A549 cells were treated with or without poly dAdT:dAdT stimulation. After 6 h, the cells were fixed and stained with anti–RIG-I and anti-
DHX29 antibodies and were observed with confocal microscopy. Red, RIG-I; green, DHX29; blue, DAPI.
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cloning. The amplicons were subcloned into pCMV-HA or pCMV-Myc
vectors (Clontech) by using SfiI, NotI, KpnI, T4 polynucleotide kinase, and
T4 DNA ligase (New England Biolabs). Based on pCMV-HA–full-length
DHX29, pCMV-Myc–full-length RIG-I, and pCMV-Myc–full-length MAVS,
truncated forms of HA-DHX29, Myc-RIG-I, and Myc-MAVS were generated
by inverse PCR methods. Sequence fidelity of full-length and truncated cDNA
clones was verified by DNA sequencing.

Statistical Analysis. Data were analyzed for statistical significance by the two-
tailed Student t test. A P value of less than 0.05 was considered significant.
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