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Biologists regularly search databases of DNA or protein sequences
for evolutionary or functional relationships to a given query
sequence. We describe a ranking algorithm that exploits the entire
network structure of similarity relationships among proteins in a
sequence database by performing a diffusion operation on a
precomputed, weighted network. The resulting ranking algorithm,
evaluated by using a human-curated database of protein struc-
tures, is efficient and provides significantly better rankings than a
local network search algorithm such as PSI-BLAST.

Pairwise sequence comparison is the most widely used appli-
cation of bioinformatics. Subtle sequence similarities fre-

quently imply structural, functional, and evolutionary relation-
ships among protein and DNA sequences. Consequently,
essentially every molecular biologist working today has searched
an online database of biosequences. This search process is
analogous to searching the World Wide Web with a search
engine such as Google: the user enters a query (a biological
sequence or a word or phrase) into a web form. The search
engine then compares the query with each entry in a database,
and returns to the user a ranked list, with the most relevant or
most similar database entry at the top of the list.

The World Wide Web consists of a network of documents
connected to one another by means of hypertext links. A
database of protein sequences can also be usefully represented
as a network, in which edges may represent functional, structural,
or sequence similarity. Two protein sequences are considered
similar if they contain subsequences that share more similar
amino acids than would be expected to occur by chance. We refer
to the network of sequence similarities as a protein similarity
network.

Early algorithms for detecting sequence similarities did not
exploit the structure of the protein similarity network at all, but
focused instead on accurately defining the individual edges of
the network (1–3). Subsequent work used statistical models
based on multiple alignments to model the local structure of the
network (4, 5) and to perform local search through the protein
similarity network by using short paths (6), average- or single-
linkage scoring of inbound edges (7, 8), and iterative model-
based search (9, 10). The popular PSI-BLAST (11) algorithm falls
into the latter category: PSI-BLAST builds an alignment-based
statistical model of a local region of the protein similarity
network and then iteratively collects additional sequences from
the database to be added to the alignment.

The critical innovation that led to the success of the Google
search engine is its ability to exploit global structure by inferring
it from the local hyperlink structure of the Web. Google’s
PAGERANK algorithm (12) models the behavior of a random web
surfer, who clicks on successive links at random and also
periodically jumps to a random page. The web pages are ranked
according to the probability distribution of the resulting random
walk. Empirical results show that PAGERANK is superior to the
naive, local ranking method, in which pages are simply ranked
according to the number of inbound hyperlinks.

We demonstrate that a similar advantage can be gained by
including information about global network structure in a pro-
tein sequence database search algorithm. In contrast to iterative
protein database search methods such as PSI-BLAST, which
compute the local structure of the protein similarity network on
the fly, the RANKPROP algorithm begins from a precomputed
protein similarity network, defined on the entire protein data-
base. Querying the database consists of adding the query
sequence to the protein similarity network and then propagating
link information outward from the query sequence. After prop-
agation, database proteins are ranked according to the amount
of link information they received from the query. This algorithm
ranks the data with respect to the intrinsic cluster structure (13,
14) of the network. We evaluate the RANKPROP output by using
a 3D-structure-based gold standard, measuring the extent to
which known homologs occur above nonhomologs in the ranked
list. Our experiments suggest that RANKPROP’s ranking is supe-
rior to the ranking induced by the direct links in the original
network.

The protein similarity network represents the degree of
similarity between proteins by assigning weights to each edge.
The degree of similarity between two sequences is commonly
summarized in an E value, which is the expected number of times
that this degree of sequence similarity would occur in a random
database of the given size. By using a weighting scheme that is
a function of the E value, an edge connecting two similar
sequences is given a large weight, and vice versa.

To accommodate edge weights, the RANKPROP algorithm
adopts recently described diffusion techniques (15) from the
field of machine learning, which are closely related to the
spreading activation networks of experimental psychology (16,
17). RANKPROP takes as input a weighted network on the data,
with one node of the network designated as the query. In the
protein ranking problem, the edges of the network are defined
by using PSI-BLAST. The query is assigned a score, and this score
is continually pumped to the remaining points by means of the
weighted network. During the diffusion process, a protein P
pumps to its neighbors at time t the linear combination of scores
that P received from its neighbors at time t � 1, weighted by the
strengths of the edges between them. The diffusion process
continues until convergence, and the points are ranked accord-
ing to the scores they receive. The RANKPROP algorithm is
described formally in Fig. 1. This algorithm provably converges,
and an exact closed form solution can be found (see Supporting
Information, which is published on the PNAS web site).

Methods
We tested the quality of the protein rankings produced by
RANKPROP, using the human-annotated SCOP database of pro-
tein 3D structural domains as a gold standard (18). SCOP has
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been used as a gold standard in many previous studies (19–21).
Sequences were extracted from version 1.59 of the database,
purged by using the web site http:��astral.berkeley.edu so that no
pair of sequences share more than 95% identity. For the
purposes of selecting the RANKPROP parameter �, the resulting
collection of 7,329 SCOP domains was split into two portions:
379 superfamilies (4,071 proteins) for training and 332 (2,899
proteins) for testing. Note that training and testing sequences
never come from the same superfamily. The SCOP database is
organized hierarchically into classes, folds, superfamilies, and
families. For the purposes of this experiment, two domains that
come from the same superfamily are assumed to be homologous,
and two domains from different folds are assumed to be
unrelated. For pairs of proteins in the same fold but different
superfamilies, their relationship is uncertain, and so these pairs
are not used in evaluating the algorithm.

Three protein similarity networks were computed by using the
BLAST and PSI-BLAST (version 2.2.2) algorithms. Two networks
were defined by applying BLAST and PSI-BLAST to a database
comprised only of the 7,329 SCOP domains. An additional
network was created by applying PSI-BLAST to a larger database
that also included all 101,602 proteins from SWISS-PROT (version
40). In each case, the programs were run by using the default
parameters, including the BLOSUM 62 matrix, but with an E value
threshold for reporting results of 10,000. PSI-BLAST was allowed
to run a maximum of six iterations, which previous work
indicates is sufficient for good performance (21), using the
default E value threshold for inclusion in the model of 0.005.
Each of these networks induces a ranking with respect to each
query sequence.

Finally, we applied RANKPROP to the larger PSI-BLAST protein
similarity network. In the network K used by RANKPROP, the
weight Kij associated with a directed edge from protein i to
protein j is exp(�Sj(i)��), where Sj(i) is the E value assigned to
protein i given query j. The value of � � 100 is chosen by using
the training set (see supporting information). For efficiency, the
number of outgoing edges from each node is capped at 1000,
unless the number of target sequences with E values �0.05
exceeds 1000. For each query, RANKPROP runs for 20 iterations,

which brings the algorithm close to convergence (see supporting
information).

We measure the performance of a protein database search
algorithm by using a modified version of the receiver operating
characteristic (ROC) score (22). The ROC score is the area
under a curve that plots false-positive rate versus true-positive
rate for various classification thresholds. The ROC score thus
measures, for a single query, the quality of the entire ranking
produced by the algorithm. In practice, only the top of this
ranking is important. Therefore, we compute the ROC50 score
(23), which is the area under the ROC curve up to the first 50
false-positives. A value of 1 implies that the algorithm success-
fully assigns all of the true relationships higher scores than the
false relationships. For a random ranking of these data, the
expected ROC50 score is close to 0 because most of the se-
quences are not related to the query.

Results
The experimental results, summarized in Fig. 2, show the relative
improvements offered by the various algorithms. Even when
using the small SCOP database, the PSI-BLAST protein similarity
network improves significantly upon the network created using
the simpler BLAST algorithm: PSI-BLAST yields better perfor-
mance than BLAST for 51.3% of the test queries, and worse
performance for only 8.2% of the queries. PSI-BLAST benefits
from the availability of a larger sequence database: increasing
the database size by adding the SWISS-PROT database yields an
additional improvement of the same magnitude (50.9% and
11.4%, respectively). Finally, running RANKPROP on the larger
protein similarity network defined by PSI-BLAST yields improved
rankings for 55.3% of the queries, and decreases performance on
only 9.7%. All of these differences are statistically significant at
P � 0.01 according to a Wilcoxon signed-rank test. A comparison
of PSI-BLAST and RANKPROP ROC scores by query is shown in
Fig. 3, and a diagram illustrating how RANKPROP successfully
re-ranks homologs of a single query is shown in Fig. 4.

Note that there is some obvious structure in Figs. 2 and 3. The
steep slope in the RANKPROP plot (Fig. 2) at around 0.9 ROC50
corresponds to queries mostly from the largest superfamily in the
database, the immunoglobulins with 623 proteins. These queries
are also visible as a cluster at around (0.9, 0.7) in Fig. 3.
RANKPROP’s improved rankings for these queries suggests that
the algorithm successfully exploits cluster structure in the pro-
tein similarity network.

RANKPROP is not misled by the presence of multidomain
proteins in the database. Previous network-based protein simi-
larity detection algorithms explicitly deal with multidomain
proteins. For example, the INTERMEDIATE SEQUENCE SEARCH
algorithm (6) includes a step that extracts the region of the target
sequence that matched the query and then recalculates the
statistical significance of that region with respect to the target
sequences. This step prevents the algorithm from inferring a
false relationship between protein domains A and B through an
intermediate protein containing both A and B. RANKPROP
delivers excellent performance, even when the database contains
�100,000 full-length proteins, many of which contain more than
one domain. Furthermore, Fig. 3 shows that RANKPROP generally
performs better than PSI-BLAST, even when the SCOP query
domain lies on the same protein as another domain in the test set.
A closer investigation (see supporting information) reveals that
RANKPROP does indeed rank these transitive domains higher than
would be expected by chance. However, in general, as long as the
query sequence is connected to many other proteins, then the
true relationships will be mutually reinforcing during network
propagation.

A well known problem with PSI-BLAST is the occasional case in
which it mistakenly pulls in a false-positive match during an early
iteration. This false-positive may then pull in more false-positives

Fig. 1. The RANKPROP algorithm. Given a set of objects (in this case, proteins)
X � x1, . . . , xm, let x1 be the query and x2, . . . , xm be the database (targets) we
would like to rank. Let K be the matrix of object–object similarities, i.e., Kij

gives a similarity score between xi and xj, with K normalized so that ¥j � 2
m Kji �

1 for all i. For computational efficiency, we set K1i � Ki1 for all i, so that we can
compute weights involving the query using a single execution of PSI-BLAST. Let
yi, i � 2, . . . , m, be the initial ranking ‘‘score’’ of a target. In practice, for
efficiency, the algorithm is terminated after a fixed number I of iterations, and
yi(I) is used as an approximation of y*I. The parameter � � [0,1] is set a priori by
the user. For � � 0, no global structure is found, and the algorithm’s output
is just the ranking according to the original distance metric. These experiments
use � � 0.95, looking for clear cluster structure in the data.
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in subsequent iterations, leading to corrupted results. Among the
test set queries, there are 139 queries for which the PSI-BLAST
ROC50 score is worse than the corresponding BLAST score,
indicating that iteration hurt the performance of the algorithm.
For these queries, RANKPROP outperforms BLAST in 106 cases,
despite using as input a protein similarity network defined by
PSI-BLAST. Furthermore, the degree of improvement produced

by RANKPROP relative to BLAST is often large, with a difference
in ROC50 �0.1 for 71 of the 106 queries (see supporting
information).

Among the 282 queries for which PSI-BLAST produces a better
ranking than RANKPROP, most of the differences in ROC are
small. There are, however, 20 queries for which PSI-BLAST
produces an ROC50 that is �0.1 greater than RANKPROP’s
ROC50, and one query for which the difference is �0.2 (see
supporting information). Some of these queries belong to SCOP
class 3 (�-� proteins), which contains a number of homologous
Rossmann folds. In these cases, the first false-positives may in
fact be true-positives. For the other queries, RANKPROP’s diffi-
culty likely arises from overpropagation through the protein
similarity network. Lowering the parameter � could potentially
fix this problem, because as �3 0, we obtain the same ranking
as PSI-BLAST.

Finally, the results indicate that RANKPROP does not spoil good
initial rankings. Indeed, there is only one query for which
PSI-BLAST produces an ROC50 score of 1 (a perfect ranking) and
RANKPROP produces a score worse than 0.98. This query is the
C-terminal fragment of DNA topoisomerase II, with an ROC50
of 0.93. Conversely, there are 30 queries for which PSI-BLAST has
an ROC50 �0.93 and RANKPROP produces a perfect ranking.

To better understand the source of RANKPROP’s improvement
relative to the underlying PSI-BLAST protein similarity network,
we performed an additional round of experiments using two
variants of the RANKPROP algorithm. Each algorithmic variant
restricts RANKPROP to a subset of the protein similarity network.
In the first variant, RANKPROP sees only the local network
structure: the target sequences that are linked directly to the
query, plus the pairwise relationships among those sequences.

Fig. 2. Relative performance of protein ranking algorithms. The graph plots the total number of test set SCOP queries for which a given method exceeds an
ROC50 score threshold. ROC50 is the area under a curve that plots true-positive rate as a function of false-positive rate, up to the 50th false-positive. In the plot,
the lower three series correspond to the three protein similarity networks described in the text; the upper series is created by running RANKPROP on the larger
PSI-BLAST network. For these data, the mean ROC50 for the four methods are 0.506 (BLAST), 0.566 [PSI-BLAST (SCOP)], 0.618 [PSI-BLAST (SCOP plus SPROT)], and 0.707
(RANKPROP).

Fig. 3. Scatter plot of ROC50 scores for PSI-BLAST versus RANKPROP. The plot
contains 2,899 points, corresponding to all queries in the test set. Green points
correspond to query domains that lie on the same protein with another
domain in the test set. All other queries are red.
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This network of local relationships yields RANKPROP perfor-
mance almost identical to PSI-BLAST (see supporting informa-
tion). The second variant includes nonlocal edges but eliminates
all weak edges, with E values �0.005. In contrast with the
previous variant, this version of the algorithm performs only
slightly worse than RANKPROP trained using the entire network.
This result indicates that the improvement of RANKPROP over
PSI-BLAST results primarily from RANKPROP’s ability to learn
from nonlocal network structure, and that the weak links in the
network are of secondary importance. Data sets and FASTA
files are available from the web site of J.W., which can be
accessed at www.kyb.tuebingen.mpg.de�bs�people�weston�
rankprot�supplement.html.

Discussion
RANKPROP is efficient enough to employ the algorithm as part of
a web-based search engine. The precomputation of the PSI-BLAST
protein similarity network is clearly computationally expensive;
however, this operation can be performed in advance offline.
Computing the ranking with respect to a given query requires
first running PSI-BLAST with the query sequence (unless it is
already in the network), and then propagating scores from the
query through the network. In the experiments reported here,
the propagation (20 iterations of RANKPROP) took on average 73
seconds to compute using a Linux machine with an Advanced
Micro Devices (Sunnyvale, CA) MP 2200� processor. BLAST and
PSI-BLAST take �21 and 331 sec per query respectively on the
same database (SCOP plus SPROT). The propagation time
scales linearly in the number of edges in the network. The
propagation time could be improved by removing weak edges
from the protein similarity network [at a relatively small cost in
accuracy (see supporting information)], by running the propa-
gation in parallel, and by reducing the number of iterations.

Finally, the initial query PSI-BLAST computation may be replaced
with BLAST at a relatively small cost in accuracy (see supporting
information), resulting in a query procedure that is faster than
running a single PSI-BLAST query on the entire database.

The experiments described here were performed by using a
single set of PSI-BLAST parameters. These parameters were
previously selected by means of extensive empirical optimization
using the SCOP database as a gold standard and ROCn scores
as the performance metric (17). However, even if better PSI-
BLAST parameters were available, the resulting improved E
values would likely lead to a similar improvement in the per-
formance of the RANKPROP algorithm.

The results reported here are given in terms of the ROC50
performance measure. One might argue that a stricter (or
looser) threshold might be more appropriate, depending on the
cost associated with false-positives. Further experiments (see
supporting information) show that RANKPROP continues to sig-
nificantly outperform PSI-BLAST even for relatively small values
of the ROC threshold (ROC5 or ROC10). At the most strict
threshold, ROC1 (which is equivalent to the percentage of
positive examples appearing before the first negative example in
the ranked output), the difference between the two algorithms
is no longer statistically significant. However, by using the ROC1
measure, RANKPROP performs better on smaller superfamilies
using a small �, and vice versa. Therefore, a simple modification
to the algorithm, in which the value of � depends on the number
of strong matches to the query sequence, once again yields strong
performance relative to PSI-BLAST. In future work, we plan to
investigate more thoroughly algorithms that choose � dynami-
cally based on the local density of the protein similarity network.

A valuable component of the PSI-BLAST algorithm is its method
for estimating statistical confidence, in the form of E values.
Currently, RANKPROP does not produce E values; however,

Fig. 4. Visualization of part of the similarity network. Shown is a small part of the protein similarity network, where d1b30b2 is the query, and the domains
are represented by light blue nodes are its homologs. The large red node represents all other domains. The cyan-colored edges from the query to other nodes
are labeled with weights equal to the PSI-BLAST E value, given d1b30b2 as the query. The rest of the edges indicate the similarity network which is formed of PSI-BLAST

E values, as described in the text. Black edges are between homologs, and red edges are between all nonhomologs and a single homolog, with the minimum
E value across all nonhomologs given as the weight of the edge. No edge is drawn if PSI-BLAST did not assign an E value. PSI-BLAST only correctly identifies two
homologs, d1zfja2 and d1jr1a2. Although d1zfja3 is assigned an E value (of 253), this assignment is larger than three of the nonhomologs in SCOP. The yellow
scores inside the nodes are the RANKPROP activation levels (yi values). In this case, RANKPROP places all of the homologs at the top of the ranked list. This assignment
occurs because there are very low E value paths (by traversing edges with not more than an E value of 9e-5) between the query and all homologs, whereas even
the ‘‘nearest’’ nonhomologs are sufficiently far away (never closer than an E value of 13 to a homolog). Note that d1jr1a2 is assigned a higher score by RANKPROP

than d1zfja2, even though the E values assigned by PSI-BLAST (although similar) indicate the opposite. This result is because d1zfja2 has much lower weighted edges
to nonhomologs, and thus receives more of the nonhomologs’ activation level (which are close to 0). Overall, the RANKPROP ranking gave an ROC50 score of 1,
whereas PSI-BLAST gave an ROC50 score of 0.78 on this query.
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approximate E values may be derivable by means of interpola-
tion and smoothing of the PSI-BLAST E values with respect to the
RANKPROP ranking. Alternatively, it may be possible to fit a
probability distribution to the output scores (24). This fitting will
be the subject of future research.

The primary outcome of this work is not the RANKPROP
algorithm per se, but the observation that exploiting the entire
structure of the protein similarity network can lead to signifi-
cantly improved recognition of pairwise protein sequence sim-
ilarities. RANKPROP provides an efficient, powerful means of
learning from the protein similarity network; however, other

network-based algorithms may also yield similar improvements
relative to the ranking induced by the underlying protein simi-
larity network. Furthermore, this observation is applicable to a
wide range of problem domains, including image and text
ranking, as well as protein or gene ranking using different (or
multiple) types of biological data.
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