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Introduction
The mammalian skeleton is a greatly active tissue 
that undergoes continuous remodeling through-
out childhood and adult life. Bone remodeling is 
needed for microfracture consolidation, and skel-
eton adaptation to mechanical use, and also for 
calcium homeostasis [Dallas et  al. 2013]. This 
bone remodeling implicates the coupling of oste-
oclastic bone resorption and osteoblastic bone 
formation. Common diseases, such as osteoporo-
sis, multiple myeloma, Paget’s disease, and other 
bone-metastasized cancers, are characterized by 
imbalances between the formation and resorption 
processes [Devogelaer, 2000; Daci et  al. 2002; 
Shankar et  al. 2013]. As these pathologies con-
tribute to increase morbidity and mortality world-
wide, there is great concern towards improving 
our understanding of the processes that regulate 
bone remodeling [Shoback, 2007]. Osteoporosis, 
which occurs mainly in postmenopausal women, 
is characterized by excessive bone resorption 
compared with the formation of new bone. 
Osteoporosis is thus characterized by a loss of 
bone strength, a decrease in bone mass, and a 
worsening in bone quality, leading to an increased 
risk of fracture [Mosley, 2000].

In addition to the well-known behavior of mature 
osteoblasts and osteoclasts, and their respective 
precursor cells, on the bone-remodeling process, 

there is increasing evidence that osteocytes play 
important roles in detecting imperfections or 
microfractures and initiating a targeted bone 
remodeling [Verborgt et  al. 2000; Kogianni and 
Noble, 2007; Heino et al. 2009]. Osteocytes origi-
nate from mesenchymal stem cells through osteo-
blast lineage differentiation, with only 10–20% of 
osteoblasts differentiating into osteocytes [Aubin 
and Turksen, 1996]. During this differentiation, 
osteocytes become embedded in the bone matrix 
during the modeling and/or remodeling processes 
where the bone matrix is synthesized [Rochefort 
et al. 2010]. Osteocytes remain active in the bone-
remodeling process by maintaining connections 
to the bone surface, to osteoblasts and osteoclasts, 
and to other osteocytes through an extensive can-
alicular network. Osteocytes are able to release 
nitric oxide, prostaglandin E2, and adenosine-
triphosphate that activate bone formation, and 
sclerostin, Dickkopf-related protein 1 (DKK1), 
and frizzled-related protein 1 that inhibit bone 
formation. They are also able to release the recep-
tor activator of the nuclear factor kappa-B ligand 
(RANKL) to support osteoclastogenesis, but also 
to secrete the bone-formation inhibitor sclerostin 
[Winkler et  al. 2003; Van Bezooijen et  al. 2004; 
Mulcahy et  al. 2011; Nakashima et  al. 2011; 
Moustafa et al. 2012]. Therefore, any drugs that 
target the remodeling cycle by affecting osteo-
blasts, osteoclasts, and osteocytes, and/or 
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molecules that control the signaling pathways, 
will have a major impact on the targeted bone 
remodeling [Killock, 2011; Moriishi et al. 2012].

The cellular and molecular basis of 
osteoporosis
Osteoporosis is a systemic skeletal disorder char-
acterized by low bone mass and micro-architec-
tural deterioration of bone tissue with a 
consequent compromised bone strength and 
increased susceptibility to fracture. According to 
the clinical definition of osteoporosis proposed by 
the World Health Organization, a patient is osteo-
porotic when the dual-energy X-ray absorptiom-
etry measurement of bone-mineral density is 2.5 
standard deviations below the typical peak bone 
mass of young healthy women [Blake and 
Fogelman, 2007]. Osteoporosis occurs in both 
genders, at all ages, and can be separated into 
three types: (a) primary osteoporosis in which no 
underlying cause can be clearly identified, but 
often follows menopause in women and occurs 
later in life in men; (b) secondary osteoporosis in 
which the underlying cause is known (e.g. hyper-
parathyroidism, hypophosphatasia, diabetes types 
1 and 2, alcoholism, glucocorticosteroid use, 
etc.); (c) more rare forms of the disease, such as 
juvenile, pregnancy-related, and postpartum oste-
oporosis [Taxel and Kenny, 2000; Schnatz et al. 
2010; Cook et al. 2013].

Osteoporosis is associated with typical fractures 
(e.g. lumbar spine, femoral neck or distal radius, 
vertebral fractures, and any fracture resulting 
from a low trauma in the elderly) that are associ-
ated with an increase in morbidity and mortality 
[Lindsay, 1996; Garnero, 2008; Hopkins et  al. 
2013]. Therefore, the goal of osteoporosis thera-
pies is to prevent these fractures by inhibiting 
bone resorption and/or by stimulating bone for-
mation [Sun et  al. 2013]. While antiresorptive 
drugs lower bone turnover [Lewiecki, 2013], ana-
bolic therapies increase bone modeling and/or 
remodeling osteoblastic activity [Khan and Khan, 
2006].

Osteoporosis treatments
The most widely prescribed and first-line drugs 
for bone diseases are the bisphosphonates, such 
as alendronate, risedronate, ibandronate, or zole-
dronic acid [Fleisch, 2002]. These molecules are 
generally considered to be safe drugs, with the 
clinical benefits surpassing the risks associated 

with treatment. Due to their widespread usage in 
many patients suffering from different diseases, 
several adverse effects have been reported, includ-
ing nausea, abdominal pain, ocular inflammation, 
difficulty in swallowing, and the risk of an 
inflamed esophagus or esophageal ulcers. 
However, the relationship between the drug and 
adverse events is often difficult to establish 
because clear correlations are often missing due 
to comedication or comorbidities. One of the 
most severe adverse events of bisphosphonate 
treatment is jawbone osteonecrosis, defined as an 
exposed area of bone in the maxillofacial region 
after a tooth extraction in which a section of jaw-
bone persists for at least 8 weeks [Khosla et  al. 
2007; Rizzoli et al. 2008], dies, and deteriorates 
[Aspenberg, 2006]. Incidence of this rare side 
effect ranges from 1 per 10,000–110,000 patient 
years to approximately 10% in patients with mye-
loma [Khosla et al. 2007; Rizzoli et al. 2008]. The 
occurrence of jawbone osteonecrosis is often con-
nected to underlying dental problems. In addi-
tion, bisphosphonate treatment has been linked 
to stress and atypical fractures of the femoral 
shaft, but data are not always significant [Schilcher 
et al. 2011]. These stress fractures seem to occur 
through inhibition of bone remodeling. When a 
patient is undergoing long-term bisphosphonate 
treatment, bone microdamages are not always 
repaired, and thus accumulate, and eventually 
lead to fractures occurring on compact bones at 
sites of high tensional stress.

Hormone-replacement therapies are also an estab-
lished approach to the treatment and prevention 
of osteoporosis, with significant improvement in 
bone-mineral density, and reduction in hip and 
vertebral fracture. Estrogen started soon after 
menopause helps to maintain bone density. 
However, estrogen therapy in women may increase 
blood clots, and risk of endometrial cancer, breast 
cancer, and possibly heart disease [Maclean et al. 
2008]. Treatment mimicking estrogen, such as 
raloxifene, has significant beneficial effects on 
bone density in postmenopausal women, without 
some of the side effects associated with estrogen, 
such as breast cancer. Osteoporosis in men may be 
related to a gradual age-related decrease in testos-
terone levels that may be treated by testosterone-
replacement therapy, which has a lower impact on 
bone density than direct osteoporosis medications 
[Maclean et al. 2008].

In addition to these treatments, other bone ana-
bolic pathways can be targeted, such as the 
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powerful parathyroid hormone (PTH) analogous 
teriparatide that stimulates new bone growth and 
is more dependent on increasing the activation 
frequency, or the monoclonal antibody deno-
sumab that binds to RANKL, a protein involved 
in the formation, function, and survival of bone-
resorption osteoclasts. New treatments under 
development are aimed at targeting sclerostin and 
the canonical wingless-int (Wnt) signaling, which 
is more dependent on increasing bone modeling 
[Bringhurst, 2002; Deal, 2009; Lim and Clarke, 
2012].

The osteocyte within bone tissue
Osteocytes, the most abundant cells in bone, rep-
resent 90–95% of all cells in the adult skeleton 
[Rochefort et al. 2010]. They are able to live for 
several decades within the bone matrix, whereas 
osteoblasts and osteoclasts have a lifespan of only 
a few days or weeks [Bonewald, 2011]. Osteocytes 
represent the terminal differentiation of osteo-
blasts [Klein-Nulend et  al. 2003]. These cells 
send out long dendritic processes (the dendrites) 
through fine channels within the bone matrix (the 
canaliculi), thus forming a large dendritic net-
work connecting these cells with each other and 
with osteoblasts, lining cells, and osteoclasts 
[Rosser and Bonewald, 2012]. Osteocytes and 
their dendritic processes are bathed in an intersti-
tial fluid (the bone fluid flow) [Bivi et al. 2012]. 
The osteocytic dendrites are particularly impor-
tant in the mechanical sensitivity of these cells 
[Burra et al. 2010], as well as the mechanical sig-
nals recorded by the cilia [Hoey et  al. 2011; 
Uzbekov et al. 2012]. More sensitive than osteo-
blasts, osteocytes are able to respond to mechani-
cal stimulation, particularly shear stress forces 
[Klein-Nulend et  al. 2002], by secreting several 
molecules, including insulin-like growth factors, 
osteocalcin, sclerostin, c-fos, prostanoids, and 
nitric oxide [Uzbekov et  al. 2012; Dallas et  al. 
2013]. Among all the functions assigned to this 
cell (see an overview in Figure 1) [Dallas et  al. 
2013]), osteocyte mechanoreception may stimu-
late the Wnt-signaling pathway as a negative regu-
lator of sclerostin secretion, itself acting as a 
negative regulator of bone formation [Ozcivici 
et al. 2010; Post et al. 2013].

PTH-related therapies
The mechanism of action of the recombinant 
human PTH drug is still under investigation, but 
it probably affects multiple signaling pathways and 

alters the biological activity of several bone cells, 
including osteoblasts, lining cells, osteoclasts, and 
osteocytes [O’Brien et  al. 2008: Bellido et  al. 
2013]. The PTH stimulates bone formation by 
increasing the number of osteoblasts [Wang et al. 
2007]. The PTH effects are mediated by a 
G-protein-coupled receptor, the PTH receptor 1 
[Maeda et  al. 2013; Van Der Lee et  al. 2013]. 
Different recombinant peptides, mimicking this 
PTH receptor 1, have different anabolic effects. 
Thus, the cyclic amino-terminal fragment may 
have a more anabolic profile than the PTH1–34 or 
PTH1–84 fragments [Fraher et al. 1999; Whitfield, 
2006; Henriksen et al. 2013]. Selected amino-acid 
substitutions at various positions in the PTH1–28 
fragment have also revealed an increased activity 
of this recombinant hormone [Yang et al. 2007].

The release regulation of PTH, and the related 
regulation of calcium homeostasis, is under the 
influence of the calcium-sensing receptor, a 
G-protein-coupled, seven-pass transmembrane 
molecule present in the parathyroid gland, the 
kidney, and in osteoblasts and osteocytes [Brown, 
2007; Fromigue et  al. 2009; Xue et  al. 2012]. 
Allosteric modulators of this calcium-sensing 
receptor can affect the secretion of PTH [Trivedi 
et  al. 2008; Riccardi, 2012]. Positive calcium-
sensing receptor agonists, called calcimimetics, 
such as cinacalcet, can reduce PTH secretion in 
patients with hyperparathyroidism and renal dis-
ease [Li et al. 2013; Tsuruta et al. 2013], whereas 
negative antagonists of this receptor, called calci-
lytics, can inhibit the receptor function thus 
inducing the release of a PTH pulse [Cabal et al. 
2013]. Therefore, these molecules may represent 
new targets in the treatment of osteoporosis 
[Fraser et  al. 2004; Nemeth, 2004; John et  al. 
2011]. However, to be useful as anabolic agents, 
calcilytic agents must induce the release of suffi-
cient PTH to be anabolic, they must have a short 
half-life since sustained activation would result in 
prolonged PTH secretion and a catabolic state 
(hyperparathyroidism), and they should not 
deplete the parathyroid gland, and not result in 
hyperplasia [Avlani et al. 2013]. Recently, a calci-
lytic agent, called ronacaleret, has shown a strong 
PTH response, with a short half-life, and an 
increase in both cortical and trabecular bone for-
mation in rodents [Balan et  al. 2009; Atchison 
et al. 2011]. However, a recent clinical trial involv-
ing ronacaleret in humans showed a small, non-
dose-dependent increase in bone-mineral density 
in the lumbar spine at 6 months [Fitzpatrick et al. 
2012].
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Recent studies demonstrated that some actions of 
PTH on the skeleton are mediated by direct 
effects on osteocytes [Bellido et al. 2013]. PTH 
thus down-regulates the expression of the SOST 
gene, encoding the potent inhibitor of bone for-
mation sclerostin expressed in osteocytes (see 
below) [Bellido et al. 2005; Keller and Kneissel, 
2005]. Furthermore, PTH increases the expres-
sion of fibroblast growth factor 23, a hormone 
expressed in osteocytes (and osteoblasts) that 
regulates phosphate reabsorption in kidney and 
contributes to mineral homeostasis [Lavi-
Moshayoff et al. 2010; Bellido et al. 2013].

Wnt signaling, sclerostin, and DKK1
Wnt proteins are a large family of extracellular 
(secreted) cysteine-rich glycoproteins that regu-
late bone remodeling, but are also involved in sev-
eral other physiopathological situations, including 
prostate adenocarcinoma [Yu et  al. 2011], renal 
cancer [Banumathy and Cairns, 2010], most 

sporadic colorectal cancers [Scholer-Dahirel et al. 
2011], melanoma [Lucero et  al. 2010], breast 
cancer [Bu et al. 2008], as well as parathyroid car-
cinoma [Svedlund et al. 2010], and glioma [Liu 
et al. 2011].

The biological action of Wnt passes through 
canonical and noncanonical pathways. Canonical 
Wnt signaling employs extracellular Wnt ligands 
that bind frizzled and lipoprotein receptor-related 
protein (LRP) 5/6 coreceptors at the cell surface 
to transduce a signal that results in the intracel-
lular activation of β-catenin (Figure 2). This 
canonical Wnt pathway regulates production of 
the β-catenin transcription factor by inhibiting its 
phosphorylation, ubiquitination, and degrada-
tion. Noncanonical Wnt signaling is defined as 
Wnt-initiated or frizzled-initiated signaling that is 
independent of β-catenin transcriptional function 
[Lee et  al. 2010; Baron and Kneissel, 2013]. 
Noncanonical Wnt pathways are diverse and 
include Wnt-cGMP/Ca2+ signaling, Wnt-ROR2 

Mechanorecep�on, 
mechanotransduc�on

Muscle development and repair

- FGF23, PGE2 and Wnt3a

- Primary cilium
- Calcium channels
- Physical deforma�on of the bone matrix 
- Canalicular fluid flow 
- Shear stress
- Adhesion molecules
- Cytoskeleton 

Perilacunar mineraliza�on and 
remodeling, calcium homeostasis

- Perilacunar resorp�on and lacta�on

An endocrine organ

- FGF23, regula�ng serum phosphate
- DMP1, PHEX and MEPE, regula�ng FGF23  

Regula�on of the bone remodeling

- NO, PGE2 and ATP ac�va�ng bone forma�on
- Scleros�n, DKK1 and SFRP1, inhibi�ng bone forma�on
- RANKL and M-CSF, ac�va�ng bone resorp�on
- OPG and NO, inhibi�ng bone resorp�on

Figure 1. Functions assigned to osteocytes.
The osteocyte has several functions: (a) it senses and integrates mechanical signals (mechanoreception), and converts them 
into a biological message (mechanotransduction); (b) it directs the differentiation and activity of osteoblasts through the 
release of NO, PGE2, and ATP that activates bone formation, and sclerostin, DKK1, and SFRP1 that inhibits bone formation; 
(c) it directs the differentiation and activity of osteoclasts through the secretion of RANKL and M-CSF that activates bone 
resorption, and OPG and NO that inhibits bone resorption; (d) it controls the local mineralization of the surrounding bone 
matrix and calcium homeostasis that it can lyse locally to release calcium into the systemic bloodstream during periods of 
high demand (e.g. lactation); (e) it has an endocrine function by releasing into the bloodstream a specific endocrine factor, 
FGF23 and its related regulating factors DMP1, PHEX, and MEPE, to modulate phosphate homeostasis; (f) it may modulate 
the proliferation and tone of skeletal striated muscle cells through the expression of FGF23, PGE2,and Wnt3a. (Adapted with 
the publisher’s permission from Dallas et al. [2013] and Rochefort and Benhamou [2013].) ATP, adenosine-triphosphate; 
DKK1, Dickkopf-related protein 1; DMP1, dentin matrix protein 1; FGF23, fibroblast growth factor 23; M-CSF, macrophage-
colony stimulating factor; MEPE, matrix extracellular phosphoglycoprotein; NO, nitric oxide; OPG, osteoprotegerin; PGE2, 
prostaglandin E2; PHEX, phosphate-regulating gene with homologies to endopeptidases on the X chromosome; RANKL, 
receptor activator of nuclear factor kappa-B ligand; SFRP1, frizzled-related protein 1.
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signaling, Wnt-RYK signaling, Wnt-mTOR sign-
aling, etc. [Lee et al. 2010; Sassi et al. 2013].

The Wnt protein also allows the activation of a 
protein complex consisting of axin, adenomatous 
polyposis coli, and glycogen synthase kinase 3 
activating an intracellular signal. When the Wnt 
protein is absent, the membrane receptors friz-
zled and LRP5/6 are dissociated and glycogen 
synthase kinase 3 phosphorylates β-catenin, 
which is then degraded through the ubiquitin/
proteasome pathway [Boudin et al. 2013]. When 
the Wnt protein is present, the frizzled membrane 
receptors are associated with LRP5/6, the protein 
complex is disrupted, and the phosphorylation of 
β-catenin does not occur. Therefore β-catenin 
accumulates, and is then translocated to the cell 
nucleus, and binds to transcription factors that 
can affect the transcription of genes related to 

bone formation [Lee et  al. 2010; Baron and 
Kneissel, 2013; Boudin et al. 2013].

Elements of the Wnt-signaling pathway are well 
conserved in evolution and are found in primitive 
metazoans, such as cnidarians [Lengfeld et  al. 
2009]. The Wnt antagonist DKK1 is expressed by 
early invertebrates, such as the Hydra [Guder 
et al. 2006], whereas the expression of sclerostin 
is not found until the emergence of bony verte-
brates, indicating a more specific role for scle-
rostin in the development and maintenance of the 
skeleton and a broader role for DKK1.

In addition to binding LRP5/6, both sclerostin 
and DKK1 can bind other transmembrane mol-
ecules, such as LRP4, also known as multiple epi-
dermal growth factor-like domains 7 (Megf7) to 
increase their inhibitory activity on the 

Figure 2. Wnt pathway, sclerostin, and DKK1; effects of monoclonal antibodies on bone.
(a) Scl and DKK1 bind Wnt coreceptors LRP5/6 to inhibit Wnt binding and signaling to decrease bone formation. Scl and 
DKK1 bind the first β-sheet of LRP5 and LRP6 to inhibit Wnt-1 signaling. DKK1 also binds the third β-sheet to inhibit Wnt-3a 
signaling. DKK1 and Scl can also utilize coreceptors, such as Kremen-1 or -2 receptors, to augment Wnt inhibitory activity 
resulting in the internalization of the complex. (b) Scl-Ab and DKK1-Ab prevent the interaction of these molecules with LRP5 
and LRP6, thereby allowing Wnt-1 and Wnt-3a to bind the first and third β-sheet of LRP5/6, respectively. Actions of these 
antibodies on bone are summaries. Wnt proteins (either Wnt-1 or Wnt-3a) form a complex with FRZ receptors and LRP5/6 
to transduce an intracellular signal leading to increased bone formation. (For an in-depth review see Ke et al. [2012]). DKK1, 
Dickkopf-related protein 1; DKK1-Ab, Dickkopf-1 antibody; FRZ, frizzled; LRP, lipoprotein receptor-related protein; Scl, 
sclerostin; Scl-Ab, sclerostin antibody.
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Wnt-signaling pathway (Figure 2) [Choi et  al. 
2009]. Indeed, Megf4 KO mice exhibit limb 
abnormalities with polysyndactyly [Simon-
Chazottes et  al. 2006], whereas loss-of-function 
mutations of this factor in humans, also known as 
Cenani–Lenz syndrome, cause syndactyly, kidney 
malformations, and bone overgrowth [Li et  al. 
2010b]. This indicates that LRP4 acts as a nega-
tive regulator of LRP5/6 signaling by increasing 
the inhibitory activity of sclerostin on the Wnt 
pathway, without affecting the activity of DKK1 
[Leupin et al. 2011].

DKK1 may also bind to a two-member family of 
proteins referred to as Kremen-1 and Kremen-2, 
leading to the removal of LRP5/6 from the cell 
surface (Figure 2) [Mao et al. 2002]. Invalidation 
of both Kremen-1 and -2 in mice lead to subtle 
patterning defects in the forelimb with increased 
bone formation that were additionally enhanced 
by the deletion of a single DKK1 allele, indicating 
the importance of these factors in the regulation 
of bone mass through modulation of LRP5/6 
[Ellwanger et  al. 2008; Schulze et  al. 2010]. 
However, the homozygous deletion of either 
Kremen-1 or -2 lead to normal bone formation 
and bone mass, suggesting a functional redun-
dancy of Kremen-1 and -2 [Schulze et al. 2010].

Inhibitors of the Wnt pathway can target either 
frizzled (serum frizzled-related proteins), Wnt 
(Wnt inhibitory factors), or LRP5/6 (DKK1 and 
the osteocyte-released sclerostin) (Figure 2) 
[Rybchyn et  al. 2011]. These agonist molecules 
can prevent Wnt from activating the frizzled 
LRP5/6 signaling pathway, inducing a decrease in 
Wnt signaling, and thus a significant bone 
decrease in bone formation [Glantschnig et  al. 
2011]. On the other hand, deficiencies in these 
inhibitors or antibodies targeting these inhibitors 
induce an increase of Wnt signaling and, there-
fore, induce an increase in bone formation 
[Glantschnig et al. 2010].

Complexity of Wnt signaling has increased since 
the recent description of distinct ligand-binding 
domains on LRP5/6 receptors that recognize dif-
ferent classes of Wnt proteins and inhibitors 
[Bourhis et al. 2010; Ettenberg et al. 2010; Gong 
et al. 2010]. The Wnt1 class, comprising Wnt 1, 2, 
6, 7a, 7b, 9a, 9b, and 10b, was reported to bind 
the first β-sheet of LRP5/6, whereas the Wnt3 
class, including Wnt3 and 3a, was shown to bind 
the third β-sheet of LRP5/6 (Figure 2). DKK1 
was revealed to bind indifferently the first and 

third β-sheets of LRP5/6 [Bourhis et  al. 2010], 
whereas sclerostin bound only the first β-sheet of 
LRP5/6 (Figure 2) [Ettenberg et  al. 2010]. 
Therefore, DKK1 inhibited both the Wnt1 and 
Wnt3 classes, and sclerostin inhibited the Wnt1 
class and enhanced the Wnt3 class [Ettenberg 
et al. 2010].

The sclerostin protein is encoded by the human 
SOST gene [Winkler et  al. 2003; Robling et  al. 
2008; Cohen-Kfir et  al. 2011]. Homozygous 
mutation of loss of expression of the SOST gene 
is responsible for two rare genetic disorders, scle-
rosteosis and van Buchem disease, which are 
associated with general progressive skeletal over-
growth and sclerosis of the axial and appendicular 
skeleton [Brunkow et  al. 2001; Bhadada et  al. 
2013]. In sclerosteosis, bone formation is stimu-
lated by the absence or decreased synthesis of 
sclerostin in humans, whereas bone resorption is 
not (or only mildly) affected [Van Lierop et  al. 
2011]. Van Buchem disease is a disorder resem-
bling sclerosteosis but distinguished by its less 
severe phenotype and absence of hand malforma-
tions, such as syndactyly [Staehling-Hampton 
et al. 2002]. The difference between these two dis-
orders might be explained by the fact that the 
deleted genomic region in van Buchem disease 
includes no regulatory elements required for scle-
rostin expression during the embryologic steps of 
digit formation [Brunkow et al. 2001; Uitterlinden 
et  al. 2004]. Finally, heterozygous mutations in 
the SOST gene cause a mild increase in bone 
mass and fewer skeletal complications [Van 
Lierop et al. 2011].

SOST mRNA is expressed in many tissues during 
embryogenesis. However, the sclerostin protein is 
found only postnatally in terminally differentiated 
cells embedded within a mineralized matrix, 
including osteocytes, mineralized hypertrophic 
chondrocytes, and cementocytes [Ohyama et  al. 
2004]. In humans, SOST mRNA is detectable in 
tissues such as heart, aorta, liver, odontoblasts, 
and kidney, whereas sclerostin protein has never 
been detected in any organs other than bone 
[Balemans et al. 2001; Moester et al. 2010]. Since 
the sclerostin protein is almost exclusively pro-
duced by osteocytes in adult murine and human 
bone, antibodies targeting this offer a way to tar-
get specifically bone formation [Winkler et  al. 
2003; Van Bezooijen et  al. 2005; Robling et  al. 
2008]. Sclerostin antibodies thus increase bone 
formation in osteopenic estrogen-deficient rats 
[Keller and Kneissel, 2005; Li et  al. 2009]. A 
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single subcutaneous dose of a sclerostin antibody 
in postmenopausal women resulted in an increase 
in bone density and bone formation markers, 
without any modification of bone-resorption 
markers [Papapoulos, 2011; Lewiecki, 2013].

Next to sclerostin, mutations in the gene encod-
ing LRP5/6 inducing a gain of function cause an 
increase in bone mass [Kim et al. 2007; Hoeppner 
et al. 2009]. These mutations induce impairment 
of the binding of DKK1 to frizzled LRP5/6, thus 
allowing an increase in the Wnt-signaling path-
way, and an increase in bone formation [Choi 
et  al. 2009]. Antibodies targeting DKK1 and/or 
LRP5/6 induce the increase in bone mass, vol-
ume, and formation in rodents [Van Dinther et al. 
2013]. Therefore, antibodies targeting DKK1 
could also be used as anabolic or antiresorptive 
agents for the treatment of patients with low bone 
mass [Ahn et al. 2011].

Effects of monoclonal antibodies on bone
The pharmacologic inhibition of the sclerostin 
protein, using monoclonal antibody, has con-
firmed efficacy in animal models of bone diseases, 
including estrogen deficiency-induced bone loss 
[Li et  al. 2009], age-related, or androgen defi-
ciency-induced bone loss [Li et al. 2010a], disuse/
immobilization-induced bone loss [Tian et  al. 
2011], glucocorticoid-induced bone loss 
[Marenzana et  al. 2011], chronic inflammation-
induced bone loss [Eddleston et al. 2009], bone 
loss associated with type 2 diabetes mellitus 
[Gaudio et al. 2012], as well as in a rodent model 
of osteogenesis imperfecta [Sinder et  al. 2013], 
and fracture healing [Gamie et al. 2012; Cui et al. 
2013]. Effects of sclerostin monoclonal antibody 
have also been reported in human preclinical 
models of bone loss, including osteogenesis 
imperfecta, fracture healing, implant diseases. 
and other bone disorders (Figure 2) [Eddleston 
et al. 2009; Li et al. 2009, 2010a]. The use of scle-
rostin antibody in these conditions has demon-
strated a consistent ability to increase bone 
formation, bone mass, and bone strength [Ke 
et al. 2012].

A human antisclerostin antibody, known as AMG 
785 or romosozumab, is being developed by 
Amgen (Thousand Oaks, CA, USA) and UCB 
Inc. (Smyrna, GA, USA), and a phase l rand-
omized, double-blinded, placebo-controlled 
study using this antibody has been conducted on 
men and postmenopausal women [Padhi et  al. 

2011]. In this trial, antibody injection was associ-
ated with substantial increases in bone-formation 
markers and reductions in bone-resorption mark-
ers, as well as a dose-dependent increase in bone-
mineral density at the lumbar spine and total hip 
after 3 months. Results from the phase ll trial on 
postmenopausal osteoporosis have not been pub-
lished at this time, but a recent press release by 
Amgen and UCB Inc. reported positive results 
with the cohort using the monoclonal antiscle-
rostin antibody, including a significant increase in 
bone-mineral density of the lumbar spine at 12 
months compared with placebo. Furthermore, 
this antisclerostin antibody was positively com-
pared with teriparatide and alendronate. Positive 
phase ll results of this antibody in patients with 
postmenopausal osteoporosis have been 
announced by Amgen and UCB Inc. 
(NCT00896532, May 2009), whereas phase lll 
programs on fracture healing, and in patients with 
postmenopausal osteoporosis are currently ongo-
ing (NCT01631214, May 2012; NCT01796301, 
February 2013).

In the same manner, the pharmacologic inhibi-
tion of DKK1, using monoclonal antibody, has 
also demonstrated efficacy in animal models of 
bone diseases, including gonad-intact rodents [Li 
et al. 2006], rodent models of fracture healing [Li 
et al. 2011], and implant fixation [Agholme et al. 
2011]. However, unlike Scl-Ab, DKK1 demon-
strated no efficacy in adult ovariectomized rats 
[Li et  al. 2006], and a modest improvement in 
ovariectomized rhesus monkeys [Glantschnig 
et al. 2011; Li et al. 2011]. DKK1 antibody dem-
onstrated efficacy in rodent models of rheuma-
toid arthritis [Diarra et  al. 2007], ankylosing 
spondylitis [Uderhardt et al. 2010], and multiple 
myeloma [Fulciniti et al. 2009].

Conclusion
Treatments of low bone mass and osteoporosis 
have advanced significantly beyond hormone 
therapy administered at menopause. These 
advances are mainly the result of increased under-
standing of the mechanisms underlying osteo-
blast, osteoclast, and osteocyte biology. Novel 
anabolic and antiresorptive agents, affecting oste-
ocyte-associated sclerostin, the calcium-sensing 
receptor, or Wnt signaling, offer promise for the 
treatment of bone disorders. Additional therapies 
treating patients with established fractures are 
needed next to reduce the burden of this other 
disease.
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